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Satellite-based tele-operation of an underwater

vehicle-manipulator system. Preliminary experimental results

Paolo Di Lillo, Daniele Di Vito, Enrico Simetti, Giuseppe Casalino, Gianluca Antonelli

Abstract— Within the European project DexROV the topic of
underwater intervention is addressed. In particular, a remote
control room is connected through a satellite communication
link to surface vessel, which is in turn connected to an UVMS
(Underwater Vehicle-Manipulator System) with an umbilical
cable. The operator may interact with the system using a joy-
stick or exoskeleton. Since a direct teleoperation is not feasible,
a cognitive engine is in charge of handling communication
latency or interruptions caused by the satellite link, and the
UVMS should have sufficient autonomy in dealing with low level
constraints or secondary objectives. To this purpose, a task-
priority-based inverse kinematics algorithm has been developed
in order to allow the operator to control only the end effector,
while the algorithm is in charge of handling both operative and
joint-space constraints. This paper describes some preliminary
experimental results achieved during the DexROV campaign of
July 2017 in Marseilles (France), where most of the components
have been successfully integrated and the inverse kinematics
nicely run.

I. INTRODUCTION

Underwater intervention is needed by several applications

ranging from interaction with structures belonging to the oil

& gas industry to archaeology, from mining applications to

collections of biological samples. Several national (MARIS

[1], RAUVI [2]) and international (TRIDENT [3], PAN-

DORA [4], ROBUST [5]) projects have been funded in the

last few years on this important topic.

Within the European H2020 project DexROV [6], [7],

the researchers are investigating the possibility to reduce

the number of crew on board of the vessel by creating

a remote control room linked by satellite communication

to the UVMS (Underwater Vehicle-Manipulator System).

The operator may interact with the system by joystick or

exoskeleton and a proper cognitive tool is in charge of

handling communication latency or interruptions caused by

the satellite link.

The time delay and the satellite communication low band-

width force the operator to share the control with the UVMS,

that has to be capable of performing autonomously part of

the needed operations. While the operator controls the end-

effector motion, the UVMS control system takes care of all

the safety-related tasks, both in operative and joint space.

This kind of control is achieved by resorting to a multi-

task-priority inverse kinematics framework that allows to

perform multiple tasks simultaneously. The key aspect of
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this approach is to define a priority among tasks, creating

a hierarchy in which the position of a task is relative to its

importance. Usually the highest-priority tasks related to the

safety of the system, e.g. avoiding obstacles or mechanical

joint limits, leaving the operational tasks such as the end-

effector position and orientation at a lower priority level.

These considerations lead to solutions as in [8], [9] [10],

where secondary control objectives were defined and handled

in priority using the null-space projector, later extended in

[11] to multiple tasks. In [12] a different approach is pre-

sented that is robust to the algorithmic singularities occurring

when tasks are incompatible with each other. Such a work

has been then extended to multiple tasks in the singularity

robust multi-task priority inverse kinematics framework in

[13] [14], [15]. The aforementioned framework has been

developed to handle control objectives in which the goal is

to bring the task value to a specific one, e.g. moving the

arm end-effector to a target position. This kind of tasks are

usually referred as equality-based. However, several control

objectives may require their value to lie in an interval, i.e.

above a lower threshold and below an upper threshold. These

are usually called set-based tasks. Classic examples of set-

based tasks for a robotic manipulator are the mechanical joint

limits, the obstacle avoidance and arm manipulability tasks.

In the last years, a great effort has been made in order to

extend task-priority frameworks to handle set-based tasks,

as for example done in [16]. In particular, the singularity-

robust multi-task priority inverse kinematic framework has

been extended to handle set-based tasks in [17], [18].

In this paper some positive, preliminary experimental

results achieved during the DexROV campaign of July 2017

in Marseilles (France) are shown. Figure 1 shows the UVMS

during deployment and Fig. 2 depicts a graphical rendering

of the two manipulators. Most of the components have been

successfully integrated and the inverse kinematics nicely run.

In particular, during the wet tests, the following constraints

were simultaneously handled: mechanical joint limits and

smart joint-space velocity saturation [19]. The robot has fol-

lowed both pre-programmed and joystick-driven trajectories

generated on board the vessel (Marseilles), and trajectory

generated with the exoskeleton in Brussels (Belgium). Fi-

nally, some tests were designed to intentionally move the

arm to reach kinematic singularities.

II. DEXROV CONCEPT

DexROV is an EC (European Commission) Horizon 2020

funded project that aims to develop a system able to perform

underwater operations using a novel paradigm that allows



Fig. 1. The DexROV system underwater. In this picture mock up hands
have can be recognized.

Fig. 2. Graphical rendering of the two arms developed within the DexROV
project

the far distance teleoperation of a ROV (Remotely Operated

Vehicle) via a satellite communication. This would lead to

the usage of a smaller and cheaper support vessel, since a

part of the crew would be located in an onshore control

center. Satellite communications introduce a non-negligible

delay that has to be properly handled by the system in order

to effectively perform the needed operations. The latency

mitigation strategy includes a simulation environment and

a cognitive engine. The operator interacts with the ROV

in the simulation environment that receives 3D data from

the perception system, without taking into account time

latencies. He/She performs the desired movements with a

force-feedback exoskeleton, instructing a cognitive engine

that generates motion and manipulation primitives to be sent

to the real ROV. Figure 3 represents the project’s concept.

The perception system makes use of a stereo camera for

the 3D data acquisition, online processing of the needed

information and its transmission to the control center [20].

Furthermore the ROV is equipped with an AHRS (Attitude

and Heading reference System), a DVL (Doppler velocity

log) and a USBL (ultra-short baseline) that are concurrently

used for its accurate pose estimation [21]. The cognitive

engine is split in two parts: on the onshore side it recognizes

the actions that the operator wants to perform learning

from demonstrations; on the offshore side it reconstructs

the motion primitive despite of the non homogeneous com-

munication latency. This is achieved by exploiting a task

parametrized Gaussian Mixture Model that adapts the refer-

ence end-effector trajectory to the dynamic environment in

which the ROV operates [22].

III. SET-BASED TASK-PRIORITY INVERSE KINEMATICS

A generic task is a function of the system state σ(η). It is

possible to divide these tasks in two main groups: equality-

based tasks and set-based tasks. In equality-based tasks the

control objective is to bring the task value to a desired one,

for instance to move the end-effector in a specific position; in

set-based tasks the control objective is to keep the task value

within a range of values, for instance to keep the joints within

its mechanical limits or the end-effector beyond a threshold

distance from an obstacle.

Given a generic m-dimensional equality-based task σ, the

system velocity that fulfils it can be computed by resorting

to the Closed-Loop-Inverse-Kinematics algorithm:

q̇ = J†Kσ̃ (1)

where J† is the Moore-Penrose pseudoinverse of the task

Jacobian matrix [23], defined as

J† = JT (JJT )−1 , (2)

in which K is the gain matrix and σ̃ = σd − σ is the task

error. It is possible to perform multiple tasks simultaneously,

setting a priority to each task and then filtering out the

velocity contribution given by a low-priority task that would

influence a high priority one. This is usually done exploiting

the null-space projection through the matrix:

N = In − (J†J) , (3)

where n is the number of DoFs (Degrees of Freedom) of the

system and In is the identity matrix.

Given a hierarchy composed by k prioritized tasks, the

system velocity can be computed by resorting to the Null-

Space-Based Inverse Kinematics control [24]:

q̇ = q̇
1
+N1q̇2

+ · · ·+N1,k−1q̇k (4)

where each q̇i is the velocity contribution of the task i
obtained applying (1) and N1,i is the null space of the

augmented Jacobian obtained by stacking all the tasks Jaco-

bian matrices from σ1 to σi. The NSB framework has been

extended to handle also set-based tasks. This is possible by

considering each set-based task as an equality-based one that

can be activated and deactivated in function of the operating

conditions. In particular, a set-based task has to be activated

when its value exceeds the desired lower (upper) threshold

σa,l (σa,u), adding it to the hierarchy as a new equality-

based task with σs,l (σs,u) as desired value. Figure 4 shows

the thresholds of a set-based task. Then it can be deactivated

when the solution of the hierarchy that contains only the

other tasks would push its value toward the valid set. A more

detailed description of the activation/deactivation algorithm

is given in [18].



Fig. 3. DexROV concept, this paper focuses on the manipulation part
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σs,l σs,uσa,l σa,u

Fig. 4. Activation and safety thresholds of a set-based task

TABLE I

ARM DATA: DENAVIT-HARTENBERG PARAMETERS, MINIMUM AND

MAXIMUM JOINT ANGLES (qMIN/ qMAX ) AND MAXIMUM JOINT

VELOCITIES (q̇MAX )

joint a [m] α [◦] d [m] θ [◦] qmin/qmax [◦] q̇max [◦/sec]

1 0.0 90 0.3065 90 ± 119 12.17

2 0.4631 0 0.0 68.5317 ± 110 13.02

3 0.0 -90 0.0 -68.5317 ± 110 11.7

4 0.0 90 0.437 0.0 ± 170 12.3

5 0.0 -90 0.0 0.0 ± 110 11.9

6 0.0 0 0.2695 0.0 ± 170 17.8

IV. SET-UP DESCRIPTION

The UVMS is characterized by two twin 6-DoF arms.

Table I describes their kinematics by the Denavit-Hartenberg

convention together with the joint mechanical and velocity

limits.

The control has been developed in C++ as an independent

class, guaranteeing a complete modularity in terms of usage.

In particular for DexROV it has been wrapped in a ROS

node [25], that takes a desired end-effector trajectory and

publish the output joint velocities on separate topics. This

design allows to use the same code in all the development

and validation stages, from the laboratory testing to the real

usage underwater. During development, the node has been in-

terfaced with a graphical simulator developed under Gazebo

[26], that perfectly replicates all the interfaces among them,

giving the possibility to test all the chain from the control

center to the UVMS. During the real test, the same node

has been interfaced with the real system, without requiring

any change in the control node’s code. This design is very

helpful in field trials where the operating conditions are not

always perfect and it is difficult to make modifications on the

fly. The control implementation exhibits the same flexibility

also on the input side. During the real DexROV operations,

the system takes the desired end-effector trajectory from

the operator wearing an exoskeleton in the control center

located in Brussels via satellite communications. However

the software design allows to take the references directly

from other pre-programmed software nodes or from a stan-

dard joystick located onboard the vessel or in the remote

control center. This is very important for debug purposes,

as it allows to exclude from the chain the control center or

the satellite channel, focusing the attention on the control

side. The control framework includes also a technique for

the kinematic singularities handling, resorting to a Damped

Least-Square pseudoinverse matrix [27], defined as:

J
†
DLS = JT (JJT + λ2Im)−1

in which the damping coefficient λ has the following expres-

sion:

λ =











0 if σmin ≥ σ⋆

√

σmin(σ⋆ − σmin) if σ⋆/2 ≤ σmin < σ⋆

σ⋆/2 if σmin < σ⋆/2



where σmin is the minimum singular value of J and

σ⋆ =
||σ̃||

||q̇||max

||σ̃|| being the task error norm and ||q̇||max is the maximum

joint velocity norm [28]. Additionally, in case that the

reference end-effector trajectory is too fast with respect to the

joint velocity constraints of the arm, a method that properly

scales the vector q̇ has been implemented, following the

algorithm described in [29].

V. EXPERIMENTAL RESULTS

Several tests have been executed with the system in dif-

ferent configurations, accepting the end-effector trajectories

by different means, i.e., by local code or joystick, by remote

code or joystick and finally by remote exoskeleton. In the

remote configuration, the trajectory is generated in Brussels

(Belgium) and then transmitted via satellite communications

to the vessel in Marseilles (France) and then through the

umbilical to the vehicle. Initially, during the early debugging

phases, the driving commands were not directly sent to

the physical system but the graphical simulator instead.

Noticeably, the Brussels operator and the code running on

board of the vessel are transparent to this configuration.

x

y

z

Fig. 5. Graphical representation of the arm base frame in the Gazebo
simulator

A. Position only

In a first test, the sole end-effector position, without

orientation, is given as individual task. The desired trajectory

sent to the controller is a simple circle on the y-z plane in

the arm base frame at a constant velocity, Fig. 5 shows the

arm base frame within the simulator. Figures 6 and 7 show

the position error and the joint positions.

B. Position and orientation, singular configuration

In the second test the end-effector position and orientation

task is given. The desired trajectory is the same circle of

the previous test, but keeping the orientation at a constant

value. It is worth noticing that the manipulator intentionally

reaches a singular configuration during the trajectory, as the

minimum singular value reaches very small values. Figure

8 shows the minimum singular value of the J matrix over

time.
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Fig. 6. First experiment, position control: position error over time

Fig. 7. First experiment, position control: joint positions over time

Figures 9 and 10 show the position and orientation error

together with the joint positions during the experiment.

The DLS pseudoinverse prevents the chattering phenomenon

on the joint velocities, generating a higher error on the

orientation while the position error remains sufficiently low

during the whole trajectory.

C. Mechanical joint limits

In the last experiment the system is asked to follow the

same circular trajectory without controlling the orientation

while keeping the fifth joint below a certain threshold. The

prioritized task hierarchy imposed is:

1) Joint 5 maximum threshold

2) End-effector position

Figures 11 and 12 show the position error and the joint

values during the experiment. The null space projection and

the activation/deactivation algorithm described in Section III

make the joint position stay below the chosen threshold (in

red), while the trajectory is followed with a low position

error.

Then another joint limit has been added as control objec-

tive, giving the following hierarchy:

1) Joint 3 maximum threshold

2) Joint 5 minimum threshold

3) End-effector position
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Fig. 8. Second experiment, position and orientation control: minimum
singular value of J over time. The arm intentionally reaches a singular
configuration during the trajectory.
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Fig. 9. Second experiment: position and orientation error over time. The
position error is kept low during the entire trajectory, while the orientation
error grows for the effect of the joint velocities damping.

Figure 13 shows the joint positions during the experiment,

while Fig. 14 shows the position error. It is worth noticing

that the third joint starting position is above the chosen

maximum threshold, but the control algorithm quickly bring

its value to the imposed limit. From that point, both the joint

limits are satisfied during the entire trajectory. The position

error grows with respect to the other experiment because the

combination of the third and fifth joint mechanical limits,

being at a higher priority level with respect to the position

task, reduces the end-effector operational workspace.

VI. CONCLUSIONS

In this paper preliminary results of the application of task-

priority based inverse kinematics for UVMSs in accomplish-

ment of the European H2020 project DexROV have been

presented. Experiments on different task hierarchies includ-

ing set-based and equality-based tasks have been described

and the algorithm robustness with respect to the occurrence

of kinematic singularities has been successfully tested. The

results were satisfactory and promising for the full-scale

experiment schedule for summer 2018.
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Fig. 10. Second experiment, position and orientation control: joint positions
over time.
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Fig. 11. Third experiment, 5th joint mechanical limit and position control:
joint positions and upper threshold on the fifth joint (in red). The fifth joint
position remains always below the chosen threshold.
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