
Poster: Automatic Consistency Checking of
Requirements with ReqV

Simone Vuotto∗, Massimo Narizzano†, Luca Pulina∗, Armando Tacchella†
∗Chemistry and Farmacy Dept., University of Sassari, Italy

†DIBRIS, University of Genoa, Italy
{svuotto,lpulina}@uniss.it, {massimo.narizzano,armando.tacchella}@unige.it

Abstract—In the context of Requirements Engineering, check-
ing the consistency of functional requirements is an important
and still mostly open problem. In case of requirements written
in natural language, the corresponding manual review is time
consuming and error prone. On the other hand, automated
consistency checking most often requires overburdening formal-
izations. In this paper we introduce REQV, a tool for formal
consistency checking of requirements. The main goal of the tool
is to provide an easy-to-use environment for the verification of
requirements in Cyber-Physical Systems (CPS). REQV takes as
input a set of requirements expressed in a structured natural
language, translates them in a formal language and it checks
their inner consistency. In case of failure, REQV can also extracts
a minimal set of conflicting requirements to help designers in
correcting the specification.

Index Terms—Requirements Engineering, Verification, Consis-
tency, CPS

I. INTRODUCTION

In the context of safety- and security-critical Cyber-Physical
Systems (CPSs), checking the sanity of functional require-
ments is an important, yet challenging task. While it is largely
recognized that a flaw in the requirements specification can
lead to delays, additional expenses and, possibly, the failure
of the project, the knife-edge between increasing automation,
at the expense of increasing formalization cost, and increasing
usability, at the expense of increasing the review effort, is still
difficult to walk in most cases. Given the growing demand
for complex, safe and secure CPSs, and the need to reduce
time-to-market and costs, usable solutions to speed-up the
review process are in order. Formal methods provide a viable
solution, but they require precise specifications and a high
degree of expertise. As a trade-off between formalization
and usability, a recurrent solution in the literature is the use
of Property Specification Patterns (PSPs), i.e., English-like
structured natural sentences that provide a direct mapping to
one or more logics [1].

In this paper, we present REQV, a tool developed in the
context of the H2020 EU CERBERO [2] project1. REQV lever-
ages on PSPs to provide the user with a friendly, yet formally
grounded specification environment. REQV incorporates our
contribution [3], whereby PSPs are extended by considering
Boolean as well as atomic numerical assertions of the form
x ./ c, where x is a variable of the system, c ∈ R is a constant
real number and the operator ./∈ {<,<=,=, >=, >} has the

1http://www.cerbero-h2020.eu/

usual interpretation. Furthemore, we presented an encoding to
reduce the inner consistency of extended PSPs, i.e., logical
errors in the specification that prevent any possible system to
satisfy all requirements, to the Linear Temporal Logic (LTL)
[4] satisfiability problem. We also extended previous works
with a new algorithm to find a minimum set of conflicting
requirements in case of inconsistency. We collected all these
functionalities in a Java library called SPECPRO2. REQV
exploits the capabilities of SPECPRO to provide an easy-to-
use interface for the verification of requirements. Its goal is
to enable users with no background knowledge of formal
methods and logic languages to write requirements as PSPs
and check their consistency. REQV also aims at minimizing
the setup process for the user, and therefore it is developed as
a web application that can easily be accessed within a browser.

The rest of the paper is organized as follows; in Section II
we present the architecture of REQV, and in Section III we
describe the implementation details. We conclude the paper
in Section V with some final remarks and ideas for future
extensions.

II. ARCHITECTURE

The architecture of REQV is outlined in Figure 1.
REQV can be accessed by multiple users through the internet.
It is comprised of the following components:

• The Front-end, a web application that provides a graphi-
cal user interface for the user and performs asynchronous
calls to the back-end.

• the Back-end, a server application that provides services
as REST APIs. It builds on top of the SPECPRO library
to execute consistency checking and inconsistency expla-
nation tasks in background. Services are accessible with
the JWT authentication mechanism over HTTPS.

• SPECPRO [3], a Java library containing a parser for
the extended PSPs language and algorithms to check
the consistency and to find a minimal unsatisfiable core
(MUC) of requirements, employing on existing model
checkers.

• An off-the-shelf model checker capable to check the
satisfiability of LTL formulas. Currently, AALTA [5] and
NUSMV [6] are supported.

2https://gitlab.sagelab.it/sage/SpecPro

{svuotto,lpulina}@uniss.it
{massimo.narizzano,armando.tacchella}@unige.it
http://www.cerbero-h2020.eu/
https://gitlab.sagelab.it/sage/SpecPro


• A database to store requirements, user data and other
information such as tasks execution logs.

Fig. 1. REQV architecture diagram.

III. IMPLEMENTATION

REQV’s implementation relies on different open-source
tools and frameworks. In the following, we describe the
implementation details of the main two components, namely
the front-end and the back-end of ReqV.

A. Front-End

The front-end is a web application implemented in Type-
script, using the ANGULAR3 framework. To use the applica-
tion, the user must authenticate first, and then she can create a
new project or select an existing one. A project is a collection
of requirements, along with some supplemental information
(e.g., the title and the description). Selecting a project displays
in a table the list of requirements which are already contained
in the project, as showed in Figure 3. In REQV, requirements
have to be written as Property Specification Patterns [7].
PSPs are meant to describe the essential structure of system
behaviours in form of structured English sentences [8] and to
provide expressions of such behaviors in a range of common
formalisms. An example of a PSP is given in Figure 2 — with
some part omitted for sake of readability.4 In more detail, a
PSP is composed of two parts: (i) the scope, and (ii) the
body. The scope is the extent of the program execution over
which the pattern must hold, and there are five scopes allowed:
Globally, Before, After,Between, After-until. The body of a
pattern describes the behavior that we want to specify.

REQV automatically performs a syntactic check on every
requirement, coloring in red the ones containing an error. The

3https://angular.io/
4The full list of PSPs considered in this paper and their mapping to LTL

and other logics is available at http://ps-patterns.wikidot.com/.

Response

Describe cause-effect relationships between a pair of
events/states. An occurrence of the first, the cause, must be
followed by an occurrence of the second, the effect. Also
known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

Example
It is always the case that if object detected holds, then
moving to target eventually holds.

Fig. 2. Response Pattern. A pattern is comprised of a Name, an (informal)
statement describing the behaviour captured by the pattern, and a (structured
English) statement that should be used to express requirements.

Fig. 3. REQV front-end interface showing a list of requirements inserted by
the user. Requirements colored in green are syntactically correct, the ones in
red are not. A grey requirement indicates it has been disabled and therefore
not considering during the analysis.

syntactic check consists in parsing the textual requirement
with a context-free grammar and reporting the position of
any error, i.e., failure to comply with the structure of the
grammar. Compared with the grammar presented in [1], we
make the scope optional (considering Globally as the default
option), we add the possibility to specify an ID directly in
the pattern, and we extend the grammar to support atomic
numerical constraints, as described in [3]. The user can add,
edit, delete or disable a requirement. A disabling requirement
is kept in the database, but it is not considered during during
the consistency checking analysis. To insert new requirements,
the user can either upload a text file containing a list of
requirements – one per line – or use the user interface to help
build correct PSPs, as illustrated in Figure 4. The interface is
similar to PSPWizard [9]: it allows to select a scope and a
pattern, showing a short description of the intended meaning,

https://angular.io/
http://ps-patterns.wikidot.com/


and displaying some text fields to complete the pattern. The
main difference with respect to PSPWizard is that our interface
can handle the extended language with numerical signals, and
it is tightly integrated in the rest of the framework, while
PSPWizard is a standalone application that only shows the
resulting mapping into a target logic. By contrast, PSPWizard
also handles other PSPs, such as real-time and probabilistic
properties, and an encoding to many different logics, which at
the moment we do not support.

Fig. 4. REQV PSP composition interface.

Finally, REQV allows for push-button verification: moving
to the Tasks tab, the user can simply press a button and launch
a new consistencyCheck task on the server, described in the
following section. The task will run in background and the
interface will update automatically once the task is completed.
In case of inconsistency, the user can also run an inconsistency
explanation task that will find a minimum unsatatisfiable set
of requirements, helping the user to debug the specification.

B. Back-End

The back-end is a Java server application based on the
SPRING BOOT5 framework and POSTGRESQL6 database en-
gine. It provides a set of endpoints REST APIs with JSON
format for data exchange. In order to access services and user’s
own data, REQV employ the JWT [10] open standard for
authentication over HTTPS. Services provide access to four
main resources:

• User: contains basic information about the logged user.d;
• Projects: list of saved projects. Each project has a title,

a description and some configuration data, and it is
associated with one user.

• Requirements: list of requirements saved in a project.
Each requirement contains its textual representation, its
state (after the syntax check is executed) and other
application dependent information.

• Tasks: list of completed and executing tasks for a given
project. A task contains information about its state (i.e.
if it is still running, or succeeded/failed), log information
and type.

5https://spring.io/projects/spring-boot
6https://www.postgresql.org/

Each resource can be accessed, modified or deleted with the
usual HTTP methods calls. In particular, there are three types
of tasks that can be created for each project:

• Translate: the requirement specification is translated into
a LTL satisfiability problem and a file with the encoded
specification is returned.

• ConsistencyCheck: a consistency check of the specifica-
tion is executed in background. It consists of variable type
checking, i.e, ensuring that no variable is used both as a
Boolean and numerical value, and of an LTL satisfiability
check of the encoded requirements;

• FindInconsistency: it executes in background a research
of a minimal set of requirements that can help explain the
inconsistency, if any. The algorithm iteratively removes
some requirements and performs the satisfiability check
of the remaining set, keeping only a minimal subset of
them that maintain the inconsistency.

Only one task per project at a time is allowed: if a task is
still running, further requests to instantiate a new task will be
aborted. Finally, as anticipated in Section II, all the tasks are
based on SPECPRO capabilities. For a full list of APIs, the
reader is redirected to https://reqv.sagelab.it/api/swagger-ui.
html.

C. SPECPRO

As mentioned before, SPECPRO is an open-source Java
library that implements a parser of the extended PSPs, trans-
lators for various LTL model-checkers and the algorithms to
performs the tasks mentioned before, namely the consistency
checking and the inconsistency explanation tasks. In particular,
it takes as input a string stream of the requirements in
textual form, it builds an intermediate representation of them,
maintaining a symbol table for variables and constants, and
it provides some utility classes to handle the execution of
the model-checking process in background, interpreting the
produced output. Finally, SPECPRO also provides a minimal
command-line interface that enables the user to performs the
same tasks described in III-B from a shell.

IV. EXAMPLE

Id PSP Requirements
r1 Globally, it is always the case that A holds.
r2 It is never the case that A holds.
r3 Globally, it is always the case that B holds.
r4 Globally, it is always the case that if B holds, then C eventually holds.
r5 Globally, it is never the case that C < 10 holds.
r6 Globally, it is always the case that A and B holds.
r7 After B, D eventually holds.

Fig. 5. Set R of inconsistent PSPs.

Here we illustrate the use of REQV. We assume that, in the
process of writing the requirements about a system, a user has
assembled the set in Figure 5. Now the goals are: (i) check if
the requirements are written properly as PSPs, and (ii) check
if they are consistent; in case they are not, enable the user to
selectively review them. These goals are achieved by following
the steps below:

https://spring.io/projects/spring-boot
https://www.postgresql.org/
https://reqv.sagelab.it/api/swagger-ui.html
https://reqv.sagelab.it/api/swagger-ui.html


1) Login and create a new Project.
2) Load the set of requirements listed in Figure 5 as text

file and then push the button ”Check”.
3) REQV executes syntax checking and partial type check-

ing, reporting two requirements as “red”: In r2 the scope
is missing while r5 redefine a boolean variable, C, as
numerical signal (C < 10).

4) Modify r2 by adding Globally as scope and r5 by
replacing the numerical constraint C < 10 with boolean
signal C.

5) Te subsequent syntax checking does not report any error;
Check the requirements for consistency. The system
Back-End calls SPECPRO, and it reports that the require-
ments are inconsistent.

6) Run inconsistency explanation; SPECPRO returns that r1
and r2 are inconsistent (it returns the first one found).
REQV highlights r1 and r2.

7) At this point, we can either modify one of the require-
ment or delete one; Delete r1, and run the consistency
check again.

8) SPECPRO reports that r2 and r6 are still conflicting.
9) The process can be iterated until the requirements be-

come consistent.

Notice how REQV can be used to “trim” the specification from
inconsistent requirements in an iterative fashion. At each step,
a small set of inconsistent requirements is pointed out, and
the user is guided in the process of composing a consistent
specification through removing or rewriting all constraints that
make it. This is a precondition towards obtaining realizable
specifications.

V. CONCLUSION AND FUTURE WORK

In this paper we presented REQV, a tool for the management
and verification of functional requirements. In [3] we showed
that the encoding used for consistency checking can scale up to
thousands of requirements and it can check in few seconds the
specification of a robotic-arm case study composed of 76 re-
quirements. In case of inconsistency, the tool can help the user
in identifying a minimal set of conflicting requirements, and in
debugging faulty specifications. The tool has undergone some
alpha-testing, but it is still under activedevelopment. REQV
is available online at https://reqv.sagelab.it 7 and the source
code can be consulted at https://gitlab.sagelab.it/sage/ReqV.
A video tutorial is currently available at https://youtu.be/
2WKSxh64Z2k.

REFERENCES

[1] M. Autili, L. Grunske, M. Lumpe, P. Pelliccione, and A. Tang, “Aligning
qualitative, real-time, and probabilistic property specification patterns
using a structured english grammar,” IEEE Transactions on Software
Engineering, vol. 41, no. 7, pp. 620–638, 2015.

7The tool is currently accessible to a restricted audience only. To get access
to the tool please contact Simone Vuotto. Reviewers are invited to try the
online tool with the temporary credentials username: ”test” password: ”test”.

[2] M. Masin, F. Palumbo, H. Myrhaug, J. de Oliveira Filho, M. Pastena,
M. Pelcat, L. Raffo, F. Regazzoni, A. Sanchez, A. Toffetti et al., “Cross-
layer design of reconfigurable cyber-physical systems,” in Proceedings
of the Conference on Design, Automation & Test in Europe. European
Design and Automation Association, 2017, pp. 740–745.

[3] M. Narizzano, L. Pulina, A. Tacchella, and S. Vuotto, “Consistency of
property specification patterns with boolean and constrained numerical
signals,” in NASA Formal Methods: 10th International Symposium, NFM
2018, Newport News, VA, USA, April 17-19, 2018, Proceedings, vol.
10811. Springer, 2018, pp. 383–398.

[4] A. Pnueli and Z. Manna, “The temporal logic of reactive and concurrent
systems,” Springer, vol. 16, p. 12, 1992.

[5] J. Li, Y. Yao, G. Pu, L. Zhang, and J. He, “Aalta: an LTL satisfia-
bility checker over infinite/finite traces,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2014, pp. 731–734.

[6] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking,” in 14th International Conference
on Computer Aided Verification (CAV 2002), 2002, pp. 359–364.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
International conference on Software engineering, 1999, pp. 411–420.

[8] S. Konrad and B. H. Cheng, “Real-time specification patterns,” in Pro-
ceedings of the 27th international conference on Software engineering,
2005, pp. 372–381.

[9] M. Lumpe, I. Meedeniya, and L. Grunske, “Pspwizard: machine-assisted
definition of temporal logical properties with specification patterns,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 468–471.

[10] M. Jones, J. Bradley, and N. Sakimura, “Json web token (jwt),” Tech.
Rep., 2015.

https://reqv.sagelab.it
https://gitlab.sagelab.it/sage/ReqV
https://youtu.be/2WKSxh64Z2k
https://youtu.be/2WKSxh64Z2k

	Introduction
	Architecture
	Implementation
	Front-End
	Back-End
	SpecPro

	Example
	Conclusion and Future Work
	References

