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Abstract

The aim of this study is to investigate the parametric
estimation of entropy and entropy rate of Heart Rate Vari-
ability (HRV) series, through the usage of Higher Order
Markov Chain (HOMC) models. In HOMCs, the dynamic
depends on an arbitrary number of previous steps, and not
just the present state as in traditional Markov chains.

After obtaining the transition probabilities, entropy and
entropy rate were derived in terms of the stationary dis-
tribution. First, we empirically confirmed the convergence
of the estimated values to the theoretical ones, by creating
synthetic signals from HOMCs with known characteristics.
Then, we tested the methodology on HRV series derived
from long-term recordings of 44 patients affected by con-
gestive heart failure and 54 normal controls. After quanti-
zation of RR series with three different strategies, metrics
were estimated varying the HOMC order (up to 7) and the
number of samples. As no gold standard was available, we
measured the capability of entropy and entropy rate of dis-
criminating among the two populations considered, using
a support vector machine model (k = 5 fold validation).

On synthetic series, the estimation error was marginal
when N > 200 and smaller when the MCs were tightly
connected . The classification averagely scored an accu-
racy of about 80% in distinguishing normal and CHF pa-
tients, with a maximum value of 86.7% (AUC=0.92).

1. Introduction

Cardiovascular signals provide relevant information on
the state of the heart and the autonomic nervous system.
Heart Rate Variability (HRV) has been extensively charac-
terized quantifying its entropy and entropy rate [1]. How-
ever, recent studies suggest that the use of parametric esti-
mators of entropy rate, based on autoregressive (AR) mod-
els might have advantages, e.g., when dealing with noisy
signals [2]. Methods performing parametric estimation of
entropy measures are also referred to as model-based [3].

The aim of this study is to investigate the parametric
estimation of entropy and entropy rate, in HRV series,

through the usage of Higher Order Markov Chain (HOMC)
models [4]. While the future evolution of a Markov chain
depends only on its present state, in HOMCs the dynamic
depends on an arbitrary number of previous steps.

2. Methods

Markov Chains (MCs) are stochastic processes such that
the probability of each event depends only on the state at-
tained previously. Thanks to this property called Markov,
MCs are able to encode dependencies of events which are
closely related in time. MCs are fully parameterized by a
square n× n transition matrix P, where n is the cardinal-
ity of the discrete state space . The probability of transiting
from a state i to a state j is denoted by the corresponding
entry Pij . The sum of each row is thus 1, that denotes the
probability of moving from state i to any state .

The stationary distribution µ of a MC solves the eigen-
vector problem: µP = P. In particular, µ is a 1×n vector
which represents the probability of being in a particular
state i at any time t.

The (Shannon) entropy H(•) quantifies the minimum
descriptive complexity of a random variable (average in-
formation). For a given string of data, it is related to the
length of its shortest binary representation. For the realiza-
tion of a MC X , it is evaluated as:

H(X) = −
∑
i

µi log2 µi, (1)

where the sum is extended to all the states. On the other
hand, the entropy Rate Hr(•) describes the time-average
conditional entropy of the stochastic process. In other
words, it encodes the (average) information available about
the future state, given the present (and past, for HOMC de-
scribed in section 2.1) outcomes. For the MC X:

Hr(X) = −
∑
ij

µiPij log2 Pij (2)

2.1. Higher Order Markov Chains

The order of a MC denotes the number of states consid-
ered for transiting from the current state to the next one.
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For classical MCs, when the Markov property holds, the
process order is 1. On the other hand, an order 2 MC as-
signs the probability ofXi+1 based on the current and pre-
vious outcomes of the process (Xi, Xi−1). As the name
suggests, HOMCs are MCs whose order is greater than 1.

An order k HOMC is fully parameterized by a nk × n
transition matrix P̂, where each element denotes the prob-
ability of transiting from the ordered set of k states i =
(Xi, . . . , Xi+k−1) to a new outcome j = Xi+1. Not be-
ing simply Markov anymore, equations (1) and (2) must
be adapted as well, losing their computational simplicity.
An alternative solution, is to consider a nk × nk square
transition matrix P describing the probability of transiting
from the ordered set of k states i = (Xi, . . . , Xi+k−1)
to the ordered set j = (Xi+1, . . . , Xi+k) (lagged state
vectors). For instance, let a element of P̂ij 6= 0 for a
third order HOMC with i = (2, 0, 1) and j = 5; then
the corresponding element in P will link i = (2, 0, 1) and
j = (0, 1, 5). The price of encoding a longer time-memory
in a square transition matrix is clearly its larger size (and
memory footprint in numerical computations).

2.2. Encoding RR series into HOMC

RR series are values of distances in time between nearby
beats and each value RRi ∈ R. To model them with
HOMC,RRi values need to be aggregated into states. This
process is formally called quantization and the number of
states (N ) is a parameter of the process. In this work three
types of quantization have been considered:
• Uniform: N equally big partitions are built spanning
from RRMIN to RRMAX;
• Gaussian: a gaussian distribution is first fit to the sample
distribution of the series (maximum likelihood). Then N
not-overlapping partitions of equal probability are created;
• Minimization of Mean Square Distortion (MSD): the di-
mension of the series is quantized into N partitions, ob-
tained by solving an optimization problem that minimizes
the overall quantization error: Qerr =

∑
i(RRi − RRq

i )
2

where RRq
i are the RRi values after quantization.

In the following, the states will be numbered with integers,
starting from 0, in order to obtain a sequence S, of length
L (as the RR series), composed by N different symbols.
To estimate the transition matrix for the sample sequence
S, a frequency matrix F is built and then normalized (Al-
gorithm 1). With P available, the stationary distribution µ
is computed and the entropy metrics estimated.

2.3. Synthetic Sequences

We first verified the convergence of the estimated met-
rics to the correct theoretical values of entropy and entropy
rate, using synthetic sequences generated from known

Algorithm 1 Transition matrix estimation.
1: Let k be the order of the HOMC, N the number of states, S the

sequence and L the length of S.
2: F = zeros(Nk,Nk)

3: for i = k + 1 to L do
4: in = S(i−k):(i−1)

5: out = S(i−k+1):(i)

6: Pin,out ++
7: end for
8: P = zeros(Nk,Nk)

9: for j = 1 to Nk do
10: Pj,: = Fj,:/sum(Fj,:)

11: end for

stochastic processes. Three MCs have been taken into con-
sideration. Each MC is composed by the same number of
states (N = 6) but the density of the connections changes
among the processes. Thus, we identify a loosely con-
nected MC (7 arcs), an averagely connected MC (11 arcs)
and a tightly connected MC (25 arcs, 15 of them with prob-
ability less or equal to 0.1). Each of the MC had a single
stationary distribution.

The first experiment we performed consisted in gener-
ating sample sequences from these processes and in esti-
mating the entropy metrics as their length varied from 50
to 1000 points. We then measured the difference from the
theoretical value to the estimated value normalized by the
former. For statistical convergence, the procedure was re-
peated 100 times and the results averaged. We then evalu-
ated how noise affects the estimates by artificially inducing
error by letting each state of the sequence to be wrongly
re-labelled as one of its neighbors with an error probabil-
ity varying from 0 to 0.1 (i.e., the probability of remaining
in the original state was 0.8). This was meant to mimic
what happens with quantization.

Finally, we further considered three HOMCs (N = 6),
of order 2, 3 and 4, to assess the errors produced by the
wrong choice of the order’s parameter.

2.4. HRV Data

We considered the long-term RR series of 98 subjects:
54 with a normal cardiovascular activity and 44 affected
by Congestive Heart Failure (CHF). The signals were
obtained [5] from the Normal Sinus Rhythm RR Inter-
val Database, the Congestive Heart Failure RR Interval
Database (29 subjects) and the BIDMC Congestive Heart
Failure Database (15 subjects) . The sampling rates were
128 Hz for the first two databases and 250 Hz for the third.

Given the fact that for real sequences reference entropy
values are not available, we verified how effective are en-
tropy and entropy rate in distinguishing subjects from the
two populations. Quantizations methods presented in sec-
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Figure 1. On top: relative errors (averaged over 100 runs) for synthetic sequences, as the sample length increases (MC
of order 1). On bottom: relative errors (averaged over 100 runs) for synthetic sequences when L = 1000, as the noise
increases (MC of order 1).

Table 1. Configurations which reached the largest AUC,
at each sequence length.

L Diff. Quantiz. N Order AUC Acc.

100 Yes Gauss. 12 1 0.79 78.6
200 Yes Gauss. 13 2 0.77 75.5
500 Yes Gauss. 10 2 0.84 83.7

1000 Yes Gauss. 9 2 0.81 79.6
75000 No MSD 10 1 0.92 86.7

tion 2.2 were all tested, with a number of states N up
to 14. Then, different lengths of the HRVs (100, 200,
500, 1000 and 75000) and different parameterizations of
the HOMCs (k ≤ 7) were employed. Given the non-
stationarity of long-term RR series, we also considered the
first-difference (Diff.) series Ii = RRi+1 − RRi. For
each configuration of the parameters, the average Area Un-
der the Curve (AUC) of a Support Vector Machine (SVM)
classifier was assessed.

3. Results

The results of the simulations performed on synthetic se-
quences, while varying their length, are presented in Fig. 1.
The error regarding entropy is almost negligible, while en-
tropy rate requires at least 100 sample points to achieve a
relative error below 0.1, in the tightly connected MC. The
impact of noise is also reported in Fig. 1 when L = 1000.
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Figure 2. Estimates of entropy rate for series generated by
an order 4 HOMC, while varying the order of the model.

Entropy is very resilient to this kind of noise, while en-
tropy rate estimates are more severely affected (except the
tightly connected MC, where the impact is milder).

The results obtained on synthetic series produced by
HOMC showed that, once the order of the model is equal
or larger than the order of the HOMC, the estimated en-
tropy approaches the theoretical one. As shown in Fig. 2,
where the series were generated by an order k = 4 HOMC,
the error dropped when reaching k. These preliminary
findings suggest that the order of the model might be cho-
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Figure 3. Entropy and entropy rate values for each of the
98 normal and CHF subjects considered, computed with
two different series lengths: 500 (top) and 75000 (bottom).

sen by picking the one for which the error then plateaus.
Regarding RR series, the best value of AUC, for each

of the sequence’s length tested, are reported in Tab. 1. For
short signals (100-1000), the best results were achieved by
considering the first-difference series (Diff.) and a Gaus-
sian quantization. As the length of the signal consid-
ered grew, MSD and Uniform quantization produced larger
AUC. The values of entropy and entropy rate, for the two
cases with the largest AUC (bold in table 1), are shown in
Fig. 3. Clusters are largely distinguishable, and the classi-
fication accuracy was larger for the longest series tested
(L = 75000). However, with short series entropy rate
plays an important role in the discrimination, while with
very long series this metric has little to offer in the classi-
fication process (the dots are spread nearly horizontally).

While HOMCs up to order 7 were tested, only two pre-
vious states proved relevant (order 2). On the other hand,
differently than the 4 to 6 states typically employed in sym-
bolic dynamics, optimal classification always happened for
value of N close or larger than 10.

4. Conclusions

In this work, we positively verified the possibility of us-
ing parametric estimates of entropy measures, based on
HOMC models, in HRV series. Entropy proved more ro-
bust then entropy rate, to the addition of quantization er-
rors; also, the average estimation error was larger on the
second metrics. However, both proved effective, even if
comparison with different parametric models are neces-
sary, and will be performed in the future.

In the analysis of real HRV series, entropy rate was
more relevant in the classification of short time series. This
seems to suggest that non-stationarities, inherent in Holter
HRV series and more relevant as the length of the series in-
creases, might affect the estimate and blur the differences
between the two populations.
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