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Abstract: Cow’s milk proteins cause allergic symptoms in 2% to 3% of all infants. In these individuals,
the physiological mechanism of tolerance is broken with subsequent possible sensitization to antigens,
which can lead eventually to allergic responses. The present review aims to provide an overview
of different aspects of immune modulation by dietary intervention in cow’s milk allergy (CMA). It
focuses on pathogenetic mechanisms of different CMA related disorders, e.g., gastroesophageal reflux
and eosinophilic esophagitis, highlighting the role of dietary management on innate and adaptive
immune systems. The traditional dietary management of CMA has greatly changed in the last
years, moving from a passive approach, consisting of an elimination diet to relieve symptoms, to a
“proactive” one, meaning the possibility to actively modulate the immune system. Thus, new insights
into the role of hydrolysates and baked milk in immunomodulation are addressed here. Additionally,
nutritional components, such as pre- and probiotics, may target the immune system via microbiota,
offering a possible road map for new CMA prevention and treatment strategies.

Keywords: cow’s milk allergy; immune system; dietary intervention; bioactive peptides; gut
microbiota; prebiotics; probiotics

1. Introduction

Cow’s milk allergy (CMA) is one of the most common food allergies in early childhood, with an
estimated prevalence of 2% to 3% [1]. A growing body of evidence suggests a close relationship between
immunoinflammation and gastrointestinal (GI) motility triggered by dietary antigens [2]. Cow’s milk
(CM) free diets and in particular extensive hydrolyzed formulas may reduce gastrointestinal (GI)
symptoms due to both immune mechanisms and motility alterations, such as reduced gastric emptying
time. Food allergy plays a central role in driving the allergic reaction in eosinophilic esophagitis (EoE)
and cow’s milk is the single most common food allergen causing esophageal inflammation [3].

Nutrients 2019, 11, 1399; doi:10.3390/nu11061399 www.mdpi.com/journal/nutrients

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/220685671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0003-0590-6664
https://orcid.org/0000-0002-1862-8651
http://www.mdpi.com/2072-6643/11/6/1399?type=check_update&version=1
http://dx.doi.org/10.3390/nu11061399
http://www.mdpi.com/journal/nutrients


Nutrients 2019, 11, 1399 2 of 21

Dietary elimination therapy is thought to target the adaptive immune system, by suppressing
antigen-driven T-cell response. Moreover, the role of milk lipids as potential triggers of milk-induced
inflammation in EoE is emerging. These findings provide new insights into EoE pathogenetic
mechanisms that might change the paradigm of allergy, as a protein antigen-driven response. In the
last decade, much has changed in the treatment of food allergy, switching from a passive approach,
consisting of a restrictive diet to relieve symptoms, to a “proactive” one, meaning the possibility to
actively modulate the immune system.

Protein hydrolysates have been recognized as a potent source of bioactive peptides [4]. They
may act locally, e.g., in the gut, by modulating the intestinal microbiota, thereby playing a role in
inducing oral tolerance to milk proteins. Additionally, the role of baked milk as a possible form of
oral immunotherapy has emerged [5,6]. Maintaining tolerance requires complex interactions between
non-immune cells and cells that belong to the gut-associated lymphoid tissue (GALT). Regulatory T
cells (Treg) play a crucial role in tolerance. Although different subtypes of Tregs have been identified,
the pivotal roles of Foxp3+ in oral tolerance are not completely understood. Gut microbes induce the
activation of Tregs, while the same cells are depleted in germ-free mice [7]. Gut microbiota dysbiosis
induces alterations in gut function resulting in aberrant Th2 responses towards allergic, rather than
tolerogenic response [8]. Therefore, the possibility to actively immunomodulate the immune system
targeting microbiota by nutritional factors, e.g., prebiotics and probiotics, represents a novel research
strategy. The present review aims to give an overview of the different aspects of immunomodulation
by dietary intervention in CMA, based on the most recent evidence.

2. Cow’s Milk Allergy and Allergic Dysmotility: A Pleiomorphic Disorder

CMA affects many organs with immediate and delayed reactions [9]. According to the Hill
and Hosking classification, CMA may manifest in three different ways: (1) The IgE-sensitized group
showing immediate cutaneous reactions and anaphylaxis; (2) the non-IgE-sensitized group with
gastrointestinal (GI) symptoms, developing within hours after ingesting moderate amounts of CM;
and (3) the group with GI disturbances with or without respiratory symptoms and/or eczema/urticaria,
occurring after several hours or days [10].

Allergies may involve the GI tract from mouth to rectum, and may be characterized by an
acute (anaphylaxis) or delayed onset [9], the latter including eosinophilic gastroenteropathy, allergic
proctocolitis, food protein-induced enterocolitis syndrome, and enteropathy [11]. Allergic dysmotility
encompasses different entities, including gastroesophageal reflux disease (GERD), dyspepsia, and
constipation, where digestive motility is altered by the neuro-immune-muscle inflammatory interaction
triggered by the cow’s milk proteins in predisposed individuals [9,11]. Up to half of the cases of
GERD in infants younger than 1 year have been related to CMA based on clinical presentation and
improvement on CM [12–14]. However, many symptoms, such as weight loss, failure to thrive,
food-refusal, irritability, excessive crying, regurgitation, vomiting, anemia, wheezing, and sleep
disturbances, may be expressions of both entities [13,14]. By contrast, multiple organ involvement,
mucous or bloody stools, an increase in eosinophils blood count, atopic dermatitis, or recurrent
bronchitis are more suggestive of CMA [13,14].

However, the reasons for clinical improvement after being started on a milk free diet may vary:
The physiological resolution of symptoms over time, an improvement in gastric emptying due to the
use of hydrolyzed proteins, or a placebo effect on parental anxiety.

The strongest evidence that intestinal allergic responses can modulate enteric motility originates
from a series of studies in animal models. Cytokines production by T helper (Th) 2 cells, and
recruitment and activation of either mast cells or eosinophils have been suggested as the major
mechanisms potentially linking allergic responses and dysmotility [15]. A Th 2 polarized response
determines the release of interleukin (IL)-4 and -13, cytokines that alter motility by upregulating
transforming growth factor-beta, with spontaneous contractility of smooth muscle [15]. In a murine
model of luminal sensitization, the allergen exposure induced a skew towards a Th2 response with
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tissue infiltration of IgE degranulating mast cells in the mucosa and mesenteric lymph nodes, causing
enteropathy with loose stools and poor weight gain [16]. Moreover, mast cells and their mediators may
cause sensorimotor dysfunction of the gut through interactions with the enteric nervous system [17–19].

An increase in mast cell density and number in close proximity to submucosal nerve endings
has been demonstrated in children with functional dyspepsia and allergies [2]. In allergic children,
milk allergen exposure induces rapid degranulation of gastric antral lamina propria mast cells and
eosinophils and the release of mast cell tryptase, which interacts with proteinase-activated receptors
that colocalize with gastric mucosal nerve fibers. Subsequent electrogastrographic myoelectrical
abnormalities occur, determining atopy-related dyspeptic symptoms [2].

In the esophagus, animal studies have shown the degranulation of mast cells and the release
of histamine when the mucosa was exposed and injured by acid [20] or when the stress-induced
corticotrophin-releasing factor (CRF) signaling system [21,22] was involved. A rise in mast cell numbers
and released cytokines has also been demonstrated in humans with non-erosive reflux disease and chest
pain syndromes [23,24]. Mast cells play an important role in the esophageal inflammatory reaction
and nociception by increasing vagal nociceptive C fibers’ excitability [25,26]. Proteinase activated
receptors 2 (PAR2), a target receptor of mast cell derived tryptase, is expressed in epithelial cells, GI
smooth muscle cells, and capsaicin-sensitive neurons and regulates GI mucosa barrier functioning
and inflammation [27–29]. PAR2-mediated pathways have been demonstrated to be important in
the pathogenesis of GERD-associated mucosal alterations, such as dilated intercellular spaces and a
decrease of tight junction proteins [23,30].

The diagnosis of CMA in patients with GI symptoms is often challenging because of the delayed
type of allergic reaction and the absence of specific diagnostic tests: Skin prick or serum specific IgE
are usually negative, while atopy patch tests have shown conflicting data [31,32]. Hence, elimination
diet followed by an oral open or double blind standardized challenge, in infants or older children is
the recommended test to diagnose CMA [33,34]. In allergic patients, GI symptoms disappear in up to 2
to 4 weeks on a CM free diet and relapse when milk is reintroduced [33]. Extensive hydrolisate milk
formulas are indicated as the first dietetic choice, whereas elemental formulas should be reserved for
more severe cases or eosinophilic disorders [33,35]. A hypoallergenic diet has been proven effective in
reducing mast cell mucosal infiltration, thus normalizing immune-nerve interactions and improving
motor abnormalities [2,36]. At the same time, hydrolyzed proteins may be effective in these children
due to accelerated gastric emptying [13,14]. In patients with persistent symptoms who are on a diet,
esophageal pH-impedance may provide data on acid and non-acid reflux exposure and temporal
reflux–symptoms association whereas esophagogastroduodenoscopy with esophageal and duodenal
biopsies may reveal the presence and the type of esophagitis and/or enteropathy [13].

3. Eosinophilic Esophagitis: Insights on Pathogenetic Mechanisms and Dietary
Immunomodulation

EoE is a chronic immune-mediated antigen-driven inflammatory disorder characterized
by symptoms of esophageal dysfunction and histologic evidence of eosinophilic-predominant
inflammation of the esophagus [37,38].

Clinical presentation varies according to age. In infants and younger children, the most common
symptoms are food refusal, vomiting, irritability, and failure to thrive. Dysphagia, choking, and
food impaction are the most common symptoms in school children and adolescents, as well as in
adults [39,40].

Diagnostic criteria for EoE are: (a) Symptoms of esophageal dysfunction; (b) eosinophilic esofageal
inflammation, ≥15 eosinophils (Eo)/per high power field (HPF); and (c) exclusion of other causes of
esophageal eosinophilia [37,41].

EoE pathogenesis is closely related to atopy. About 70% of patients have a history of atopy,
including asthma, IgE-mediated food allergy, allergic rhinitis, and atopic dermatitis. Similarly, about
2/3 of patients have at least one family member with an atopic condition [42]. Peripheral blood
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eosinophilia is observed in about 50% of patients, and elevated levels of IgE can be detected in 80% of
patients. Moreover, up to 80% of patients have positive skin prick tests (SPTs) and/or specific IgE (sIgE)
for food or aeroallergens.

Food allergy plays a central role in driving the allergic reaction in EoE, as demonstrated by clinical
and histological remission on dietary restriction therapy and exacerbation after food reintroduction [43].

However, the lack of immediate symptoms after food ingestion, the low predictive value of
SPTs or SIgE, and the poor response to anti-IgE therapy [44] disprove the hypothesis of a merely
IgE- mediated food reaction. The pathogenesis of EoE is most likely a mixed IgE and non-IgE/cell
mediated food reaction, in which Th2 cytokines, particularly thymic stromal lymphopoietin (TSLP),
interleukin (IL)-4, IL5, IL13, and transforming growth factor-β (TGF-β), and eosinophilic chemokines
(eotaxin 1-3/CCL11-CCL24-CCL26 and RANTES/CCL5) play a central role in eosinophilic recruitment,
perpetuating local Th2-inflammation. Eosinophils cause tissue damage, remodeling, and fibrosis.

Antigens, primarily food ones, activate the innate and adaptive immune systems, priming the
Th2 immune response [45,46].

The goal of therapy is to induce clinical and histological remission (defined as esophageal Eo
< 15/HPF). Treatment strategies include drugs (e.g., proton pump inhibitors, corticosteroids) and
elimination diets. These therapies both act on esophageal inflammation.

An avoidance diet is thought to target the adaptive immune system, by suppressing antigen-driven
T-cell response; it requires elimination of food antigen/s, demonstration of remission, and subsequent
sequential reintroduction of each single food in order to identify the causative agent [47–49].

Different elimination strategies are currently used in EoE: Elemental diet and empirical elimination
diets, such as the six-food groups elimination diet (milk, wheat, soybean/legumes, egg, peanut/nuts,
and fish/shellfish) (SFED), four-food elimination diet (milk, wheat, egg, legumes/soy) (FFED), or allergy
testing-based food elimination diet (ATBD).

The efficacy of these different dietary treatments ranges from 90.8% for the elemental diet, to 72%
for SFED, 55% for FFED, and 45.5% for ATBD [43,50].

After sequential food reintroduction, in the majority of patients (45–85%), one or two causative
foods are identifiable. (2) Much evidence supports CM as a major trigger food for EoE. CM is the single
most common food allergen causing esophageal inflammation. In both adults and children studies on
empiric SFED-FFED or two-food elimination diet (TFED), CM was identified as the single trigger in
18% to 50% of adult patients [3,51,52] and from 30% up to 60% of pediatric patients, in prospective
studies [3,52,53].

Moreover, CM elimination diet induced a significant reduction in the mean peak pre- and
post-treatment eosinophil count in 68.2% of patients [54,55]. Sensitization to CM (serum sIgE and/or
positive skin prick test) was detected in 45.9% of children with EoE, in a large cohort of European EoE
children [42].

However, it is known that sIgE correlates poorly with food triggers. Furthermore, it has been
observed that CM sIgE levels are paradoxically lower in responders to the CM elimination diet, than in
non-responders [56]. These findings are in keeping with the evidence of a non-IgE-mediated reaction.

Nevertheless, even in patients with negative skin prick tests, sIgE to whey protein Bos d
4 (α-lactalbumin) and Bos d 5 (β-lactoglobulin) are frequently detectable by ImmunoCAP assay.
Therefore, although IgE response is not the primary mechanism in EoE, Bos d 4 and Bos d 5, minor
components of CM, can act as primary antigens for IgE response, triggering T cell-driven inflammation
in EoE.

Another antibody isotype currently investigated in EoE is IgG4. IgG4 is an immunoglobulin
involved in allergen tolerance and anti-inflammatory activity. High levels of serum and esophageal
IgG4 have been found in active EoE in adults [57]. Recently, it has been demonstrated that levels of
esophageal IgG4 in EoE patients correlate with the number of esophageal eosinophils, with basal zone
hyperplasia, and with levels of IL4 to IL13, and especially IL10, providing evidence that IgG4 correlates
with disease activity (i.e., eosinophils and basal zone hyperplasia) and Th 2 inflammation [58]. The
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highest titers of IgG4 in EoE are to CM and gluten. Levels of serum IgG4 to CM proteins (Bos d 4, Bos
d 5 and casein, Bos d 8) are higher in active EoE than in controls. These data suggest a pathogenetic
role for IgG4, especially to CM proteins, in EoE.

However, levels decrease on a CM elimination diet not only in subjects with histological remission,
but also in subjects without remission, suggesting that IgG4 could be only an epiphenomenon in
EoE [59].

Invariant natural killer T cells (iNKTs), a subset of T cells, play a key role in IgE-mediated CM
allergy. They are activated by sphingolipids (SLs) rather than by protein antigens. Milk sphingomyelin
(milk-SM) activate iNKTs, induce iNKTs’ proliferation, and promote Th2 response [60]. In children
with IgE mediated food allergy, especially to CM milk, iNKTs are reduced. Children with active EoE
have lower peripheral blood iNKTs with greater Th2 response to milk-SM compared to children with
controlled EoE and controls. Esophageal iNKTs are higher in active EoE than in controlled EoE and
healthy children. Low peripheral iNKTs could reflect recruitment on site of esophageal inflammation,
suggesting a pathogenetic role of iNKTs in EoE [61].

These findings could explain why some foods are more able to trigger EoE than others, and provide
new insights into EoE pathogenetic mechanisms. Milk lipids as potential triggers of milk-induced
inflammation may change the paradigm of allergy, as a protein antigen-driven response.

4. Immune Modulation by Hydrolysate Proteins

Great consideration has recently been given to hydrolysate proteins. Their capacity to reduce
allergic symptoms due to the lack of IgE binding epitopes is common knowledge [62]. Therefore,
infant formulas containing extensively hydrolyzed proteins are tolerated by allergic infants and are
recommended for the management of children with CMA symptoms [63,64].

Furthermore, hydrolysates have been demonstrated as capable of reducing the gut intestinal
permeability [65] in ex vivo models. The improved barrier function may decrease the antigen uptake
and the antigen contact with the intestinal immune cells in the lamina propria, which may lead to a
reduction in allergic symptoms [66].

More recent evidence, however, suggests that hydrolyzed peptides also have an active role in
modulating the immune system through different mechanisms both in children with CMA and in
those at risk of developing CMA [67,68]

In vitro and ex vivo studies have described hydrolysates as having local and systemic effects on the
immune system, including their ability to strengthen the epithelial barrier, via many immunomodulatory
mechanisms, such as increasing the regulatory cytokines (e.g., IL-10) or decreasing the inflammatory
markers, including cyclo-oxygenase 2 (COX-2), NF-kB, and IL-8, and also by the expression of genes
encoding for tight junction proteins [65].

Protein hydrolysates act on the intestinal mesenteric lymph nodes, increasing the number of Treg
cells, which are crucial in inducing tolerance [69]. These effects have been demonstrated in murine
models analyzing both peptides derived from casein and whey proteins [70–72]. Besides enhancing
the Treg number in the mesenteric lymphonodes, other effects on the local immune system have been
described. In particular, hydrolysates from bovine milk seem to have an anti-inflammatory effect
in vivo that is dependent on the protein source (casein or whey). These effects have been observed
in animal models after inducing experimental colitis. While pro-inflammatory cytokines, IL-1beta,
IL-17, TNF-alpha, and IFN, decreased, an increase in the regulatory cytokine, IL-10, and reduced
macroscopical and microscopical damage of the colon mucosa was observed after administration
of casein hydrolysate or casein glycomacropeptide [71,73,74]. Based on this and other experimental
findings, feeding with a casein eHF is actually recommended as a first-line choice for the management
of food protein induced enterocolitis [75].

Feeding with a partially hydrolyzed whey protein diet reduced allergic skin response in a cow’s
milk allergy mouse model, by decreasing the levels of Th1, Th17, and enhancing regulatory T and B
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cells in Peyer plaques after whey challenge [76]. Interestingly, a sequenced peptide derived from whey
has been demonstrated to reduce the whey antibody levels in animal models.

Protein hydrolysates also have an effect on the systemic immune system probably via small
peptides that pass through the intestinal barrier and enter the systemic circulation. An increase in
IL-10 producing regulatory B cells was observed after inducing oral tolerance by administration
of intact casein in casein-allergic mice and in the spleen after whey hydrolysates’ administration,
respectively [76,77].

Peptides can exert their immune modulatory effects via different mechanisms, among which the
direct stimulation of the receptors on immune cells via Toll-like receptors (TLR) is one of the most
important [78]. Other mechanisms have been described, including cells’ absorption via transporter or
via endocytosis that leads to interactions with inflammatory signaling pathways or conversely to the
inhibition of inflammatory signaling pathways [78] (Figure 1).
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Presenting Cell; IL-2 = Interleukin-2; IL-4 = Interleukin-4; IL-5 = Interleukin-5; IL-13 = Interleukin-13;
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increase; ↓ = decrease.

The majority of studies on the effects of immune modulation by hydrolyzed formula were
conducted on ex vivo models; there are very few data regarding how to speed up an increase in
tolerance in infants fed with hydrolyzed formulas. However, these studies mostly came from the same
group of authors [79,80] and need confirmation before drawing firm conclusions.

The peptides with an immunomodulatory effect are mostly small in size (2 to 20 amino acids),
although peptides with a molecular weight over 1000 daltons in whey and soy proteins hydrolysates
also seem to have immunomodulatory properties [77,81]. While different protein hydrolysates seem
able to directly modulate the local and systemic immune system, the final effect depends on the
type of hydrolysate and on the protein source. Furthermore, only few immunomodulatory peptides
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have been identified up to now. Indeed, further research should be focused on identifying specific
immunomodulatory peptides and investigating their immune effects in humans.

5. Baked Milk: A Possible Form of Oral Immunotherapy?

Most children with CMA can tolerate baked milk [82,83]. At baseline, children tolerant to baked
milk differ from reactive children by having lower milk-specific, beta-lactoglobulin, and casein IgE
concentrations [84] and a higher number of Treg cells [85] Although casein IgE levels have been
shown to have the best accuracy in predicting the reactivity to a baked milk challenge [86], the test’s
performance relies on the decided cut-off points, which, in turn, depend on the sensibility and specificity
of the test. Indeed, on an individual basis, an oral food challenge with baked milk should be performed
to identify baked milk tolerant subjects as no laboratory testing can predict patient tolerance to baked
milk in a reliable and conclusive way.

Many cohort and retrospective studies have hypothesized that CMA resolution occurs more
rapidly in cases of regular baked milk assumption [82,84].

However, since cow’s milk tolerance can spontaneously occur in the first years of life, studies
without a control group could not explain whether the faster tolerance observed is due to real immune
modulation via a baked product, or by a milder phenotype of those patients [82,87,88].

A recent systematic review [88], considering only published observational studies, found weak
evidence that the ingestion of baked hens’ eggs or cow’s milk results in an acceleration of tolerance
achievement. However, very recently, a controlled randomized clinical trial showed that introducing
baked milk in cow’s milk protein allergic patients accelerates the tolerance to fresh milk [5].

It is well known that oral immunotherapy (OIT) plays an immunological role by modulation of
humoral and cell immunity. Humoral changes caused by OIT include a decrease in IgE levels and
a rise in IgG levels, especially IgG4, which have a protective role on allergic reactions by blocking
IgE-mediated basophil and mast cell activation. T cell response modifications include a reduction of Th2
cell line and Th2 cytokines’ expression [89,90]. A study from Goldberg et al. [91] showed that baked-milk
reactive patients, who underwent baked milk OIT and reached maintenance dose, present a decrease
in IgE reactivity to casein and alpha-lactalbumin. Similar to what happens during OIT [6], studies on
the immune profile have suggested that after regular ingestion of baked milk products in baked mild
tolerant children, casein IgG4 levels increase [82,84], while casein and beta lactoglobulin-specific IgE
levels and casein IgE/IgG4 and beta lactoglobulin IgE/IgG4 ratios decrease [82].

All these findings together suggest that the ingestion of baked milk products could drive a change
in immune patterns, speeding up milk tolerance. However, further randomized studies are warranted
to confirm this hypothesis.

Besides, the opportunity to reduce the child’s dietary and label-related restrictions has been
demonstrated to reduce the stress levels with a beneficial effect on the quality of life of food-allergic
children and their families [92,93].

6. Gut Microbiota in Perinatal Period and Its Relationship with Immune Function and
Allergy Development

Gut microbiota are influenced by several factors occurring during pregnancy and after birth [94,95].
Several studies have evaluated the relationship between bifidobacterial colonization and the

development of allergic diseases, including cow’s milk allergy [96–98].
Oral feeding determines the major modifications in the composition of intestinal microbiota.

Breast milk contains important substances influencing the development of a newborn’s immune
system [99]. A recent study [100] suggests that lactoferrin passes throughout breast milk to the intestine
of the newborn, promoting the growth of bifidobacteria, which in turn contributes to the regulation of
postnatal intestinal development [101].

Human milk contains mainly Lactobacilli and Bifidobacteria with an estimated number of
ingested bacteria of 1 × 105 to 1 × 107 per 800 mL of milk consumed daily [102]. These bacteria
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stimulate endogenous production of secretory IgA [103], activation of T regulatory cells [104], and
anti-inflammation response [105,106]. Gut microbiota establishment in early life is crucial for the
success of oral tolerance, mediated by Foxp3þ and Treg, known to inhibit immune activation [107,108].
Germ free mice showed a Th2-skewed response [109]. An early exposure to pro-and/or prebiotics
during the prenatal period and in early life might be beneficial in preventing Th2- mediated allergic
disease, including food allergy [110].

7. Prebiotics and CMA

An increasing body of evidence shows that the gut microbiota contributes to the maturation of
the immune system [111]. An altered patterns of early colonization, e.g., “dysbiosis,” predisposes
people to allergic diseases. Prospective studies have demonstrated that a gut microbial imbalance due
to reduced diversity in the early years of life is associated with an increased risk of developing food
sensitization and atopic eczema [112–114]. Although the specific microbiota dysfunction in allergies
remains unclear, both prebiotics and probiotics probably modulate immune development through
a number of different pathways that can be modified by host and environmental factors. Prebiotic
carbohydrates are a major substrate for bacterial growth, and stimulate selectively the growth and/or
activity of beneficial species of the gut microbiota. The bifidogenic effect of human milk (a rich source
of oligosaccharides) and of certain prebiotics (i.e., fructo- and galacto-oligosaccharides) added to infant
milk formulas has long been reported [115,116].

Human milk oligosaccharides (HMOs) may both reduce the adhesion of pathogens and act as
metabolic substrates for select species, contributing to the shaping of the infant gut microbiota and
modulating the immune system [117] and health of infants [118]. However, there are hundreds of
different HMOs, with specific properties and functions [97]. Up to now, only a small number of
HMOs have been synthetized and added to infant formula, showing beneficial results [97]. According
to a recent study, infants fed with human milk containing low Lacto-N-fucopentaose III (LNFP)
concentrations were more likely to become affected by CMA compared to infants receiving high LNFP
III-containing milk (odds ratio 6.7, 95% CI 2.0–22) [119].

A systematic review [120] on HMOs reported a protective effect against CMA by 18 months of age.
A beneficial effect of a special mixture of prebiotics (short-chain galacto- and long chain

fructo-oligosaccharides) on the development of atopic dermatitis in a high risk population of infants
was shown for the first time in 2006 [116].

Fewer infants in the intervention group (hydrolyzed protein formula + prebiotic mixture)
developed atopic dermatitis compared to infants in the control group (hydrolyzed protein formula
+ maltodextrine) (9.8%; 95 CI 5.4–17.1% vs. 23.1%; 95 CI 16.0%–32.1%) In the intervention group,
a significantly higher number of faecal bifidobacteria was detected compared to the controls [116].
A systematic review and meta-analysis found no effect on the onset of asthma whilst it did find a
significant reduction in eczema (four studies, 1218 infants; risk ratio (RR) 0.68, 95% CI 0.48–0.97, with a
number needed to treat 25 (95% CI 14 to >100)) [121]. Conversely, a more recent systematic review
reported no difference in eczema (RR: 0.57, 95% CI: 0.30e1.08). Only one study evaluated the risk of
food allergy and found a reduced risk (RR: 0.28, 95% CI 0.08e1.00) in prebiotic-treated infants [122].

A very recent study [111] assessed the effect of a partially hydrolyzed protein formula
supplemented with non-digestible oligosaccharides on the prevention of eczema in 138 infants
at high risk of allergy. Infants receiving the prebiotic formula had a fecal microbial composition,
metabolites, and pH closer to that of breast-fed infants than that of infants receiving standard cow’s
milk formula. Infants with eczema by 18 months showed decreased acquisition of Eubacterium and
Anaerostipes species with increased lactate and reduced butyrate levels [111].

A similar effect was also shown in non-at-risk infants [123]: In total, 414 infants received an intact
protein formula containing a specific mixture of neutral oligosaccharides and pectin-derived acidic
oligosaccharides compared to 416 infants fed with a control formula without oligosaccharides. Up to
the first year of life, atopic dermatitis occurred in a significantly higher number of infants from the
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control group (9.7%) than the prebiotic group (5.7%) [123]. The addition of lactose to an extensively
hydrolyzed formula significantly increased the total fecal counts of Bifidobacteria and lactic acid bacteria,
and decreased that of Bacteroides/Clostridia.s. Moreover, lactose significantly increased the concentration
of total short-chain fatty acids, especially acetic and butyric acids, as demonstrated by the metabolomic
analysis [124].

A recent multicenter double-blind randomized controlled trial [125] investigated the effects
of an amino acid-based formula (AAF), including fructo-oligosaccharides, and the probiotic strain,
Bifidobacterium breve M-16V, in 35 infants with suspected non-IgE-mediated CMA. After 8 weeks
of diet, the median percentage of Bifidobacteria was significantly (p < 0.001) higher in the test group
than in the 36 control subjects fed non-supplemented AAF (35.4% vs. 9.7%), whereas Eubacterium
rectale/Clostridium coccoides group in feces was lower (9.5% vs. 24.2%) and similar to that detected in
breastfed infants (55% and 6.5%, respectively).

A subsequent double-blind randomized controlled multicenter trial with the same study groups
and formulas confirmed the same fecal microbiota changes at 26 weeks [126]. Safety parameters were
similar between groups.

Data from animal models have shown that in whey-sensitized mice, dietary supplementation
with short chain galacto-oligosaccharides, long chain fructo-olgosaccharides, pectin-derived acidic
oligosaccharides, and/or mixtures of the above prebiotics effectively reduced allergic symptoms but
differentially affected mucosal immune activation. In whey-sensitized mice, mixtures of prebiotics
increased the number of Foxp3+ cells in the proximal small intestine compared to sham-sensitized
mice [127]. The increased expression of Th2 and Th17 mRNA markers in the small intestine of
whey-sensitized mice was prevented by the mixture of galacto and fructo-oligosaccharides. Adding
pectin-derived acidic oligosaccharides to this mixture enhanced Tbet (Th1), IL-10, and TGF-β mRNA
expression, which was maintained in the distal small intestine and/or colon [127]. Interestingly, a more
recent study [128] showed that co-administration of oligosaccharides and partially hydrolyzed whey
protein can induce immunological tolerance in mice orally sensitized with whey and/or cholera toxin
on day 35, particularly if the intake was on a daily basis. The oligosaccharide composition seems to
influence the tolerance inducing mechanisms and was associated with the decrease of Lactobacillus
species, being replaced by Bacteroidales family S24-7 members and with the relative abundance of
Prevotella [128].

In 2011, the European Society for Paediatric Gastroenterology Hepatology and Nutrition
(ESPGHAN) Committee on Nutrition concluded that there was insufficient evidence to recommend
the use of prebiotics in infant formula to prevent atopic disease [129].

Conversely, based on the Grading of Recommendations Assessment, Development and Evaluation
(GRADE) approach, in 2016, the World Allergy Organization guideline panel suggested the use of
prebiotic supplementation in not-exclusively breastfed infants; however, both recommendations were
based on a very low certainty of evidence [122].

At present, despite some promising results mainly related to the effect of specific prebiotics on the
gut microbiota, clinical evidence of the beneficial effect of prebiotics in CMA is still inconclusive [128].
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8. Probiotics and CM

Several studies have shown that probiotic supplementation given to women during pregnancy
and lactation can modulate the microbial milk composition and immunity-modulating molecules, with
health benefits ranging from gastrointestinal symptoms to allergies, transferred to the newborn [130].
Administration to mothers of a probiotic mixture (sold in continental Europe and the USA as Vivomixx®

and Visbiome®-, -Danisco-Dupont, WI, USA,) resulted in an increase of Lactobacilli and Bifidobacteria
in both colostrum and mature milk [131] in the “probiotic group” with respect to the “placebo group”,
and in breast milk concentrations of secretory IgA and TGF-β and IL-10 (anti-inflammatory and
immunomodulatory cytokines) [132]. This increasing gut maturation influences a newborn’s IgA
production and seems to improve gastrointestinal functional symptoms in infants [132]. TGF-β
ingested through breast milk restrains inflammatory responses in intestinal epithelial cells and T cells
and exerts a modulation on the immune tolerance towards dietary antigens and indigenous intestinal
microbes by induction of Treg cells [132]. It also increases the IgA production in newborns, improving
the intestinal barrier function [133].

Maternal probiotic supplementation during pregnancy and breastfeeding seems to prevent atopic
eczema in children [130]. The results of the main studies (RCT) are shown in Table 1 [134–141] (Table 1).
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Table 1. Probiotics administration during pregnancy and breastfeeding for the prevention of allergic disorders.

Author, Year Study Subjects Strain, Dose, Beginning of the Treatment
(S), End of the Treatment (E) Placebo Outcomes Follow-Up (Years) Side Effects

Dotterud et al. [134] RCT 415 pregnant women

LGG 5 × 1010 CFU, Bb-12 5 × 1010 CFU
and La-5. 5 × 109 (CFU) daily
S: 4 weeks before expected delivery date
E: 3 weeks after delivery
(breastfeeding)

yes Probiotic supplementation reduces incidence of
atopic dermatitis (AD) in children 2 No

Enomoto et al. [135] Open-trial 166 pregnant women
and newborns

BB536 5 × 109 CFU and BB M-16V 5 × 109

CFU daily
S: 4 weeks before expected delivery date
E: 6 months after delivery (to infants)

no Probiotic supplementation reduces incidence of
AD in children 3 no

Wickens et al. [141] RCT 423 pregnant women

LR HN001 6 × 109 CFU daily
S: from 14–16 weeks gestation
E: 6 months after delivery
(breastfeeding)

yes Probiotic supplementation does not prevent AD
in infants 1 no

Ou et al. [138] RCT 191 pregnant women
and related newborns

LGG ATCC 53103, 1 × 1010 CFU daily
S: From the second trimester of pregnancy;
E: 6 months after delivery (to mothers and
infants) during breastfeeding

yes
Probiotic supplementation doesn’t prevent
infant allergic disease (AD, allergic rhinitis,
asthma)

3 no

Rautava et al. [139] RCT 241 pregnant women

LPR 1 × 109 CFU BL999 1 × 109 CFU ST11
1 × 109 CFU daily
S: 2 months before expected delivery
E: 2 months after delivery (breast-feeding)

yes Probiotic supplementation prevents infant
eczema 2 Not observed

Kim et al. [136]
Randomized
placebo-controlled
trial

112 pregnant women
and newborns

BGN4 1.6 × 109 CFU, AD011 1.6 × 109

CFU, and AD031 1.6 × 109 CFU daily
S: 4–8 weeks before expected delivery
E: 6 months after delivery (to mothers
during breastfeeding and to infants)

yes
Probiotics
supplementation reduces incidence of AD in
children

1 yes

Niers et al. [137]

Double-blind,
randomized,
placebo-controlled
trial

136 pregnant women
and newborns

BB: 1 × 109 CFU; BL 1 × 109 CFU; LL 1 ×
109 CFU
S: last 6 weeks of pregnancy
E: 12 months after delivery (to infants)

yes Probiotics supplementation reduces the
incidence of AD in children at 3 months of life

24 months after
delivery no

Simpson et al. [140]
Randomized
placebo-controlled
trial

415 pregnant women

Probiotic milk: LGG, 5 × 1010 CFU; La-5 5
× 109 CFU and Bb-12 5 × 1010 CFU
S: from 36 weeks gestation
E: 3 months after delivery (breastfeeding)

yes Probiotics supplementation reduces incidence of
AD

6 years after
delivery no

LGG: Lactobacillus rhamnosus GG; Bb-12: Bifidobacterium animalis subsp. Lactis Bb-12; La-5: L. acidophilus La-5; CFU: colony-forming unit; BB536: B. longum BB536 [ATCC BAA-999]; BB
M-16V: B. breve M-16V [LMG 23729]; LR HN001: Lactobacillus Rhamnosus HN001; LG LPR: Lactobacillus rhamnosus LPR; BL999: Bifidobacterium longum BL999. ST11: L paracasei ST11; BGN4:
Bifidobacterium bifidum BGN4; AD011: Bifidobacterium lactis AD011; AD031: Lactobacillus acidophilus AD031; BB: Bifidobacterium bifidum; BL: Bifidobacterium lactis; LL: Lactococcus lactis; AD:
Atopic Dermatitis
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Further studies are requested in order to confirm the possibility of preventing other allergic
disorders with perinatal probiotic administration.

The World Allergy Organization (WAO) [142] recommends the use of probiotics in pregnant and
breastfeeding women and in non-exclusively breastfed infants at high risk of allergic disease. On
the other hand, the Academy of Allergy and Clinical Immunology [143] and European Society for
Paediatric Gastroenterology, Hepatology, and Nutrition [129] do not recommend the use of probiotics
and/or prebiotics for the prevention of allergic diseases. However, the WAO guideline panel recognizes
that the recommendations of both probiotics and prebiotics are conditional and based on very low
quality evidence.

In terms of the therapeutic property of probiotics, it has been demonstrated [144] that in infants
with proctocolitis, the addition of Lactobacillus rhamnosus LGG to an extensively hydrolyzed cow’s
milk protein formula determines a greater decrease in fecal calprotectin [145] and a reduction in the
number of infants with a persistence of occult blood in stools after 1 month. LGG could enhance the
intestinal mucosa’s barrier function and participate in the degradation of protein antigens, compete
with pathogenic bacteria, and promote early immune system maturation towards non-allergy. A recent
systematic review considered a randomized trial, involving 895 pediatric patients with CMA. The
primary outcome of interest was relief of symptoms in terms of a reduction of the severity of atopic
dermatitis (measured by the SCORing Atopic Dermatitis (SCORAD) index). Overall, a decrease of the
SCORAD index was shown in subjects given probiotics, but the results were imprecise and do not
permit firm conclusions to be drawn [146].

The results of Randomized Controlled Trials (RCT) on probiotics use in CMA treatment are shown
in Table 2 (Table 2).
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Table 2. Probiotics in cow’s milk allergy CMA treatment.

Author, Year Study Design Subjects Strain, Dose (D) Placebo Outcomes Treatment Period
(Months) Side Effects

Baldassarre et al. [144] RCT 30 infants LGG 1 × 106 CFU/g yes
Probiotic supplementation improves
gastrointestinal symptoms (hematochezia and
fecal calprotectin)

1 No

Berni Canani et al. [79] RCT 80 infants LGG, 1.4 × 107 CFU/100 mL yes Probiotic supplementation accelerates
tolerance acquisition to cow’s milk proteins 12 No

Berni Canani et al. [80] RCT 260 infants LGG (dose not specified) yes Probiotic supplementation accelerates
tolerance acquisition to cow’s milk proteins 12 No

Berni Canani et al. [147] RCT 220 children LGG (dose not specified) yes

Probiotic supplementation reduces the
incidence of other allergic manifestations and
hastens the development of oral tolerance to
cow’s milk proteins

36 No

Dupont et al. [148] RCT 119 infants LC CRL431 and Bb-12 (dose not
specified) yes

Probiotic supplementation significantly
improves the SCORAD index and growth
indices

6 No

Hol et al. [149] RCT 119 infants LC CRL431 and Bb-12 1 × 107

CFU/g formula
yes Probiotic supplementation does not accelerate

tolerance acquisition to cow’s milk proteins 6 No

Kirjavainen et al. [150] RCT 35 infants LGG ATCC 53103 1 × 109 CFU/g yes Supplementation with viable probiotics
improves the SCORAD index 2

Diarrhea (with
heat-inactivated
LGG)

Majamaa et al. [151] RCT 31 infants LGG ATCC 53103- 5 × 108 CFU/g
formula twice a day

yes
Probiotic supplementation improves the
SCORAD index and reduces markers of
intestinal inflammation

1 No

Viljanen et al. [152] RCT 230 infants

LGG (ATCC 53103) 5 × 109 CFU
vs. LGG 5 × 109 CFU, LR LC705-
5 × 109 CFU, Bbi99- 2 × 108 CFU,
and PJS- 2 × 109 CFU twice a day

yes
Probiotic supplementation improves the
SCORAD index in IgE-sensitized infants but
not in non-IgE-sensitized infants

1 No

LGG: Lactobacillus rhamnosus LGG; CFU: colony-forming unit; LC CRL431: L. casei CRL431; Bb12: B. lactis Bb-12 (B animalis subspecies lactis); LR LC705: L. Rhamnosus LC705 Bbi99:
Bifidobacterium breve Bbi99; PJS: Propionibacterium JS.
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Great interest has recently arisen regarding the possible role of probiotics administration in
fasting tolerance. Despite some evidence that a specific strain, such as Lactobacillus rhamnosus, LGG
administration may induce tolerance among infants with CMA with a long-lasting effect [147]. Although,
no general conclusions can be drawn, due to inconclusive evidence and imprecise results [146]. Further
studies are required to investigate the effects of pre- and postnatal probiotic supplementation on the
development of systemic and mucosal immunity. Similarly, the most effective strains, dosages, or
optimal duration of treatment still need to be defined.

The use of probiotics is in general safe during pregnancy and in newborns (see Table 1). Kuitunen
et al. [153] reported that newborns supplemented with probiotics before and after birth had significantly
lower hemoglobin levels compared to the placebo group at six months of life. This effect was considered
to be transient

Without proper identification of the strains the clinical evidence regarding one product could
not be transferred from one product to another. This is the reason why the limiting of information to
probiotic genera/species is not the best choice [154]. Without consideration of current regulatory and
commercial loopholes, assessing harm will be difficult for researchers, physicians, and patients. More
stringent regulations mandating full disclosure of the probiotic microorganisms at the strain level and
the origin of the product and manufacturing changes are a prerequisite for proper safety and efficacy
reporting [155].

9. Conclusions

Much has changed in recent years in food allergy management, moving from a one-size approach
to a personalized one, associated with the specific food allergy phenotype. While different protein
hydrolysates seem able to modulate the immune system, the few in vivo data, although promising,
do not allow us to draw conclusions on their effect on tolerance achievement. Furthermore, the
paucity and heterogeneity among the studies currently limit one’s ability to compare the results and to
recommend the routine use of prebiotics and probiotics for prevention and treatment of CMA.
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