
Indirect Methods for
Robot Skill Learning

by

Domingo Francisco Esteban Cabala

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

July 2019

Advisors:
Prof. Darwin G. Caldwell

Dr. Leonel Rozo

Department of Informatics, Bioengineering, Robotics
and Systems Engineering

Abstract

Indirect Methods for Robot Skill Learning

Domingo Esteban

Robot learning algorithms are appealing alternatives for acquiring rational robotic be-
haviors from data collected during the execution of tasks. Furthermore, most robot learning
techniques are stated as isolated stages and focused on directly obtaining rational policies
as a result of optimizing only performance measures of single tasks. However, formulating
robotic skill acquisition processes in such a way have some disadvantages. For example, if
the same skill has to be learned by different robots, independent learning processes should be
carried out for acquiring exclusive policies for each robot. Similarly, if a robot has to learn
diverse skills, the robot should acquire the policy for each task in separate learning processes,
in a sequential order and commonly starting from scratch. In the same way, formulating the
learning process in terms of only the performance measure, makes robots to unintentionally
avoid situations that should not be repeated, but without any mechanism that captures the
necessity of not repeating those wrong behaviors.

In contrast, humans and other animals exploit their experience not only for improving
the performance of the task they are currently executing, but for constructing indirectly
multiple models to help them with that particular task and to generalize to new problems.
Accordingly, the models and algorithms proposed in this thesis seek to be more data efficient
and extract more information from the interaction data that is collected either from expert’s
demonstrations or the robot’s own experience. The first approach encodes robotic skills
with shared latent variable models, obtaining latent representations that can be transferred
from one robot to others, therefore avoiding to learn the same task from scratch. The second
approach learns complex rational policies by representing them as hierarchical models
that can perform multiple concurrent tasks, and whose components are learned in the same
learning process, instead of separate processes. Finally, the third approach uses the interaction
data for learning two alternative and antagonistic policies that capture what to and not to do,
and which influence the learning process in addition to the performance measure defined for
the task.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Domingo Francisco Esteban Cabala
July 2019

Acknowledgements

First and foremost, I would like to thank my tutors Leonel Rozo and Darwin Caldwell for
their support and guidance throughout my PhD. Leonel Rozo has not been only a good
supervisor who gave me the freedom to explore and work on my ideas, but also a good friend
who always started a conversion asking about how I was. Prof. Caldwell not only gave me
the opportunity to perform research at IIT but also, despite his busy schedule, alway had time
to listen to me.
I also want to thank Prof. Ville Kyrki and Dr. Bojan Nemec for reviewing this thesis, and
providing helpful feedback that allowed me to improve this manuscript.
Additionally, I am very grateful to all the members of ADVR, past and present. I have learned
so much from all of them during these years, they have been a key part of my academic and
personal growth.
Finally, I would like to thank my family. Especially, my mother and brother for everything
they have done for me and for always believing in me. Thanks to Lía for her patience and
unconditional support throughout this journey. Esta tesis se la dedico a ustedes. Gracias por

todo, los amo.

Contents

Abstract i

List of Figures vii

List of Tables ix

Acronyms x

Notation xi

1 INTRODUCTION 1
1.1 Learning motor skills in robotics . 2
1.2 Limitations of direct learning processes 3
1.3 Contributions and thesis outline . 4

2 BACKGROUND 7
2.1 Robot learning from observed expert data 9

2.1.1 Imitation learning by behavioral cloning 10
2.2 Robot learning from the experienced interaction data 11

2.2.1 Model-free reinforcement learning 11
2.2.2 Model-based reinforcement learning 13

3 LEARNING AND TRANSFERRING SHARED LATENT SPACES OF ROBOTIC
SKILLS 15
3.1 Related work . 17
3.2 Preliminaries . 19

3.2.1 Direct policy learning with Gaussian processes 19
3.2.2 Learning a latent space with GP-LVM 21

3.3 Shared latent spaces for transfer learning of robot skills 22

Contents v

3.3.1 Modeling a robotic skill as a shared latent space 22
3.3.2 Exploiting robotic skill spaces for transfer learning 23
3.3.3 Transfer learning of robotic skills with shared GP-LVMs 24

3.4 Experiments . 27
3.4.1 Setup description . 27
3.4.2 Results . 29

3.5 Challenges . 31
3.6 Summary . 33

4 CONCURRENT DISCOVERY OF COMPOUND AND COMPOSABLE POLI-
CIES 34
4.1 Related work . 36
4.2 Preliminaries . 37

4.2.1 Maximum entropy reinforcement learning 37
4.2.2 Soft Actor-Critic algorithm . 38

4.3 Composition of modular Gaussian policies 39
4.3.1 Hierarchical model for composing modular policies 39
4.3.2 Hierarchical policy and Q-functions modeling 41

4.4 Simultaneous learning and composition of modular maximum entropy policies 42
4.4.1 Off-Policy multi-task policy search 42
4.4.2 Multi-task Soft Actor-Critic . 43

4.5 Experiments . 44
4.5.1 Tasks description . 45
4.5.2 Robot learning details . 45
4.5.3 Results . 47

4.6 Challenges . 49
4.7 Summary . 50

5 EXPLOITING GOOD AND BAD EXPERIENCES IN POLICY LEARNING 51
5.1 Related Work . 52
5.2 Preliminaries . 54

5.2.1 Model-based trajectory-centric reinforcement learning 54
5.2.2 Guided policy search algorithms 56

5.3 Deep reinforcement learning with dualist updates 57
5.3.1 Model-based (trajectory-centric) RL with dualist updates 58
5.3.2 Dualist GPS . 59

Contents vi

5.3.3 Defining good and bad experiences 60
5.4 Experiments . 61

5.4.1 Tasks description . 61
5.4.2 Results . 63

5.5 Challenges . 67
5.6 Summary . 67

6 CONCLUSIONS 68
6.1 Summary . 69

6.1.1 Learning and transferring shared latent spaces of robotic skills . . . 69
6.1.2 Concurrent discovery of compound and composable policies 69
6.1.3 Exploiting good and bad experiences in policy learning 70

6.2 Open challenges and future work . 71

REFERENCES 73

List of Figures

1.1 Shared latent spaces of robotic skills . 5
1.2 Simultaneous learning and composition of modular policies 6
1.3 Exploiting good and bad experiences in policy learning 6

3.1 Skill variable generating state and action 23
3.2 Action generation through the skill variable 23
3.3 Transfering the skill space of a robot . 24
3.4 Transfering a learned shared GP-LVM to other robots 25
3.5 Shared GP-LVM among many robots learned with transfer learning 25
3.6 Multi-robot learning model . 27
3.7 Equivalence action poses between three robots 28
3.8 Experiments: MSE of models without back-constraints 29
3.9 Experiments: MSE of models with back-constraints 30
3.10 Experiments: MSE of models with back-constraints in either human or robot

data . 30
3.11 Trajectories in a skill space . 31
3.12 Robot joint trajectories generared from new human data 32

4.1 Policy and Q-value function neural networks 41
4.2 Experimental scenarios . 46
4.3 Results for the 2D particle navigation task 47
4.4 Soft Q-values for the 2D particle navigation task 48
4.5 Learning curves for the reaching, pushing and centauro tasks 49

5.1 Reaching task of a planar manipulator . 61
5.2 Reaching task of CENTAURO . 63
5.3 Experiment planar robot: disregarding worst samples 64
5.4 Experiment planar robot: safe-distance cost 66

List of Figures viii

5.5 Experiment planar robot: final distance . 66
5.6 Experiment CENTAURO: safe-distance cost 66
5.7 Experiment CENTAURO: final distance 67

List of Tables

4.1 Environment-specific hyperparameters . 47

5.1 Values considered in the reward function for the reaching task for the 3DoF
planar manipulator and CENTAURO . 63

Acronyms

IL Imitation Learning
BC Behavioral Cloning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
GPS Guided Policy Search
MDGPS Mirror Descent Guided Policy Search
SAC Soft Actor-Critic
HIU Hierarchical Intentional-Unintentional
GP Gaussian Process
GP-LVM Gaussian process latent variable model
NN (Artificial) Neural network
TVLG Time-varying linear-Gaussian (controller)
KL Kullback-Leibler (divergence)

Notation

M Markov decision process
T Task
t Discrete time step
T Horizon, final time step of an episode
s State
S State space
st State at time t

a Action
A Action space
at Action at time t

p(st+1|st ,at) Probability of transition to state st+1, from state st after action at

τ Trajectory, path or rollout, τ = {s0,a0,s1,a1, . . .}
r Reward
rt Reward at time t

Gt Return following time t

π Policy
π∗ Optimal policy
π(s) Deterministic policy
π(a|s) Stochastic Policy
πθθθ Parameterized Policy
V π(s) Value of state s under policy π

V ∗(s) Value of state s under π∗

Vψψψ(s) Parameterized value function of a state
Qπ(s,a) Value of taking action a in state s under policy π

Q∗(s,a) Value of taking action a in state s under π∗

Qφφφ (s,a) Parameterized value of a state-action pair

Chapter 1

INTRODUCTION

One of the greatest ambitions of humanity is and has been to build intelligent machines. The
idea of making intelligent interactions between mechatronic systems, so-called robots, and
the real-world, originated the science and technology that we currently know as robotics.
Nevertheless, the classical procedure that has guided the development of robotics since its
origins has been to identify the specific tasks that robots should execute and preprogram the
required behaviors. This manual ad-hoc design presents some limitations. First, it biases the
robotic behavior to the empirical and subjective idea of what the programmer considers as
intelligent. And second, it is practically impossible to define in advance the complexity and
variety of tasks that robots may face in the dynamic and unstructured real-world.

In accordance with current research, this thesis connects intelligence with the concept of
rationality [1, 2]. This involves that a robot behavior can be evaluated with a performance

measure that captures the objective of the task that the robot performs. Thus, the behavior
should be optimal, that is rational, with respect to this objective during the whole execution
of the task. This problem may be formalized as a sequential decision-making or dynamic
optimization problem [3] by defining the variables that are relevant for the decision, so-called
state, and the decision variables as control actions or simply actions of the robot. When
the robot performs the sequence of actions obtained from the solution of this problem, the
resulted behavior is rational with respect to the performance measure.

The sequential decision-making problem involves an interaction over time and, therefore,
requires a transition model that describes how the state of the environment evolves with the
actions performed by the robot. There are several tasks in robotics where it is possible to
manually generate a model that describes the evolution of the state under the influence of
the control actions. With this model, usually constructed from human insights of physics, a
policy or control law that generates the motor commands based on the state of the task can

1.1 Learning motor skills in robotics 2

be obtained with optimal control [4]. Optimal control ensures strong guarantees when the
model perfectly captures the state-action relationship, however fails when some factors that
affects the evolution of the task are not considered [5]. Additionally, there are several tasks
that are difficult, if not impossible, to construct a perfect model which the optimal control
techniques can work with.

Moreover, the generation of a robotic behavior with optimal control assumes the task
environment is fully observable, that is, the robot has a full and reliable access to those
variables relevant to the action selection. However, most robotic scenarios are partially
observable because the robot’s sensors does not give access to the complete state, and require
the robot to estimate both its own internal state (proprioception) and that of the external
world (exteroception) from its sensor measurements [1, 6]. This perception process requires
the robot to continuously update its belief about the environment state (so-called belief state),
based on the sequence of previous actions and percepts. However, obtaining a reliable state by
robotic perception is difficult because sensors are noisy, and the real-world is unpredictable,
dynamic and partially observable.

1.1 Learning motor skills in robotics

The lack of a perfect model of the state-action correlation or a full access to the state of
the environment have not been a limitation for the development of the astonishing motor
skills that humans and other animals possess. The control laws that generate these behaviors
are consequence of the habituation and experience they obtain from interacting with their
environment. Similarly, an alternative approach for acquiring motor skills in robotics is to
allow robots to practice the desired task and improve their performance on that task with
experience, that is learning [7, 8].

Robot learning of motor skills is the scientific study of machine learning techniques to
automatically detect uncovered patterns from the data obtained from the execution of one
task, in order to acquire a control policy that generates a rational behavior with respect to
the performance measure defined for that task. The data generation process employed to
collect the required experience defines the appropriate robot learning approach for improving
the performance of the robot’s policy [5]. For example, when the task execution is provided
by an expert or demonstrator, the robot can learn the desired behavior by emulating it, an
approach called Imitation Learning (IL), also called apprenticeship learning or programming
by demonstration [9]. On the other hand, when the interaction data is collected following the

1.2 Limitations of direct learning processes 3

robot’s policy, the skill is improved by Reinforcement Learning (RL) with the performance
measure defined for the task [10].

1.2 Limitations of direct learning processes

There has been a great deal of work on the development of learning algorithms for the
acquisition of newly robot skills via either imitation learning or reinforcement learning
[11, 12, 13, 14]; however, we are still far from having robots with the sufficient degree of
autonomy to operate continuously in the real-world. The ultimate goal of robot learning is
to obtain a rational policy since it is sufficient to generate the robot’s behavior. Thus, most
robot learning techniques are only focused on obtaining policies as a result of optimizing
the performance measure of the task. Nevertheless, formulating the skill acquisition process
in such a way involves deriving the policy directly from the solution of this optimization
problem, which has several disadvantages. For example,

• if the same skill has to be learned by different robots, independent learning processes
should be carried out for acquiring the policy for each robot. That is to say, after a —
probably long and cumbersome — learning process, the resulted policy of one robot is
only valid for that particular robot and that specific task, and does not generalize to
others easily.

• Because the interaction data is only used for improving the performance in a single
task, if a robot has to learn diverse skills, the robot should acquire the policy for each
task in separate learning processes, in a sequential order and commonly starting from
scratch.

• Because the learning process is formulated in terms of improving only the performance
measure, the robot may ignore situations that should not be repeated (failed interac-
tions/behaviors). These failures are only indirectly avoided by reducing the likelihood
of occurrence, but without any mechanism that captures the necessity of not repeating
those behaviors.

In contrast, humans and other animals exploit their experience not only for improving
the performance of the task they are currently executing, but for constructing multiple
complex models to help them with that task and to generalize to new problems. Therefore,
robot learning algorithms should not be designed to consider the skill acquisition process
as an isolated stage where the only objective and final result is a policy with acceptable

1.3 Contributions and thesis outline 4

performance in the task being executed. Instead, the algorithms should consider the skill
acquisition process as a part of a higher continual learning activity where the experience
collected during the task execution is reused and integrated into an overall intelligent system
[15].

In consequence, robot learning algorithms should be more data efficient and extract more
information from the interaction data that is collected either from expert’s demonstrations
or the robot’s own experience [16, 17]. Thus, this interaction data should not be employed
solely for acquiring a robot’s policy in one particular task, but also for learning alternative and
complementary models that support the robot in the current and following tasks. Three models
formulated in these type of scenarios and algorithms that learn their different components in
the same learning process are briefly detailed in the following section.

1.3 Contributions and thesis outline

The algorithms proposed in this thesis intend to overcome the problems detailed in the
previous section by learning the robotic motor skills indirectly. That is to say, the rational
policy is not obtained directly from an optimization problem which is formulated only in
terms of the performance measure. Instead, these algorithms seek to extract additional
information from the experience obtained from the task execution and construct models that
are useful for both the current learning process and future ones. Therefore, the policy is
derived from alternative optimization objectives that influence it during the learning process.
But before introducing these algorithms, a mathematical formulation of the motor skill
learning problem, and the definition of some important concepts are presented in chapter 2.

In chapter 3, it is shown the benefit of explaining the evolution of environment states and
robot actions, with variables in a shared latent space, called skill space. With this model, the
transition of these latent variables are enough to generate the control commands of the robot.
As a consequence, when the same skill has to be acquired by different robots, and under the
assumptions that the state and the influence of an action to the evolution of this state are both
independent of the robot executing the task, the latent representation of one robot can be used
to learn the latent representation for others. This process for learning a shared latent space

of a robotic skill and transfer it to other robots is depicted in Figure 1.1. By transferring
this prior latent knowledge from one robot to another, a faster learning rate along with good
imitation performance are achieved. The skill space is modeled with a Gaussian process
latent variable model (GP-LVM) [18], a model previously applied in the context of imitation

1.3 Contributions and thesis outline 5

of human actions [19, 20], and adapt it to this context of transfer learning. Part of the content

of this chapter was published previously in [21].

Robot 1 Robot NEnvironment

Task

Policy 1

Action 1

Skill

State

Policy N

Action N

Skill
Shared

Figure 1.1 Shared latent spaces of robotic skills. The same skill has to be learned by different robots (chapter 3).

In chapter 4, it is shown how complex learning tasks can be decomposed into collections
of subtasks that are simpler to learn as well as reusable for new problems. Moreover, the
corresponding policies are modeled as conditional Gaussian distributions and combined using
a set of activation vectors. The result of this approach is a compound Gaussian policy that is a
function of the means and covariances matrices of the composable policies. This model allows
performing tasks that require the concurrent accomplishment of several subtasks, compared
to standard models that consider only sequential subtasks. In addition, the chapter details an
algorithm, called Hierarchical Intentional-Unintentional (HIU), which exploits the off-policy
data generated from the compound policy for learning both compound and composable

policies within the same learning process, as depicted in Figure 1.2. The algorithm is built on
a maximum entropy reinforcement learning approach to favor exploration during the learning
process. The results obtained from the conducted experiments suggest that the experience
collected with the compound policy permits not only to solve the complex task but also to
obtain useful composable policies that successfully perform in their respective tasks. This

work has been disseminated in [22].

In chapter 5 it is shown that the interactions that result in failures, and that are usually
overlooked for the robot’s policy, can be explicitly considered if their effects are captured
with a policy that can reproduce it, called bad policy. At the same time, a good policy can be
constructed from only successful executions, and along the bad policy, may influence the
skill acquisition process. This process of learning a good and bad policy from the interaction

data and make them influence the robot’s policy during the learning procedure is depicted
in Figure 1.3. However, instead of considering them directly in the policy improvement

1.3 Contributions and thesis outline 6

RobotEnvironment

Task

State

Policy

Action

Reward

Reward 1

Reward N

Sub-Task 1

Sub-Task N
Sub-Policy N

Sub-Policy 1

Activations

Figure 1.2 Simultaneous learning and composition of modular policies. Different policies should be simultane-
ously learned by the same robot and composed for solving a complex task (chapter 4).

phase of deep neural network policies, a guided policy search algorithm [23] is extended so
it can consider guiding trajectories optimized with dualist constraints [24]. These constraints
are aimed at assisting the policy learning so that the trajectory distributions updated at each
iteration are similar to trajectory distributions generated by good policies while differing
from trajectory distributions generated from bad policies. The results indicate that neural
network policies guided by trajectories optimized with this method reduce the failures during
the policy exploration phase, and therefore encourage safer interactions. This work was

published previously as [25].

RobotEnvironment

Task

State

Policy

Action

Good
Policy

Bad
Policy

Reward

Figure 1.3 Exploiting good and bad experiences in policy learning. Different policies are learned from the
same experience and all influence the learning process of one robot (chapter 5).

Finally, in chapter 6, the conclusions of this thesis are presented and the potential avenues
for future research discussed.

Chapter 2

BACKGROUND

This chapter presents the mathematical formulation of the learning problem for robotic skill
acquisition considered in this thesis. The solution to this problem is a control policy that
generates a rational behavior with respect to the performance measure. As mentioned in the
previous chapter, the origin and type of data obtained during the execution of the robotic
task determines the approach that could be used to learn the policy. When this interaction
data is generated by an expert, the policy acquisition can be approached as an imitation
learning problem. This approach is described in section 2.1 and shows how the skill learning
problem is reduced to supervised learning, and then it allows to exploit the robust machine
learning algorithms offered in this kind of problems. On the other hand, when the robot has
only access to data obtained directly from its interaction with the environment, the policy
is updated in such a way that improves the performance measure. Thus, the problem could
be approached with the reinforcement learning framework (section 2.2), and the rational
behavior is obtained in a manner analogous to trial and error.

Let us assume that a robot has to develop a particular skill for the task T and that the
performance of the resulted behavior can be measured. This performance measure, also
called utility function, is a mathematical expression of what is considered a desirable or
rational behavior 1. Consequently, all the decisions taken by the robot during the whole task
influence the resulted behavior and should be considered in the assessment. In this thesis
two important assumptions are made about the characteristics of this decision process. First,
a discrete-time setting is considered, and hence the robot’s decisions are made at discrete
instances of time or stages. And second, the environment where the robot performs the task

1This idea is also known as the reward hypothesis which states that the goals and purposes we expect from
an agent can be formulated as the maximization of the performance measure [26].

8

is considered stochastic in order to reflect the stochasticity of the real-world 2. The previous
assumptions describe a discrete-time stochastic sequential decision (control) problem which
could be formalized as a Markov Decision Process (MDP).

An MDP is described by the tuple (S,A, ps,r). The state space S has dimension DS , and
the element s ∈ S is called state. The action spaceA has dimension DA, and the element a ∈
A is called control action. The transition function is represented by ps : S ×A×S → [0,1]
and defines the conditional probability distribution p(st+1|st ,at), that is the probability to
transition to st+1, from state st after action at . Finally, r : S ×A→ R is the reward function

that assesses the state-action pair by a scalar value, r(s,a). 3

Some assumptions about the characteristics of the MDPs formulated in this thesis are
made in order to consider robotic tasks. First, both S and A are (possibly high dimensional)
continuous spaces, therefore S ⊂ RDS and A⊂ RDA . This also implies that the transition
p(st+1|st ,at) is now a probability density function ps : S ×A×S → [0,∞). Moreover, it is
considered that the robot can directly observe the real state of the MDP (fully observable
MDP), and that the state is composed by either internal (e.g. joint angles, end-effector pose)
or external variables (e.g. object locations).

The robot actions a are selected according to a control policy, denoted by π , that can be
either deterministic π(s) or stochastic π(a|s), being the latter a distribution over actions a
conditioned on the state s. With this policy, the robot induces a stochastic process called
trajectory, path, or rollout, τ = {s0,a0,s1,a1, . . .}. In the following we will denote the
probability of the trajectory induced for the policy π as π(τ).

Le us also define the return Gt , as the accumulated reward obtained at each time step,
rt = r(st ,at), for a particular trajectory starting at time t. Moreover, the return for a trajectory
starting at t = 0 is denoted by G(τ). Thus, when the task T has to be performed in a fixed
time horizon T , we called it episodic task, and the resulting trajectory is assessed by the
finite-horizon undiscounted return G(τ) = ∑

T−1
t=0 rt . In some special cases, the task does not

have a horizon, so-called continuing task, and the trajectory is assessed by the infinite-horizon

discounted return G(τ) = ∑
∞
t=0 γ trt , where the discount rate γ ∈ [0,1), allows the infinite

sum to converge. In both cases, the skill performance of the robot in the task T is measured
by the expected return, J(π):

2This stochastic assumption seeks to capture the complexity, uncertainty and the lack of information that we
have about the real-world.

3Other formulations of the reward function, such as rt = r(st) or rt = r(st ,at ,st+1), are also possible.
However, the decision for choosing rt = r(st ,at) is mainly justified for its convenience in the formulation and
code implementation of the algorithms proposed in this thesis.

2.1 Robot learning from observed expert data 9

J(π) =
∫

τ

π(τ)G(τ) = Eτ∼π(·)[G(τ)] (2.1)

The policy that maximizes the expected return is called optimal policy, π∗, and it is
obtained by solving the problem:

π
∗ = argmax

π

J(π) (2.2)

Because both S and A are continuous, an exact solution to the MDP is not possible.
Nevertheless, it is possible to find an approximation of π∗ by using a parameterized policy

πθθθ , with parameters θθθ . The optimal parameter values, θθθ
∗, of this model are obtained by

solving:
θθθ
∗ = argmax

θθθ

J(πθθθ) (2.3)

We say that the robot is learning, when the value of J(πθθθ) improves with the experience
obtained during the execution of task T . The data required for learning this skill can
come either by an expert executing the task (section 2.1) or from the robot own experience
(section 2.2).

2.1 Robot learning from observed expert data

An alternative to learning a robotic skill from interaction data collected from the robot’s
experience is exploiting the task-specific knowledge of an expert or demonstrator about how
to perform the task [9]. When the task execution is provided by the demonstrator, the robot has
the interaction data from which it can learn the desired behavior by emulating it, an approach
called Imitation Learning (IL), also known as apprenticeship learning or programming by
demonstration [9, 27, 28]. The demonstrations can be provided by several interfaces, such
as recorded human motions [29, 30], kinesthetic teaching [31, 32], or teleoperation [33, 34].
It is common that the demonstrator provides a certain number of executions of the task to
capture variability in the task execution, something that is helpful for obtaining distributions
from the demonstrations. However, it is still possible to learn from a single demonstration, a
process called one-shot imitation learning [35, 36].

There are two main approaches that can be followed in imitation learning to capture
the expert knowledge about the task. The first approach is to assume that the expert acts
(near) optimally with respect to some performance measure, and then try to learn the reward

2.1 Robot learning from observed expert data 10

function that explains the experience data. Then from this reward function, the expert policy
is derived. This process is called, inverse reinforcement learning or inverse optimal control

[12].
The second approach is to obtain directly the expert policy from the data, this approach

is called behavioral cloning. Behavioral cloning (BC) is the more robust approach in
robot learning, and the variety of successful tasks learned with this method is broad in the
bibliography [27].

2.1.1 Imitation learning by behavioral cloning

Let us define a demonstration, τE = {s1,a1, . . . ,sT ,aT}, as a trajectory performed by an
expert, also called demonstrator, in the task T for a time horizon T . Assuming that D

demonstrations are collected in a datasetD = {τE
1 , . . . ,τ

E
D}, the objective of imitation learning

is to learn a parameterized policy πθθθ that can reproduce the expert skill, πE, observed in D.
As we can notice, the dataset D consists of a collection of expert actions taken for different
states. This input-output problem is well studied in machine learning, therefore, the policy πθθθ

might be learned by supervised learning. As a result, learning the parameters θθθ by behavioral
cloning is usually done by optimizing a regression loss function.

A common way to estimate the policy parameters is by maximum likelihood estimation
(MLE) [37], if we assume that the state-action pairs (s,a) of the data are independent and
identically distributed (i.i.d.). Thus, the optimal policy parameters θθθ

∗ can be obtained by
maximizing the likelihood of the demonstrations with πθθθ :

θθθ
∗ = argmax

θθθ

N

∑
n=1

logπθθθ (an|sn)

where N =DT is the total number of state-action pairs in the dataset D. Therefore, the optimal
policy learned by BC is the one that maximizes the likelihood of the expert trajectories.

It is important to note that assuming the state-action pairs are i.i.d. is a very strong
assumption. As described earlier, the values of the states depend on previous actions,
then the assumption is easily violated. However, policies modeled with general function
approximators can still reproduce the expert skill if the dynamics of the task is deterministic
(or very close to) or if the dataset D is big and representative.

2.2 Robot learning from the experienced interaction data 11

2.2 Robot learning from the experienced interaction data

Learning a skill by imitation learning may be beneficial in certain scenarios but it has several
limitations. Obtaining demonstrations that are both correct and representative of all the
situations a robot might encounter is difficult or even unrealistic in some situations. An
alternative and general approach is to allow the robot to autonomously interact with the
environment and improve its policy directly from this experience. Reinforcement learning
(RL) is a subfield in machine learning that deals with problems where the agent has not
access to the transition function, that is an incompletely-known MDP.

With RL, the robot acquires a skill in task T by means of the reward signal. In addition
to the delayed reward feature of sequential decision making problems, in the RL framework,
the robot must discover which actions yield the most reward by trying them, in other words
it should perform a trial-and-error search. As a consequence, RL presents an exploration-
exploitation dilemma for the robot, because it has to exploit what it has already experienced
in order to obtain a better performance, but it has also to explore in order to select better
actions in the future [26]. RL algorithms can be classified according to diverse criteria,
however, in the following sections two main classes, model-free (also called direct) and
model-based (also called indirect) methods are briefly introduced.

2.2.1 Model-free reinforcement learning

The main difference between model-free and model-based RL methods is whether a model
of the interactions, that is a transition function, is learned and exploited. Model-free RL
algorithms do not learn this model, as a result the optimal actions are obtained directly from
trial-and-error with the physical world. Several RL algorithms estimate value functions which
relates either states or state-action pairs to the expected return under some specific policy π .
Thus, given a state s the state-value function for π is denoted by V π(s) and defined as:

V π(s) = Eπ [Gt | st = s] (2.4)

On the other hand, given a state s and an action a, the action-value function for policy π

is denoted by Qπ(s,a) defined as:

Qπ(s,a) = Eπ [Gt | st = s,at = a] . (2.5)

An important property of these value functions is that they can be expressed in terms of the
successive states, recursive expressions called Bellman equations. For example, considering

2.2 Robot learning from the experienced interaction data 12

an infinite-horizon discounted return, the Bellman equation for the action value function is:

Qπ(s,a) = r(s,a)+ γE(s′,a′)∼π

[
Qπ(s′,a′)

]
, (2.6)

where s′ and a′ denote the next time-step state and actions.
The optimal action-value function and optimal state-value function, denoted by V ∗ and

Q∗ respectively, are defined as:

V ∗(s) = max
π

V π(s), ∀s ∈ S (2.7)

Q∗(s,a) = max
π

Qπ(s,a), ∀s ∈ S,∀a ∈ A (2.8)

Similarly to (2.6), the optimal value functions can be expressed recursively, formulations
called Bellman optimality equations. Thus, the Bellman optimality equation for Q∗ is:

Q∗(s,a) = r(s,a)+ γEs′

[
max

a′
Q∗(s′,a′)

]
. (2.9)

These optimal value functions assign to each state, or state-action pair, the largest expected
return achievable by any policy. For this reason, the optimal policy π∗ can be recovered
directly from the optimal action-value function, without learn it explicitly. The RL algorithms
based on this idea are commonly named value-based methods.

Most model-free value-based methods are grounded on temporal difference (TD) learning,
where on every time-step the agent interacts with the environment and updates its value
function estimate based on previous learned estimates (bootstrapping). The classical TD
methods SARSA [38] and Q-learning [39], which learn estimations of the Q-values for the
exploration policy and optimal Q-values respectively, require an exact representation of the
Q-function, e.g. a table indexed by discrete states and actions. Thus, function approximation
is required in order to deal with value functions of the continuous spaces found in robotics
[40, 41]. In this thesis, a parameterized approximator of the Q-values is denoted by Qφφφ with
parameters φφφ . Learning Qφφφ with interaction data allows to generalize and estimate values
to states and actions not experienced by the robot. However, several tasks still require an
intensive exploration of the state-action space in order to learn complex value functions.
Similarly, learning value approximations is difficult in high-dimensional spaces and errors
in the value functions approximations are directly propagated through to the policy that is
implicitly represented [42].

2.2 Robot learning from the experienced interaction data 13

On the other hand, an alternative collection of RL algorithms learn the optimal policy
directly based on sampled trajectories, and avoid computing any optimal value function.
They are called policy search or policy-based methods and optimize the parameters θθθ of the
parameterized policy πθθθ in order to optimize the performance measure of the task (Equation
(2.3)). Most policy search methods follow a process that iterates over the following steps:
exploration, that is generating samples with the current policy; policy evaluation, that is
evaluate the policy performance; and policy improvement where the policy parameters are
updated [42]. Several policy search algorithms estimate the policy performance with Monte
Carlo sampling, that is running a large set of episodes and averaging over the stochastic
return of the resulting trajectories [26]. For this reason, these algorithms are also known as
transient critic methods [17], because the estimations of the policy performance are discarded
once the policy parameters are updated.

Monte Carlo estimates are unbiased however they exhibit a high variance that can produce
slow learning [42, 43]. As a consequence, actor-critic methods learn the parameterized policy
(so-called actor) that maximizes a parameterized value-function (so-called critic) instead
of the Monte Carlo estimations [26, 44]. The parameterized critic is learned with TD, for
this reason actor-critic methods are also called persistent critic algorithms [17]. Since the
parameterized critic is a low variance estimator of the expected return, actor-critic methods
often converge much faster than policy search methods [45].

2.2.2 Model-based reinforcement learning

The interaction data obtained from experience can also be used to construct a model of how
the actions affect the evolution of the states, in a process called model learning. RL methods
that use these transitions models are commonly denoted as model-based RL methods [46].
The performance of the learned transition model is given by its generalization ability, that is
how precise its predictions are on new state-action pairs. And they are used to simulate the
environment allowing state-space planning in order to improve the performance of the policy
[1, 26].

From a function approximation point of view, model learning methods are classified as
global and local techniques [47]. Global regression techniques model the transition function
using all the experienced data, as a consequence every state-action pair influences every
parameter of the transition model. Relevant models exploited with global techniques include
parametric ones such as neural networks [48, 49], and non-parametric ones such as Gaussian
processes [16, 50]. On the other hand, local regression techniques estimate the transition

2.2 Robot learning from the experienced interaction data 14

function around a query state-action point, and the experienced interaction data close to the
query point is used to predict the next state. As a consequence, the predictions are more
accurate for query points similar to previously experienced interactions, otherwise there
is not guarantee in the validity of the predictions. Local regression methods are simple to
implement and computationally efficient, therefore both linear [23, 51, 52], and nonlinear
models [53, 54] are used in robotics with this type of methods.

Chapter 3

LEARNING AND TRANSFERRING
SHARED LATENT SPACES OF
ROBOTIC SKILLS

Obtaining a rational policy is the ultimate goal in robot learning for control since it is
sufficient to generate the robot’s behavior and thus for a robot to be skilled in a particular
task. This policy maps perceived states to actions (or probabilities over actions) and therefore
it is specific for certain task and robot. Two rational policies for distinct tasks are different
because they optimize their own performance measure, and thus they have different criteria
for selecting the actions. On the other hand, two robots may even have the same sensors and
actuators, however, minor differences among them might cause them to perceive the state or
modify the environment differently. As a consequence, applying the same policy in the two
robots may lead to two distinct resulting behaviors. Thus, acquiring the same skill for two
particular robots involve learning two different policies.

With common robot learning methods, training two different policies imply to carry out
two independent learning processes. However, when two robots exhibit the same behavior in
the same task, one might expect some commonalities in the decision criteria they consider to
choose their particular actions. As a consequence, the state-action trajectories they induce
when they use their policies should also have similarities during the task execution. Therefore,
learning the cause of a skill means finding these invariant patterns in the interaction data
obtained for each robot.

The previous idea considers that the interaction data collected among the different robots
is independent of the generation process that was used to collect it. However, in this chapter
the proposed algorithm, and the assumptions made, are formulated in a behavioral cloning

16

(BC) setting. The main motivation is that the success of a skill acquired by BC depends
heavily on the demonstrations. Therefore, learning a robotic skill requires to collect a large
and diverse dataset, a process that may become laborious when dealing with high-DoF
robots, for example. The data collection is even more tiresome if the same skill needs to be
learned by multiple robots, because the demonstrations have to be done in such a way that
allow obtaining a similar behavior in all the robots. In this context, learning the causes that
generate the different skills is valuable because the demonstrator can first train one robot and
exploit this knowledge to train others, accelerating the overall training process. This scenario
matches the paradigm of transfer learning, an approach where prior (learned) information is
exploited in subsequent learning phases [55].

The demonstrated state-action trajectories reflect the skill the demonstrator wants the
robot to learn. In this context, it is possible to assume that the demonstrations from this
particular skill can be generated by variables in a latent space that explains the patterns found
in both state and action data. If we also learn the map from the state to this latent space, then
the policy we seek to learn with BC is a state-latent-action mapping [56]. Furthermore, when
the state representation of the environment and the influence of an action to the evolution
of this state are both independent of the robot executing the task, then the expected state
trajectory collected with the same skill should be the same among the robots. For example, if
the state of an object is represented by its position and velocity, and under the same external
conditions, any robot that moves this object to some point with a specific acceleration, will
generate the same state trajectory. Clearly, this situation is not necessarily true for the action
trajectories of the robots, because the actions required to generate the state trajectory are
particular to each robot.

Under the previous assumptions, the mapping from the state to this latent space is the
same among all the robots, hence the latent representation of one robot (source domain)
can be used to learn the latent representation for others (target domains). In other words,
teaching the same skill among many robots can be carried out by first learning a latent
representation of the demonstrations for one robot, and then exploiting it for training other
ones. By transferring this prior latent knowledge from one robot to another, we expect to
achieve a faster learning rate along with good imitation performance.

In this chapter, a shared GP-LVM [18] is proposed for modeling the shared latent space.
GP-LVM is a data-efficient method that allows a nonlinear mapping from a latent space to
observational spaces. Moreover, when BC is used for teaching skills to complex robots,
like humanoids, the dimensionality of the training data can considerably increase, making
both imitation and transfer learning more complex processes. In this context, despite the

3.1 Related work 17

dimension of the latent space modeled with a GP-LVM can even be higher than observations
and action spaces [19], it is possible to overcome the curse of dimensionality, by assuming
that both state and action data lie in a shared low dimensional latent space. The details about
how shared GP-LVM is formulated under this context is detailed in section 3.3.3.

3.1 Related work

Unsupervised learning is a branch in machine learning focused on discovering structure
or patterns in the training data, a process that is also called knowledge discovery [37]. A
relevant application of unsupervised learning is to build density models that can generate the
training data, also-called generative models. Among them, a latent variable model (LVM) is
a statistical model that assumes the training data (observed variables) is correlated because
it is generated from a hidden common "cause" [37]. An important application of LVMs in
robotics is dimensionality reduction in learning and control [57]. For example, reducing the
state space to accelerate learning with linear methods such as Principal Component Analysis
(PCA) [58, 59], or non-linear methods such as Gaussian process latent variable models
(GP-LVM) [60].

Field et al. [61] proposed to learn a model of motion primitives for humanoid robots
using hidden Markov models (HMM) and a mixture of Factor Analyzers (MFA). The main
idea was to create a nonlinear low-dimensional mapping between human and robot using
MFA, and reproduce the trajectories using an HMM-based dynamical system. The approach
proposed here is similar to this approach in the sense that a shared demonstrator-robot low
dimensional manifold is also found, however here the construction of the latent space and the
mapping are wrapped in the same model, and therefore, their parameters are learned at the
same time. Moreover, none of the aforementioned works addressed the problem of teaching
skills to multiple robots. So, the proposed approach goes one step further by exploiting the
learned latent space to deal not only with the curse of dimensionality and the human-robot
mapping, but also with prior knowledge transfer — embedded in a latent representation of
the motions — to quickly learn new mappings for multiple robots.

The idea of this chapter about exploiting shared GP-LVMs as an indirect input-output
mapping was inspired by the work of Yamane et al. [19] in computer graphics and Shon
et al. [20, 56] in robotics. Yamane et al. [19] applied a shared GP-LVM to animate characters
with different morphologies, but a new model was learned for each character. Shon et al.
[56] applied shared GP-LVM for imitation of human actions in a small humanoid. The
shared latent variable model presented in this chapter extends on those works by considering

3.1 Related work 18

multiple similar robots while differing in a major point: the input-to-latent mapping. In
Yamane et al. [19], given new inputs, the latent coordinates were determined using a nearest
neighbor search and an optimization process. The performance heavily depends on the
number of nearest points to be chosen, which may be considerably high, limiting the use of
this approach for real-time systems. To alleviate this problem, Shon et al. [20] applied a GP
regression for the input-to-latent mapping once the model was trained. The shared GP-LVM
proposed in this chapter includes a constraint in order to obtain a smooth input-to-latent
mapping (so-called back-constraint), thus obtaining both the latent coordinates and the input-
to-latent mapping variables during the optimization process. As explained in section 3.3.3,
imposing back-constraints on the input presents several advantages, but more importantly, it
is important for the transfer learning process.

The use of dimensionality reduction techniques in transfer learning has also been proposed
in [62]. This approach finds a common low-dimensional latent space between source and
target domains (for input variables), and then learns a latent-to-output mapping in the source
domain. The transfer learning occurs when this mapping is applied to the target domain. This
approach differs from the one proposed in this chapter in that the latent space of the latter
is not only between input and output spaces, but also between source and target domains.
Moreover, the approach in this chapter learns a new latent-to-output mapping in the target
domain.

Transfer learning has also been applied to improve model learning in robotics. Neverthe-
less, these approaches do not make any distinction regarding the input and output variables
of the problem, but they carry out a dimensionality reduction over the whole dataspace
instead. By doing this, source and target low dimensional representations are different, and
a linear [63] or a non-linear [64] transformation between them is required. In contrast, the
shared latent variable model proposed in this chapter does not group inputs and outputs
together to perform the dimensionality reduction. In addition, no transformation between
the models is required because the source and target inputs coincide, and therefore the same
latent coordinates and the hyperparameters of the state-to-latent mapping are assumed to be
shared among the robots.

Finally, the approach presented in this chapter was previously published in Delhaisse and
Esteban et al. [21]. Compared to that work, this chapter formalizes the main idea of transfer
learning of robotic skills, and states some relevant assumptions.

3.2 Preliminaries 19

3.2 Preliminaries

This section briefly describes Gaussian processes, a non-parametric model extensively used in
the robot learning community for its data-efficiency and probabilistic properties. A complete
review of Gaussian processes is outside the scope of this thesis, and a thorough presentation
of this model can be found in Rasmussen and Williams [65] or Murphy [37]. However, the
use of Gaussian process regression in a behavioral cloning setting is described in section 3.2.1.
In addition, the unsupervised learning method that will be used to learn the latent space from
a collection of expert demonstrations, so-called GP-LVM, is described in section 3.2.2.

3.2.1 Direct policy learning with Gaussian processes

Gaussian Processes (GPs) are non-parametric models that define probability distributions
over functions in which any finite collection of the function values are assumed to be jointly
Gaussian [65]. GPs are trained following a Bayesian approach by defining first a prior
distribution about the characteristics of the functions we seek to obtain and then obtaining a
distribution over functions to be consistent with the training data. GPs are common policy
representations in robot learning due to their computational tractability for both inference
and learning [66]. This section provides a brief overview of GP regression for modeling a
parameterized policy πθθθ that imitates the expert policy that generated the demonstration data
D.

First, let us define the matrices S = [s1 · · ·sN]
T ∈ RN×DS and A = [a1 · · ·aN]

T ∈ RN×DA

the state and action data respectively, where N is the number of training state-action pairs.
Our beliefs about the characteristics of the plausible policy functions f that can produce
our demonstrated actions can be represented by the GP prior f∼ GP(0,K(S,S′)), with zero
mean and kernel matrix K that is the one that allow us to encode these beliefs [67]. For
example, assuming that the sampled functions from this GP should be smooth, we can select
the Squared Exponential (SE) kernel1. Extended with Automatic Relevance Determination
(ARD) [65], each entry of this kernel matrix is given by

k(x,x′) = α
2 exp

(
−

D

∑
d=1

(xd− x′d)
2

2ld

)
(3.1)

where D denotes the dimension of the data points x and x′, and in which the amplitude α and
the lengthscales ld represent the policy parameters θθθ .

1also known as Radial Basis Function (RBF) kernel or Gaussian kernel.

3.2 Preliminaries 20

By observing some pairs of data points {(sn,an)}N
n=1, we can update our beliefs about

the distribution of policy functions. Assuming the likelihood is also Gaussian, that is
p(A|F,S)=∏

N
n=1N (an|fn,σ

2I), where σ2 represents the noise variance and F= [f1, ..., fN]
T,

the marginal likelihood

p(A|S;θθθ) =
∫

p(A|F,S)p(F|S;θθθ)dF, (3.2)

can be calculated analytically. In this way, the optimal set of policy parameters θθθ
∗ for the

GP can be obtained by maximization of (3.2):

θθθ
∗ = argmax

θθθ

p(A|S;θθθ). (3.3)

Following the derivation in [67], we can predict an action ai for a new state si from our
policy by:

ai ∼ πθθθ (ai|si) = p(ai | S,A,si;θθθ) =N (m(ai),cov(ai)) (3.4)

with

m(ai) =K(S,si)
T(K(S,S)+σ

2I)−1ā

cov(ai) =K(si,si)−K(S,si)
T(K(S,S)+σ

2I)−1K(S,si),

where K(S,si)
T ∈RDA×NDA has entries (K(si,s j))d,d′ for j = 1, . . . ,N and d,d′ = 1, . . . ,DA.

The policy parameters θθθ are the set of hyperparameterers of the kernel function k(x,x′) used
to compute K(S,S) and the variance σ2.

Modeling a parameterized policy πθθθ with GP and generating actions with GP regression
gives a direct mapping from states to actions. However, when two robots exhibit the same
behavior in the same task, each robot’s policy has to be modeled with a different GP and its
parameters learned in two independent processes. Thus, the knowledge acquiring during the
learning process of one robot cannot be easily exploitable and transferable to another. On the
other hand, in the following section we will see how we can learn a latent variable model
with GP for constructing an alternative space for the demonstrated behavior. This new model
will be used to model a robotic skill that can be exploited for transfer learning.

3.2 Preliminaries 21

3.2.2 Learning a latent space with GP-LVM

The Gaussian process latent variable model (GP-LVM) is a non-parametric probabilistic
model which performs a non-linear dimensionality reduction over observed data [68]. Let us
define Z ∈ RN×DZ as the latent matrix (with dimension DZ < min(DS ,DA)), K ∈ RN×N as
a kernel, and YYY ∈ {S,A} to represent either the state or action data. In GP-LVM, compared
to other latent variable models, the marginalization is carried out over the model parameters
instead of the latent variables, which are optimized. Specifically, the marginal likelihood for
Y given the latent coordinates Z is specified by:

p(Y|Z;θθθY) =
DY

∏
d=1
N (Y:,d|0,KY)

=
1√

(2π)NDY |KY |DY
exp
(
−1

2
tr(K−1

Y YYT)

)
where Y:,d denotes the d-th column of Y, DY the dimension of either the state or action
spaces, and θθθY the hyperparameters of the kernel KY . The maximization of this marginal
likelihood not only provides us the optimal hyperparameters, but also the optimal set of latent
points, that is,

{Z∗,θθθ ∗Y}= argmax
Z,θθθY

p(Y|Z;θθθY). (3.5)

The demonstrated behavior is composed for both state and action data. While GP-LVM
provides us the latent coordinates of either S or A, it does not account for both of them
simultaneously.

To conform with the previous requirement, we make use of a shared GP-LVM, an
extended version of the GP-LVM, that assumes that multiple observational spaces 2 share a
common latent space [18]. With J observational spaces, the marginal likelihood to maximize
is then given by

{Z∗,{θθθ ∗Y (j)}J
j=1}= argmax

Z,{θθθ
Y (j)}J

j=1

p({Y(j)}J
j=1|Z;{θθθY (j)}J

j=1), (3.6)

where the hyperparameters θθθ j of each kernel, and the latent coordinates Z are jointly
optimized.

2In this context, the term observational space refers to the statistical meaning, that is the space of those
variables that are directly observed and not inferred (the opposite of latent variables).

3.3 Shared latent spaces for transfer learning of robot skills 22

In order to preserve local distances and have a smooth mapping from one of the obser-
vational spaces to the latent space, back-constraints are introduced. With back-constraints
placed on one of the spaces [69], the objective function to maximize becomes

{θθθ ∗Z,{θθθ ∗Y (j)}J
j=1}= argmax

θθθ Z ,{θθθY (j)}J
j=1

p({Y(j)}J
j=1|θθθ Z;{θθθY (j)}J

j=1), (3.7)

with Z = g(Y(j);θθθ Z) where g is a function from one observational space Y(j) to the latent
space Z and parameterized by weights θθθ Z , which are learned during the optimization process.
Placing back-constraints either on S or A results in different performances and behaviors
which will be further described in section 3.4.2.

Once the model has been trained, given a new data point ŷ(j) in the space Y(j), predictions
in other spaces are realized by first projecting ŷ(j) to the latent space, and then projecting it to
the other spaces. For example, assuming that back-constraints are placed on the state space,
the state-to-latent mapping is performed using the learned parametric function g(ŝ;θθθ Z),
and then the latent-to-action mapping with the shared GP-LVM model. Alternatively, the
state-to-latent mapping might also be achieved by carrying out a GP regression once a
non-back-constrained shared GP-LVM model has been learned, as performed in [20].

3.3 Shared latent spaces for transfer learning of robot skills

3.3.1 Modeling a robotic skill as a shared latent space

Let us assume that the state-action trajectory τ = {s1,a1, . . . ,sT ,aT} generated by a robot
following a particular policy π in a time horizon T , can also be expressed as a set of state-
action pairs τ = {(s1,a1), . . . ,(sT ,aT)}, where (st ,at) is the state-action pair at time-step t.
Given a set of D trajectories, D = {τ1, . . . ,τD}, collected with a policy π for a particular task
T , we can learn a shared latent space Z ∈ RDZ . The space Z is called skill space, and a
variable z in this space is called skill variable. A skill variable generates a state-action pair,
thus a graphical model of this process is depicted in Figure 3.1a.

The skill variables are obtained by capturing the statistical dependence between the states
and actions generated by the policy π . And, as we can see in Figure 3.1a, the model assumes
that the joint distribution of state and action is factorized into independent conditional
distributions given the skill variable. Thus, this model encodes the behavior captured in the
demonstrations and allows to generate new state-action pairs similar to the demonstrations.

3.3 Shared latent spaces for transfer learning of robot skills 23

(a) (b)

Figure 3.1 Shared latent variable model representing a skill variable. (a) shows the generation process of both
state s and action a from a skill variable z. (b) includes a dashed line that represents the back-mapping from
state s to skill variable z.

In addition, it is also convenient to learn a back-mapping from states to skill variables
(Figure 3.1b) in order to obtain the skill variable that generated a particular state.

As mentioned in section 2.1.1, it is possible to infer the policy π that generated the set of
trajectories D, by formulating a regression problem, for example with (3.4), and learning
a direct state-to-action mapping (Figure 3.2a). In contrast, with the proposed skill model
(Figure 3.2b), a state is transformed to a skill variable which in turn generates the action. In
this sense, the policy is indirect because the action is inferred from the skill variable. That is,
the policy is reduced to a conditional distribution that uses only the skill variable.

(a) Direct policy
(b) Indirect Policy

Figure 3.2 Action generation through a skill variable. Instead of a direct policy (Fig. a) modeled with the
conditional probability π(a|s), an indirect policy π(a|s,z), with the skill variable z, is proposed (Fig. b). This
indirect policy is reduced to π(a|z) by conditional independence.

3.3.2 Exploiting robotic skill spaces for transfer learning

When the same skill has to be learned by multiple robots it is necessary to collect a set
of trajectories for each robot and then carry out the learning process separately. The state
representation of the task T can even be the same, but a different learning process is required
because each robot has specific characteristics that make the action space unique, and, as a
consequence, it is required a particular policy for each robot.

However, regardless of the particular actions that each robot takes, the state representation,
and the evolution it undertakes during the task execution, is similar across the robots. As a
result, one expects that some knowledge is common and therefore the learning process carried

3.3 Shared latent spaces for transfer learning of robot skills 24

out by one robot may be exploited when training the others. This section will describe how a
transfer learning process can be done by exploiting the skill space proposed in section 3.3.1.

The skill space is (nearly) invariant among different robots if two assumptions are
made. First, the state representation of the environment should be the same among the
robots. In other words, the variables considered in the decision process are the same for
all the robots: s(1) = s(2) = · · · = s(J); ∀ j ∈ {1, ...,J}, where j is the index of each robot.
Secondly, the influence of an action to the evolution of this state are both independent
of the robot executing the task T : p(st+1|st ,a

(1)
t) = p(st+1|st ,a

(2)
t) = · · ·= p(st+1|st ,a

(J)
t);

∀ j ∈ {1, ...,J}. As a result, given a horizon T , the state trajectories generated with each
robot’s policy, {s1,s2, . . . ,sT}, are also the same across the robots.

Therefore, considering the previous assumptions, it is possible to formulate the problem
of learning the same skill for task T among different robots as a transfer learning one, where
the state-latent map, therefore also the skill space, of one robot (source domain) can be used
to learn the latent representation for others (target domains). In other words, teaching a
skill with BC can be carried out by first learning the skill space with the demonstrations of
one robot, and then exploiting it for training other ones. By transferring this prior latent
knowledge from one robot to another, we expect to achieve a faster learning rate along with
good imitation performance. This transfer learning process is depicted in Figure 3.3.

Figure 3.3 Transfering the skill space of a robot. When the same skill for task T has to be learned by different
robots, the parameters θθθ S and θθθ Z for a robot i are fixed and only the parameters θθθ

(j)
A trained for a new robot j,

∀ j ̸= i.

3.3.3 Transfer learning of robotic skills with shared GP-LVMs

In this section, first the the skill space is modeled with the shared GP-LVM described in
section 3.2.2. Moreover, a model which is first fully trained on a specific robot, is transferred
to other robots with partial re-training, as shown in Figure 3.4.

First, let us denote N as the number of data points in our demonstration training set,
S = [s1 · · ·sN]

T ∈ RN×DS as the state data matrix, and A(j) = [a(j)
1 · · ·a

(j)
N]T ∈ RN×DA(j) ;

∀ j ∈ {1, ...,J} as the j-th robot action data matrix where J denotes the total number of robots
that are learning the same skill. Assuming back-constraints on the state, in order to preserve

3.3 Shared latent spaces for transfer learning of robot skills 25

Figure 3.4 Transfering a learned shared GP-LVM to other robots. First, a shared GP-LVM fully trained on
the action data of one robot A(1) jointly optimizes the hyperparameters θθθ S and θθθ A(1) , and either the latent
variables Z(1) or the back-constraints parameters θθθ Z . Later, this model is reused with the action data of a second
robot A(2). The transfer learning process is carried out by keeping fixed the hyperparameters θθθ S and the latent
coordinates (or the parameters θθθ Z in the case of back-constraints) and only optimizing the hyperparameters
θθθ A(2) for the new latent-to-action mapping. This process is repeated for any other robot that learns the same
skill.

local distances, the hyperparameters of the shared GP-LVM model on one particular robot,
and the parameters of the state-to-latent mapping, are jointly optimized by maximizing the
marginal likelihood:

{θθθ ∗Z,θθθ ∗S,θθθ ∗A(1)}= argmax
θθθ Z ,θθθ S,θθθ A(1)

p(S,A(1)|θθθ Z;θθθ S,θθθ A(1)). (3.8)

The parameters θθθ Z allow us to obtain the optimal latent variables for the skill by Z∗ = h(S;θθθ
∗
Z).

This pretrained model is then transferred to another robot by fixing the latent variables and
the state-to-latent mapping, and optimizing only the latent-to-action mapping. This process
is carried out for any other robot j ∈ {2, ...,J}, by optimizing:

θθθ
∗
A(j) = argmax

θθθ
A(j)

p(S,A(j)|Z∗;θθθ
∗
S,θθθ A(j)). (3.9)

As only the latent-to-action mapping is optimized, this naturally leads to a faster learning
process for the new robots. When all the hyperparameters {θθθ ∗A(i)}J

i=1 are obtained, it is
possible to build a shared GP-LVM in which all the other robots are appended to the initial
fully trained model (see Figure 3.5).

...

Figure 3.5 Shared GP-LVM among many robots learned with transfer learning. The model is built by following
the process depicted in Figure 3.4. After training, given a new state the model can generate the actions for all
the robots.

3.3 Shared latent spaces for transfer learning of robot skills 26

In order to obtain a sucessful transfer, the back-constraint imposed on the state was
motivated by four reasons. Firstly, the state-to-action mapping has to be smooth. While
a GP-LVM already provides a smooth mapping from the latent space to the observational
spaces, the converse is not true [69]. Thus, by ensuring a smooth mapping from the state to
the skill space with back-constraints, a final smooth state-latent-action is obtained. Secondly,
constraining the skill space (and thus the skill parameters) by any means would be beneficial
as it would (at the expense of an introduced bias) decrease the variance and thus make it
more robust to overfitting. Thirdly, when transfering the model to another robot, the state
data is fixed while the action data changes. Imposing back-constraints on the state makes
the model less dependent on the particular robot actions, and thus more stable and robust.
Finally, it is exploited the ability to jointly optimize the input-to-latent mapping along with
the model. The skill variables are hence indirectly optimized while being still dependent
on the back-constraint function. This is relevant as this mapping will be used later when
predicting the skill coordinates given new state data.

Exploiting the latent coordinates to transfer acquired knowledge to other robots is a
promising approach. It has the potential to lead to faster learning and similar reproduction
performance compared to their fully trained counter parts, as confirmed in the experiments
conducted in section 3.4.2.

Multi-robot systems with shared GP-LVMs

The previous approach allows transfer learning of the robot skill, but it can also be exploited
for other kind of models. A multi-robot model can be built if we consider that the state
space and all robot’s action spaces are generated by a common latent space (see Figure 3.6).
The optimization process has to make a trade-off between the latent coordinates and the
hyperparameters of each kernel for the state and all the robot actions. Thus, the solution is
defined by

{
θθθ
∗
Z,θθθ

∗
S,{θθθ ∗A(i)}J

1
}
= argmax

θθθ Z ,θθθ S,{θθθ A(i)
}J

1

p(S,{A(i)}J
1|θθθ Z;θθθ S,{θθθ A(i)}J

1). (3.10)

In contrast to the model presented in section 3.3.3, the latent coordinates and all the
hyperparameters of this multi-robot model should be jointly optimized, therefore no prior
information from previous robots may be exploited. As a result, if a new robot requires to
learn the same skill, the problem in (3.10) should include new hyperparameters θθθ A(i) for this
new robot and the new model trained with the new robot’s action data A(i).

3.4 Experiments 27

...

Figure 3.6 Multi-robot learning model. In this model the latent coordinates Z, the hyperparameters θθθ S and the
hyperparameters of each robot actions, {θθθ A(i)}J

1, are jointly optimized. The model is less biased to a specific
initial selected robot because it compromises among all the robots. However, if a new robot requires to learn
the same skill, the whole model should be retrained.

3.4 Experiments

This sections details the experiments conducted in order to validate the formulation proposed
in the previous section. The description of the experiments is presented in section 3.4.1 and
the obtained results are reported and analyzed in section 3.4.2.

3.4.1 Setup description

The proposed framework was evaluated in a teleoperation task, where three simulated robots
WALK-MAN [70], COMAN [71] and CENTAURO [72] were required to reproduce bimanual
movements of a human wearing a Xsens MVN BIOMECH suit. The state, with DS = 18, is
represented by the arms configuration (3 DoF for each shoulder, upper arm, and forearm),
and sensed by the motion capture system. On the other hand, all the three simulated robots
have 7 position-controlled revolute joints in each arm, thus DA(1) = DA(2) = DA(3) = 14.

Because all the three robots are simulated, most of the typical imitation learning interfaces
were not valid for collecting the required demonstrations data. However, by exploiting the
assumptions that the state evolution in the demonstrations is the same, and independent of
the robot action space, both state and action data were collected independently.

The acquisition of the action data began by defining a set of 16 key bimanual poses
for each robot, as depicted in Figure 3.7. Then, robot trajectories between these poses
were generated using a quintic Hermite interpolator with zero initial and final velocities and
accelerations. The robots movements were simultaneously executed in the simulation, and
the human mimicked the robots’ motion. To collect variability in the data, the human went
back and forth between different poses three times. During this process, the joint values of
the human and the desired joint commands of the robot were recorded at 40 Hz. The joint
trajectories collected for each robot represented their respective action data of the task, and
the data captured by the motion capture suit, the state data.

3.4 Experiments 28

(a) Robots’ Pose 1 (b) Robots’ Pose 2

(c) Robots’ Pose 3 (d) Robots’ Pose 4

(e) Robots’ Neutral Pose

Figure 3.7 Five of the sixteen robots’ poses defined for each robot. From left to right: WALK-MAN, COMAN
and CENTAURO.

Once the demonstrations data was collected, all the trajectories starting from the neutral
pose were grouped as training set, and the trajectories between different poses excluding the
neutral pose as test set. Finally, the trajectories categorized as training data were subsampled
with the objective of reducing the number of data points.

The collected dataset was used in the experiments to (i) corroborate the hypothesis that
the skill spaces can be exploited to transfer prior information, (ii) analyze the benefits of
applying back-constraints in a shared GP-LVM between state and action, (iii) compare the
multi-robot learning models described in section 3.3.3 with independent shared GP-LVMs
for each robot. These models were implemented, trained and tested by extending the GPy
framework [73].

Three shared GP-LVMs were modeled to analyze the benefits of back-constraints. The
first model did not have back-constraints and the second model presented back-constraints
from the robot joints, A(j), to the skill space, Z. In both, the mapping from human data S to Z
was carried out with a Gaussian process regression, once the shared model was learned. The
third model had back-constraints from S to Z so the corresponding mapping was performed
by the learned parametric function g(Ŝ;θθθ Z), represented by a SE kernel-based mapping.

The latent locations in the shared GP-LVM without back-constraints were initialized by
averaging the principal component analysis (PCA) solutions of S and A(j). This initializa-

3.4 Experiments 29

tion was not required in the models using back-constraints where the latent locations are
parameterized by θθθ Z .

The shared GP-LVM shown in Figure 3.5 was modeled by replacing the corresponding
joint angles of one robot by another, and training only the hyperparameters of the latent-
to-action mapping. On the other hand, the multi-robot model depicted in Figure 3.6 was
characterized by a multi-output structure containing all the joint angles of the three robots.

In all the shared GP-LVMs, the dimension of the shared latent space was set to DZ = 5,
a value that reduced the dimension of the skill space while still achieving a performance
similar to a GP regression representing a direct state-action mapping. The SE kernel function
with ARD was used, and the hyperparameters along with the latent positions (in the case
without back-constraints) were optimized with the L-BFGS-B algorithm.

3.4.2 Results

To corroborate the hypothesis that the skill space of the demonstration can be exploited
to transfer prior knowledge, the proposed model (described in section 3.3.3 and depicted
in Figure 3.4) was evaluated first without back-constraints. The results for each robot
are reported in Figure 3.8. The plots show the reconstruction errors on a test dataset
corresponding to the proposed shared GP-LVM for transfer learning, a model fully trained
on a single robot dataset (used as baseline), and the alternative multi-robot model shown in
Figure 3.6. Both the baseline and multi-robot models were averaged over 10 runs while the
proposed model was averaged over 10 runs for each run of the fully trained model, thus a
total of 100 runs.

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
S

E
(r
a
d

2
)

WALKMAN
fully trained
fully trained - 3 robots
pretrained on CENTAURO
pretrained on COMAN

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
S

E
(r
a
d

2
)

COMAN
fully trained
fully trained - 3 robots
pretrained on WALK-MAN
pretrained on CENTAURO

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
S

E
(r
a
d

2
)

CENTAURO
fully trained
fully trained - 3 robots
pretrained on WALK-MAN
pretrained on COMAN

Figure 3.8 Mean squared error of the pretrained and fully trained models with no back-constraints for the three
robots on the test dataset.

Figure 3.6 shows that the mean squared error (MSE) achieved by the baseline model
on one robot is similar to the performance of the proposed model pretrained on the same
robot. This observation is consistent with our expectation that the optimization of the latent-
to-action mapping of our pretrained models should not influence excessively the results,

3.4 Experiments 30

as the latent coordinates and input-to-latent mapping remain unchanged. While we indeed
observe faster convergence for the proposed shared GP-LVM, because of the smaller amount
of hyperparameters to optimize, a similar test error is not observed between the different
models. To address this issue, back-constraints were incorporated into the model.

The results obtained by using models with back-constraints for each robot are reported in
Figure 3.9. In contrast to the results shown in Figure 3.8, the obtained results are significantly
better, and are similar across the different models. Moreover, the pretrained models still
exhibit faster convergence compared to the fully trained ones.

10 30 50 70
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
(r
a
d

2
)

WALKMAN
fully trained
fully trained - 3 robots
pretrained on CENTAURO
pretrained on COMAN

10 30 50 70
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
(r
a
d

2
)

COMAN
fully trained
fully trained - 3 robots
pretrained on WALKMAN
pretrained on CENTAURO

10 30 50 70
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
S

E
(r
a
d

2
)

CENTAURO
fully trained
fully trained - 3 robots
pretrained on WALKMAN
pretrained on COMAN

Figure 3.9 Mean squared error of the pretrained and fully trained models with back-constraints set on the input
for the three robots on the test dataset.

To further confirm the benefits of using back-constraints, an additional test comparing
the fully trained model on each robot with back-constraints on the input, output, and without
back-constraints, is performed. The results depicted in Figure 3.10 validate the assumption
that back-constraints in general are beneficial compared to the non-back-constraints case.
More importantly, they show that imposing back-constraints on the state space results in the
best performance.

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

M
S

E
(r
a
d

2
)

WALKMAN
No BC
BC on Human
BC on Robot

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

M
S

E
(r
a
d

2
)

COMAN
No BC
BC on Human
BC on Robot

10 30 50 70
Iterations

0.00

0.05

0.10

0.15

0.20

M
S

E
(r
a
d

2
)

CENTAURO
No BC
BC on Human
BC on Robot

Figure 3.10 Mean squared error showing the performance without back-constraints (red), with back-constraints
placed on the input (blue) or on the output (green) for the three robots on the test dataset.

Having confirmed that placing back-constraints on the state space is beneficial for the
transfer to be successful, it is analyzed a particular case where the model trained on WALK-
MAN is then transferred to COMAN. The objective is to analyze the structure of the latent

3.5 Challenges 31

space and the predictions made by the proposed model given new human input data. The
learned shared latent space for the WALK-MAN robot with back-constraints on the input is
depicted in Figure 3.11. The represented poses are the same as those shown in Figure 3.7.
The lines represent the resulting latent trajectories for some of the human test data. While
these trajectories show clearly the forth and back movement, they are not smooth because of
the noisy human input data.

-0.5 0.0 0.5 1.0 1.5 2.0
Most Significant Dimension

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

S
ec

on
d

M
os

tS
ig

nfi
ca

nt
D

im
en

si
on

Trajectory 1-2
Trajectory 3-4
Training set
Pose 1
Pose 2
Pose 3
Pose 4

Figure 3.11 Trajectories in the learned skill space of a human and the WALK-MAN robot with back-constraints
on the state space. The circles represent four of the predefined key poses, while the crosses represent the skill
positions learned with the training data movements.

The predictions made by the model given the trajectories of the human arms when moving
back and forth between the pose 1 and 2 are reported in Figure 3.12. This corresponds to the
blue trajectory in the skill space shown in Figure 3.11. The pose 1 is depicted in Figure 3.7a
while the pose 2 is similar to the former one but with the shoulders rotated 180° in the sagittal
plane. The model was first fully trained on WALK-MAN, then transferred to COMAN
where the latent-to-output mapping was learned. It can be seen that the predicted robot joint
trajectories follow the desired pattern, are robust to a certain extent to noisy input data, and
can deal satisfactorily with the difference between the robot kinematic structures.

3.5 Challenges

It has been experimentally shown that modeling a skill space with a shared GP-LVM for
transfer learning is a promising approach. With the method described in this chapter,
transferring part of the model learned with one robot offers faster convergence rates for

3.5 Challenges 32

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)
Shoulder - X Shoulder - Y Shoulder - Z

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)

Elbow - X Elbow - Y Elbow - Z

0 2 4 6 8 10 12 14 16 18

Time (s)

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)

Wrist - X

0 2 4 6 8 10 12 14 16 18

Time (s)

Wrist - Y

0 2 4 6 8 10 12 14 16 18

Time (s)

Wrist - Z

Left armLeft arm Right arm

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)

Shoulder sagittal Shoulder frontal Shoulder transverse

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)

Elbow Forearm Wrist sagittal

0 2 4 6 8 10 12 14 16 18

Time (s)

-2.0

-1.0

0.0

1.0

2.0

A
ng

le
s

(r
ad

)

Wrist frontal

Desired left arm trajectory
Predicted left arm trajectory

Desired left arm trajectory
Predicted left arm trajectory
Desired right arm trajectory
Predicted right arm trajectory

Figure 3.12 COMAN joint trajectories generared for COMAN. Human left and right arm trajectories (left),
and corresponding predicted left and right robot arm trajectories (right). A shared GP-LVM is trained on
WALK-MAN with back-constraints set on the input, then transferred and partially trained on COMAN. The
robot trajectories are the movements performed by COMAN which result from this transfer learning. The
human trajectories are part of the test dataset, and the corresponding latent trajectories are depicted in blue in
Figure 3.11.

new models, without detriment of the final performance of the new policies. However, some
challenges need to be addressed to further exploit the potential of this work.

The first open issue concerns the latent space dimensionality, which is currently set by
the user. In the experiments, the latent dimension size is manually set motivated by the desire
to reduce as much as possible the dimensionality of the latent space while still achieving
good performances close to a GP regression. Choosing a specific dimensionality can be
cumbersome as it requires testing different latent dimensions to satisfy different criteria.
One possibility to overcome this limitation is to use variational Bayesian techniques to
automatically estimate the dimensionality of the skill space.

The experiments were performed with robots with similar kinematic structure, and with
equivalent action spaces, robots with significant differences in their actions should be further
investigated. However, in view of the obtained results, if the skill space is properly built the
proposed method should still lead to good results.

A strong assumption of the proposed approach is that the state representation and the
effect of different robot actions on it are the same. There are several tasks where the
state should include data that is robot-specific, as a result, the variables in the skill space
of one robot should also generate the states of a new robot. However, this shared latent
space may not be enough for explaining the differences among the robot-specific states. A
possible solution is to exploit more complex latent models, such as the Non-Consolidating-

3.6 Summary 33

Component-Analysis (NCCA) model [18]. With this model the common evolution among
the robot trajectories may be explained by the skill space, and the robot-specific behavior by
robot-specific latent spaces.

3.6 Summary

In this chapter we have seen how instead of exploiting demonstration trajectories for learning
directly a rational robotic policy, it is possible to assume that this particular skill can be
represented by a shared latent variable model, that explains both state and action data from
the demonstrations. A variable in the shared latent space of the model is the only one that
generates the action. Thus, by learning a mapping state-latent, it is possible to obtain a
state-latent-action policy. When the state representation of the environment and the influence
of an action to the evolution of this state are both independent of the robot executing the task,
the latent representation of one robot is used to learn the latent representation for others.

A shared GP-LVM was proposed for learning this latent space, so-called skill space, and
transferred from one robot to another. It was shown the importance of representing each skill
variable as a smooth mapping (back-constraint) from the state, in order to obtain a successful
transfer. The experiments were conducted in a teleoperation task, where three different robots
have all to mimic human movements. The results shown that the transfer learning process
allows faster convergence rates without detriment of the performance of the robot-specific
policies.

Chapter 4

CONCURRENT DISCOVERY OF
COMPOUND AND COMPOSABLE
POLICIES

Reinforcement learning (RL) is a general framework that allows an agent to autonomously
discover rational, that is optimal, behaviors by interacting with its environment. However,
when applied to robotics scenarios some specific challenges arise, such as high-dimensional
continuous state-action spaces, real-time requirements, delays and noise in sensing and
execution, and expensive (real-world) samples [5]. Recently, several authors have overcome
some of these challenges by using deep neural networks (NN) as parameterized policies for
generating rich behaviors in end-to-end frameworks [74, 75]. Nevertheless, learning the high
number of parameters of deep NN in complex tasks involves a large number of interactions
with the environment that compromises the real-world sample challenge.

Several algorithms have been proposed to improve sample efficiency of model-free deep
RL by making a better use of the sample information (data-efficiency), obtaining more
information from data (sample choice) and improving several times the policy with the same
samples (sample reuse) [17]. However, learning a complex robotic task may still be slow or
even infeasible when the robot learns from scratch. An appealing approach to deal with this
problem is to decompose the task into subtasks that are both simpler to learn and reusable for
new problems.

Many tasks in robotics may intuitively be divided into individual tasks, for example, the
task of moving an object to a specific location may be decomposed into reaching for the
object, grasping it, moving it to the target, and releasing it. Different rational policies can
be defined in these composable tasks, each one optimizing its criterion for selecting the

35

control actions. Therefore, when a robot is provided with a collection of these composable
policies, a new RL problem can be stated as learning how to combine them such that the
performance criterion of the complex task is optimized. Note that shifting the complexity
of this task learning problem to layers of simpler functionality is mainly studied in the field
of hierarchical RL. However, the assumptions of common hierarchical RL algorithms limit
their application in several robotic tasks.

Firstly, several hierarchical RL methods decompose the complex RL problem temporally,
meaning that during a certain period of time the behavior of the robot is delegated to a specific
subtask policy [76]. This temporal decomposition is suitable for robotic tasks that can be
divided sequentially, however, many others require the robot to perform individual tasks
concurrently (e.g. a manipulator carrying an object and avoiding an obstacle simultaneously).
Secondly, common learning methods optimize the individual policies and the compound
policy through independent single-task RL processes [77, 78, 79]. Therefore, the robot
has to continuously interact with the environment to learn, possibly from scratch, first a
collection of composable policies, and only after that, their composition, compromising
sample efficiency.

This chapter presents a two-level hierarchical RL approach alternative to a single-task RL
process for solving the complex task. First, a set of Gaussian policies, constituting the low
level of the hierarchy, are composed at the high level by means of state-dependent activation
vectors defined for each policy. These activation vectors allow to consider concurrently
actions sampled from all the low-level policies and preferences among specific components.
Furthermore, it is proposed in section 4.3 two alternatives for obtaining a compound Gaussian
policy as a function of the parameters of the low-level policies and their corresponding
activation vectors. Therefore, the behavior in the complex task is not generated directly by
actions sampled from a single policy trained in the task. Instead, the behavior is generated by
policies specialized in different aspects of the task.

Additionally, instead of learning the different components of the model in independent
processes, the algorithm detailed in section 4.4 exploits the off-policy data generated from
the compound policy for learning the high-level policy and indirectly the low-level policies
within the same process. This multi-task formulation is built on a maximum entropy RL
approach to favor exploration during the learning process. The results obtained from the
conducted experiments suggest that the experience collected with the compound policy
permits not only to solve the complex task but also to obtain useful composable policies that
successfully perform in their respective tasks.

4.1 Related work 36

4.1 Related work

Complex problems in RL usually involve either tasks that can be hierarchically organized
into subtasks, scenarios requiring concurrent execution of several tasks, and tasks with large
or continuous state-action spaces [80]. Hierarchical RL approaches split a complex task into
a set of simpler elementary tasks [81]. Some of these methods have been successfully applied
in robotics by exploiting temporal abstraction, where the decision to invoke a particular task
is not required at each time step but over different time periods [76, 82]. As a consequence,
these methods assume that a high-level policy, which selects the subtask, and low-level
policies, which select the action, are executed in different time scales. In contrast, the
approach proposed in this chapter considers that the decisions at both levels of the hierarchy
are executed at each time step.

The temporal abstraction assumption in most hierarchical RL methods also involves
that during a certain period of time the robot only performs a particular task. RL problems
requiring policies that solve several tasks at the same time are commonly stated as multiob-
jective or modular RL problems [83, 84]. The policies of all these subtasks may be combined
using weights describing the predictability of the environmental dynamics [85], or the values
obtained from the desirability function in a linearly-solvable control context [86]. Another
alternative is to combine action-value functions of composable tasks, and then extract a policy
from this combined function [79]. The latter paper is similar to this chapter’s approach since
the composable policies are also optimizing an entropy-augmented RL objective, however,
their combination is carried out at the level of action-value functions unlike the proposed
policy-based approach. Moreover, their composable policies have been previously learned in
independent processes, in comparison to the algorithm proposed here where both compound
and composable policies are improved in the same RL process.

Exploiting the experience collected using a particular policy (so-called behavior policy)
to concurrently improve several policies is a promising strategy that has been previously
explored in literature. The Horde architecture shows how independent RL agents with same
state-action spaces can be formulated for solving different problems [87]. This approach
proposed by Sutton et al. is relevant as it exploits its off-policy formulation for improving all
the policies in parallel.

Several works extended the Horde formulation and used deep NN for dealing with high
dimensional or continuous state-action spaces, and also to provide a modularity that can
be exploited for modeling and training independent RL problems [88, 89, 90, 91]. The
Intentional-Unintentional agent [88], for example, shows how deep NN policies and value

4.2 Preliminaries 37

functions can be learned even with an arbitrarily selected behavior policy. However, this
policy can also be chosen at each time step by following a hierarchical objective, where the
selection process can be improved as a function of the performance in the complex task [91].
Note that the policies in Cabi et al. [88] and Yang et al. [91] are deterministic, and then the
exploration should be carried out by adding a noise generated from an Ornstein-Uhlenbeck
process. In contrast, all the policies in this chapter are stochastic and the exploration is
generated directly from the behavior policy, that is the stochastic high-level policy.

Most of the notation and the approach proposed in this chapter are inspired by the
Scheduled Auxiliary Control (SAC-X) method [92]. SAC-X solves complex tasks based
on a collection of simpler individual tasks, and learns from scratch, both high- and low-
level policies simultaneously. However, this method considers temporal abstraction in the
hierarchy, and therefore the high-level policy is a scheduler that occasionally selects one
low-level policy. Therefore, the policies at the low level of the hierarchy can only be
executed sequentially and run at time scales different from that of the high-level policy. This
methodology differs from this chapter’s framework that executes low- and high-policies
concurrently.

4.2 Preliminaries

Recall from chapter 2 that the sequential decision making process of a robot could be modeled
by a Markov decision process (MDP)M, defined by the tuple (S,A, ps,r), where S ⊂ RDS

and A⊂ RDA are continuous state and action spaces of dimensionality DS and DA, respec-
tively. At each time step t, the robot selects an action at ∈A according to a policy π which is
a function of the current state of the environment st ∈ S . After this interaction, the state of the
environment changes to st+1 ∈ S with a probability density ps = p(st+1|st ,at), and the robot
receives a reward according to the function r : S ×A→ R. The robot’s goal is to maximize
the expected infinite-horizon discounted return G(τ) of the trajectory τ = {s0,a0,s1,a1, . . .},
induced by its policy π . That is to say J(π) = Eτ [G(τ)] = Eτ [∑

∞
t=0 γ t r(st ,at)].

4.2.1 Maximum entropy reinforcement learning

The exploration required for a robot to generate behaviors that produce high return can be
directly obtained by the stochastic policy π(at |st), where the randomness of the actions
at given the state st can be quantified by the entropy of the policy. Maximum entropy

reinforcement learning or entropy regularized RL [93, 94] is a formulation that augments the

4.2 Preliminaries 38

previous RL objective by including the entropy of the robot’s policy

J(π) = Eτ

[
∞

∑
t=0

γ
t
(

r(st ,at)+αH(π(·|st))
)]

,

whereH(π(·|st)) denotes the entropy of an action at with distribution π(at |st) and is com-
puted asH(π(·|st)) = Eat∼π [− logπ(·|st)]. The parameter α controls the stochasticity of the
optimal policy. Note that the conventional RL objective is recovered in the limit α → 0.

4.2.2 Soft Actor-Critic algorithm

Soft actor-critic (SAC) is an off-policy actor-critic deep RL algorithm that optimizes stochas-
tic policies defined in the maximum entropy framework [95, 96]. The algorithm is built on
a policy iteration formulation that alternates between policy evaluation and improvement
steps. In the former, a parameterized soft Q-function Qφφφ is updated to match the value of the
parameterized policy πθθθ according to the maximum entropy objective, while in the latter the
policy πθθθ is updated towards the exponential of the updated Qφφφ . Thus, the soft Q-function
parameters φφφ can be trained to minimize the soft Bellman residual

JQ(φφφ) = E(st ,at)∼D

[
1
2

(
Qφφφ (st ,at)−

(
r(st ,at)+ γ Est+1∼ps[Vφ̄φφ

(st+1)]
))2

]
where the value function V

φ̄φφ
is implicitly parameterized through a target soft Q-function via

V
φ̄φφ
(st) = Eat∼πθθθ

[Q
φ̄φφ
(st ,at)−α log(πθθθ (at |st))],

and whose parameters φ̄φφ are obtained as an exponentially moving average (Polyak average)
of the soft Q-function parameters φφφ .

Finally, in the policy improvement step, the policy parameters θθθ are updated by maximiz-
ing the maximum entropy objective

Jπ(θθθ) = Est∼D
[
Eat∼πθθθ

[
Qφφφ (st ,at)−α log(πθθθ (at |st))

]]
.

4.3 Composition of modular Gaussian policies 39

4.3 Composition of modular Gaussian policies

Acquiring autonomously a robotic skill for a specific task can be achieved by directly
optimizing the maximum entropy RL objective with the experience collected from the task
execution. Nevertheless, when a new task defined in the same state and action spaces has
to be learned, the robot should interact again with the environment to obtain useful data for
improving a new policy for this new task. As a consequence, learning sequentially single-task
problems may require an excessive number of interactions in order to learn the parameters
of the corresponding policies. Sample efficiency is a key concern in robotics, therefore in
this section it is proposed a two-level hierarchical model that seeks to construct a set of
simpler and reusable policies in the low level of the hierarchy, and a high-level policy that
combines them for solving a more complex task. Thus, the behavior in the complex task is
not generated directly by a single policy, instead, it is the result of a composition of several
policies specialized in different aspects of the task. Moreover, section 4.4 introduces an
algorithm for exploiting better the interaction data and learning both low- and high-level
policies all together. This multi-task formulation uses the off-policy generated by the high-
level policy in order to learn concurrently the low-level policies via their corresponding
maximum entropy objectives.

4.3.1 Hierarchical model for composing modular policies

First, let us assume that several complex tasks can be decomposed into a set of K composable

tasks T = {T [k]}K
1 . All of them have the same state space, action space and transition

dynamics, however, each one is characterized by a specific reward function r[k](st ,at). Thus,
the corresponding MDP for each composable task T [k] is (S,A, ps,r[k]). Second, let us
assume that stochastic policies defined in these MDPs, called composable policies, are
conditional Gaussian distributions π [k](a|s) =N (m[k],C[k]), with mean vector m[k] ∈ A and
diagonal covariance matrix C[k] = diag[σ2

1 ,σ
2
2 , . . . ,σ

2
DA

].
Let us also define a (possibly more complex) compound taskM, described by the combi-

nation of the tasks in T . As with the composable tasks,M also shares the same state space,
action space and transition dynamics, but it is characterized by the reward rM(st ,at). Finally,
a stochastic policy defined in the corresponding MDP (S,A, ps,rM) is named compound

policy πM. This policy reuses the set of composable policies Π = {π [k]}K
1 defined in T , by

using the setW = {w[k]}K
1 where w[k] ∈ RDA is an activation vector whose components are

used to combine each DoF of the action vector. Therefore, a stochastic compound policy
πM(a|s) is modeled as a two-level hierarchical policy. The generation process of an action

4.3 Composition of modular Gaussian policies 40

a involves first obtaining the actions from Π in the low level of the hierarchy, and then
combining them at the high level of the hierarchy to obtain πM(a|s) = f(W,Π).

There exist several ways to formulate f, we here exploit the assumptions made for the
composable policies and propose two alternatives for obtaining a policy πM(a|s) that is also
conditional Gaussian and defined in terms of the means m[k] and covariances matrices C[k] of
the composable policies. The first option is to consider that the action of the compound policy
is the convex combination of elements of actions sampled from the composable policies. As
the actions for each composable policy are conditionally independent given the states, and
each π [k](a|s) is conditional Gaussian, the resulting action is also normally distributed, and
therefore the compound policy πM(a|s) =N (m,diag(c)), where the components in m and
c are computed as

ci =
K

∑
k=1

(
w[k]

i σ
[k]
i

)2
,

mi =
K

∑
k=1

w[k]
i m[k]

i , (4.1)

for all 1≤ i≤DA, with w[k]
i , m[k]

i , σ
[k]
i as the corresponding elements of the activation vector,

mean vector, and standard deviation vector for the composable policy π [k].
The second alternative for modeling f is to consider that each component i in the resulting

action vector is obtained from a product of conditional Gaussians

π
M(ai|s) ∝

K

∏
k=1

(π [k](ai|s))w[k]
i .

As a result, the compound policy is also πM(a|s) =N (m,diag(c)) where the components
in m and c are computed as

ci =

(
K

∑
k=1

w[k]
i /(σ

[k]
i)2

)−1

,

mi = ci

(
K

∑
k=1

(
w[k]

i /(σ
[k]
i)2

)
m[k]

i

)
, (4.2)

for all 1≤ i≤ DA, with w[k]
i , m[k]

i , σ
[k]
i defined as in the first case.

4.3 Composition of modular Gaussian policies 41

4.3.2 Hierarchical policy and Q-functions modeling

The composable tasks in T are formulated as independent RL problems, and thus the
corresponding policies are also independent. In this line, the mean m[k] and covariance matrix
C[k] 1 that describe a composable Gaussian policy can be obtained from an independent NN.
Nevertheless, we can exploit the assumption that all the tasks in T share the same state space,
and therefore use layers shared across all the policies for obtaining features that can be used
in all the policies. The parameters of the resulting NN policy are denoted by θθθ

T , and include
both the parameters of each NN policy and the shared layers.

Moreover, the function h required for obtaining the state-dependent activation vectors
{w[k]}K

1 = h(s), can also be modeled by an NN with parameters θθθ
w. These are included in

the previously described NN and thus also exploit the features obtained in the shared layers.
Therefore, the whole hierarchical policy, depicted in Figure 4.1a, is parameterized by an NN
with parameters θθθ = [θθθT

θθθ
w].

In the same way, an NN with an architecture similar to the hierarchical policy can
be used to model the Q-functions of both the composable policies and compound policy.
Therefore, the resulting NN, denoted by Qφφφ and depicted in Figure 4.1b, has parameters
φφφ = [φφφT

φφφ
M].

(a) Hierarchical policy (b) Q-value function

Figure 4.1 Policy and Q-value function neural networks. (a) the first layer is shared among all the modules, the
modules for the composable policies are shown in blue and the module that outputs the activation weights is
depicted in purple. The outputs of all these modules are then composed in f by using one of the alternatives
described in section 4.3.1. (b) the first layer is also shared among all the modules, and then each module outputs
the corresponding approximated Q-value.

1More specifically a vector of log standard deviations.

4.4 Simultaneous learning and composition of modular maximum entropy policies 42

4.4 Simultaneous learning and composition of modular max-
imum entropy policies

Most methods learn the composable tasks one at a time, and later, the compound task. This
procedure is not scalable as all the experience collected during each learning process is
only used for that specific process. Also, it is not possible to start learning more complex
tasks unless all the composable policies have been successfully learned. This problem is
the result of single-task RL formulations where each policy is directly reinforced with its
corresponding reward signal. The method proposed in this section is based on the idea that
a single stream of experience can be used to improve not only the policy that is generating
the behavior but also, indirectly, many other policies. Similar to [88] and [92], the proposed
method assumes that the robot receives, at each time step, the rewards for different tasks,
and each reward has an assigned policy that tries to maximize its corresponding return G

by using the same collection of state-action pairs. Therefore, the motor skills defined by
the different composable policies are obtained indirectly from a multi-task formulation and
off-policy interaction data collected with the compound policy.

4.4.1 Off-Policy multi-task policy search

The sets of composable policies Π and activation vectorsW required for a compound policy
πM to solve taskM, can be learned simultaneously. To do so, let us assume that, at each
time step, the robot receives a stream of rewards rt = [r[1]t . . . r[K]

t rMt]T, that is, a vector
whose components are the reward rMt of the compound taskM and the reward r[k]t of each
composable task in T . Moreover, the method considers that the behavior or intentional

policy, i.e. the policy followed by the robot to interact with the environment, is always
the compound policy πM. The experience at each time step (st ,at ,rt ,st+1) is collected in
the dataset D, and subsequently used for improving compound and composable policies.
As a result, the data in D is off-policy experience for the composable policies because it
is generated from a different policy [26]. Thereby, the composable policies (from now on
unintentional policies [88]) are target policies in the off-policy setting.

Thus, by considering the policy πθθθ (see section 4.3.2) parameterized by θθθ = [θθθT
θθθ

w],
the optimal parameters θθθ

∗ are those that optimize the objective

Jπ(θθθ) = Jπ(θθθ
w;M)+

K

∑
k=1

Jπ(θθθ
T ;T [k]), (4.3)

4.4 Simultaneous learning and composition of modular maximum entropy policies 43

where Jπ(θθθ
T ;T [k]) denotes the performance criterion of the composable policy π

[k]
θθθ

in task
T [k], and Jπ(θθθ

w;M) the performance criterion of the compound policy πM
θθθ

in taskM.

4.4.2 Multi-task Soft Actor-Critic

As mentioned in section 4.2.1, the maximum entropy objective incentives exploration, which
is critical for the introduced method as the composable policies are learned unintentionally
and their influence in the sampling process is indirect. Thus, each policy seeks to optimize
the maximum entropy objective

J(π [j]) =
∞

∑
t=0

E
π [j]

[
γ

t
(

r[j](st ,at)+αH(π [j](·|st))
)]

(4.4)

where r[j] is the reward function of the corresponding task j ∈ (T ∪{M}).
Considering the SAC algorithm described in section 4.2.2, the learning process for all the

aforementioned policies is an alternating procedure of policy evaluation, where the value
function is computed for all the policies, and policy update, where the policies are improved
with their corresponding value functions. Therefore, at each time step, the parameterized
Q-function Qφφφ optimizes the soft mean-squared bellman error of all the policies

JQ(φφφ) = E(st ,at)∼D

[
1
2 ∑

j

(
Q[j]

φφφ
(st ,at)−

(
r[j](st ,at)+ γ Est+1∼ps[V

[j]
φ̄φφ
(st+1)]

))2
]

(4.5)

for all the tasks j ∈ (T ∪{M}), where the value function V [j]
φ̄φφ

is implicitly parameterized
through a target soft Q-function with parameters φ̄φφ via

V [j]
φ̄φφ
(st) = E

at∼π
[j]
θθθ

[Q[j]
φ̄φφ
(st ,at)−α log(π [j]

θθθ
(at |st))].

On the other hand, the components of (4.3) for the policy improvement step of the
parameterized policy πθθθ are defined as

Jπ(θθθ
T ;T [k]) = Est∼D

[
E

at∼π
[k]
θθθ

[
Q[k]

φφφ
(st ,at)−α log(π [k]

θθθ
(at |st))

]]
(4.6)

for each composable task T [k] in T , and

Jπ(θθθ
w;M) = Est∼D

[
Eat∼πM

θθθ

[
QM

φφφ (st ,at)−α log(πM
θθθ

(at |st))
]]

(4.7)

4.5 Experiments 44

Algorithm 1 HIU-SAC

1: Initialize target network weights: φ̄φφ i← φφφ i for i ∈ {1,2}
2: Initialize an empty replay memory D← /0
3: for each iteration do
4: for each interaction step do
5: Sample compound action at ∼ πθθθ (at |st)
6: Sample transition from the environment: st+1 ∼ ps(st+1|st ,at)
7: Store the interaction data in the replay memory: D←D∪{(st ,at ,rt ,st+1)}
8: end for
9: for each gradient step do

10: Update Q-networks parameters: φφφ i← λQ∇̂JQ(φφφ i) for i ∈ {1,2}
11: Update composable policies parameters: θθθ

T ← λπ∇̂Jπ(θθθ
T ;T)

12: Update compound policy parameters: θθθ
M← λπ∇̂Jπ(θθθ

M;M)
13: Update temperature parameters: α [j]← λα∇̂Jα(α

[j]) for j ∈ (T ∪{M})
14: Update target Q-networks weights: φ̄φφ i← ρφφφ i +(1−ρ)φ̄φφ i for i ∈ {1,2}
15: end for
16: end for

for the composable taskM. Note that the parameters θθθ
w required for modeling the activation

vectors inW are the only ones updated in the compound policy because, as discussed in [92],
there is no guarantee to preserve the unintentional policies. As a consequence, the proposed
algorithm improves the parameterized hierarchical policy πθθθ in a two-step process with
random minibatches from D. First, by optimizing θθθ

T with (4.6) for all the composable tasks.
And second, by fixing θθθ

T and optimizing θθθ
M through (4.7).

As suggested in [97], the practical algorithm includes two soft Q-function NNs with
parameters φφφ i trained independently to optimize (4.5). Furthermore, the algorithm includes a
step to calculate α automatically by optimizing

J(α [j]) = Eat∼π [j]

[
−α log(π [j]

θθθ
(at |st))+αH̄[j]

]
for j ∈ (T ∪{M}). Therefore, the whole training process for both composable and com-
pound policies with HIU is summarized in Algorithm 1.

4.5 Experiments

In order to analyze the proposed approach, several experiments were conducted in four
robotic tasks that can be intuitively decomposed into simpler tasks. The goal of these
experiments is to evaluate if the proposed approach 1) solves an RL problem with a policy

4.5 Experiments 45

that reuses a set of composable policies, and at the same time, 2) obtains composable policies
with performance similar to dedicated single-task policies.

4.5.1 Tasks description

In the first environment, shown in Figure 4.2a, the agent is a 2D point particle that has
to reach the position (−2,−2). The state of this environment is continuous and defined
by the position (x,y) of the particle, and the control actions are its velocities (ẋ, ẏ), then
DS = DA = 2. The initial position of the particle is sampled from a spherical Gaussian
distribution centered in the position (4,4). This task can be naturally decomposed into two
composable tasks, namely, reaching the position −2 in the x coordinate, and reaching the
position −2 in the y coordinate. Therefore, the compound policy to reach (−2,−2) has to
combine the corresponding composable policies.

The second and third environments correspond to a 3-DoF planar manipulator simulated
in Pybullet [98], and whose control actions are joint torques, then DA = 3. The second
environment, shown in Figure 4.2b, requires the robot to reach a random goal pose and is
described by a state composed of the joint positions and velocities of the robot, and the
relative position of the robot end-effector w.r.t the goal, then, DS = 8. The third environment,
displayed in Figure 4.2c, requires the manipulator to reach a cylinder and push it to a target
location. In addition to the joint positions and velocities, the state also includes the positions
of the end-effector, the cylinder and the goal, then DS = 12.

Finally, the proposed approach is also tested in a more complex task, where a simulated
CENTAURO robot [72] has to reach a target 3D pose while balancing an object with a tray,
as depicted in Figure 4.2d. The tray is firmly attached to the robot hand but not the cylinder.
The control actions are the task joint torques of the right arm, then DA = 7. Note that if a
zero-torque control action was applied to the joints, the object would fall by its weight. The
state in this scenario is composed of the arm joint positions and velocities, pose errors and
rate of change of the errors between the target pose and the center of the tray, and between
the desired pose of the cylinder in the tray and its current pose, then DS = 38.

4.5.2 Robot learning details

The NN models proposed in section 4.3.2 are used for learning the four tasks above described.
The same architecture is used in all the experiments, namely, NNs with ReLU nonlinearities
in the hidden nodes and none in the outputs. However, the number of nodes depends on the
task, as summarized in Table 4.1.

4.5 Experiments 46

(a) (b)

(c) (d)

Figure 4.2 Experimental scenarios: (a) 2D particle that reaches a fixed goal position. (b) 3-DoF planar
manipulator reaching a random 2D goal position (green circle). (c) 3-DoF planar manipulator that should push
the randomly-placed yellow cylinder to a varying 2D goal position (green circle). (d) CENTAURO robot that
simultaneously balances a tray with a cylinder and moves to a random 3D goal pose.

The tasks are learned with the algorithm proposed in section 4.4 and the following
hyperparameters: Adam optimizer with learning rates λQ = λπ = λα = 3 · 10−4, target
smoothing coefficient ρ = 5 · 10−3, and discount factor γ = 0.99. The NNs are trained
using stochastic gradient descent with batches sampled from D after an interaction with
the environment. The entropy target H̄[j] is the same for both composable and compound
policies, however its value varies for each task. These values and the replay buffer size D for
each environment are also shown in Table 4.1.

The two composition strategies described in section 4.3 are denoted with HIUSAC. The
alternative that considers (4.1) is denoted by HIUSAC-1, while the solution using (4.2) is
denoted by HIUSAC-2. For comparison purposes, the SAC algorithm was used to learn both
compound and composable policies in a single-task RL formulation.

4.5 Experiments 47

2D particle 3DoF-reacher 3DoF-pusher Centauro-tray

Units per layer 64 128 128 256

Training steps 1.5·104 1.5·105 1.5·105 1.5·106

Size D 5·106 5·106 5·106 1·107

Size Minibatch 64 256 256 256

H̄ 0 1 1 1

Table 4.1 Environment-specific hyperparameters

4.5.3 Results

Figure 4.3 shows the learning curves of the composable policies obtained with both HIUSAC-
1 and HIUSAC-2 for the 2D particle environment. The achieved performance is similar to
that obtained directly in the compound task with the SAC algorithm. The approximated soft
Q-values for the velocities (actions) given some specific positions of the particle (state) are
depicted in Figure 4.4. Notice how the actions and soft Q-values vary as a function of the
position, capturing the specifications of their respective tasks. This is a remarkable result as
the composable policies were learned unintentionally with off-policy experience collected
only with the compound policy.

0 10 20 30 40 50 60 70 80 90 100
Episodes

A
ve

ra
ge

 R
et

ur
n

Compound Task

0 10 20 30 40 50 60 70 80 90 100
Episodes

Composable Task 1

0 10 20 30 40 50 60 70 80 90 100
Episodes

Composable Task 2

SAC HIUSAC-1 HIUSAC-2

Figure 4.3 Learning process for the navigation task of a 2D point particle: SAC denotes the compound and
composable policies obtained with the SAC algorithm in single-task formulations. The policies obtained with
the algorithm proposed in section 4.3 are denoted by HIUSAC-1 and HIUSAC-2, with the former considering
(4.1) and the latter using (4.2). The learning curves show that both the compound and composable policies can
successfully perform their respective tasks using the proposed hierarchical model, while being competitive with
the single-task formulations.

The learning curves of the other three environments are displayed in Figure 4.5. As noted
previously, the tasks with the planar manipulator are more complex than the navigation of
the 2D particle because the action space, i.e. joint torques, influence directly in the task
of reaching the x position and the task of reaching the y position. Therefore, it is more

4.5 Experiments 48

Figure 4.4 Soft Q-values obtained in the navigation task of a 2D point particle: The soft Q-values of the
compound and composable policies are depicted as contour plots and show the values for the actions in five
different positions. Blue points denote some actions sampled from these policies, and they seek to move the
point particle to their respective target.

difficult to assign proper activation vectors for the respective composable policies. However,
both HIUSAC-1 and HIUSAC-2 obtained successful composable and compound policies,
all of them with a performance similar to the policies obtained with the SAC algorithm in
single-task RL formulations. However, as we can notice in the composable task 2 for the
reaching environment (Figure 4.5a), both alternatives require more iterations to converge.

Finally, the results obtained for the task carried out by the CENTAURO robot are reported
in Figure 4.5c. In this case, the composable policy converges faster and results in higher
average returns when compared to the policy obtained in the single-task formulation. This
results demonstrate how the complexity of one task can be solved with a collection of simpler
subtasks by exploiting a hierarchical off-policy formulation. An interesting result is that
the performance of the composable policies for task 2 exceeds that of their single-task
counterparts. A possible explanation for this is that the compound policy explores better the
environment and therefore the collected experience contains more meaningful information
than the one obtained in the single-task RL formulations. Between HIUSAC-1 and HIUSAC-
2, the latter converges faster and results in higher average returns in the compound task and
also the composable ones.

4.6 Challenges 49

0 50 100 150 200

Episodes

A
ve

ra
ge

 R
et

ur
n

Compound Task

0 50 100 150 200

Episodes

Composable Task 1

0 50 100 150 200

Episodes

Composable Task 2

SAC HIUSAC-1 HIUSAC-2

(a) Reaching Environment

0 50 100 150 200

Episodes

A
ve

ra
ge

 R
et

ur
n

Compound Task

0 50 100 150 200

Episodes

Composable Task 1

0 50 100 150 200

Episodes

Composable Task 2

SAC HIUSAC-1 HIUSAC-2

(b) Pushing Environment

0 50 100 150 200 250 300

Episodes

A
ve

ra
ge

 R
et

ur
n

Compound Task

0 50 100 150 200 250 300

Episodes

Composable Task 1

0 50 100 150 200 250 300

Episodes

Composable Task 2

SAC HIUSAC-1 HIUSAC-2

(c) CENTAURO Environment

Figure 4.5 Learning curves for the compound task and the composable tasks for the reaching, pushing and
CENTAURO tasks. The figures show the average return for the proposed approach with the two composition
strategies described in section 4.3. The method that considers (4.1) is denoted by HIUSAC-1. On the other
hand, the method that considers (4.2) is denoted by HIUSAC-2. The resulting policies obtained with both
alternatives are compared with the ones obtained from single-task RL formulations with the SAC algorithm.

4.6 Challenges

In order to obtain useful data for all the composable policies, the algorithm proposed in
this chapter was built on a maximum entropy RL framework to favor exploration during
the learning process. Choosing the temperature parameters for the maximum entropy RL
objective is challenging for the compound policy because its stochasticity is determined
by the activation vectors and the stochasticity of all the composable policies. As a result,
high temperature values favors higher entropy policies and the compound policy will show
preference for composable policies with high stochasticity. However, this preference is
made to the detriment of preferring policies with good performance but low entropy. The
automatic entropy adjustment strategy proposed in [97] addresses this problem, however,

4.7 Summary 50

in this case, the problem is to choose the minimum expected entropy for both composable
and compound policies. This value was easier to set for the simple environments of the
experiments, but more challenging for the complex ones. Therefore, future work could
be focused in developing a mechanism that obtains this value automatically based on the
performance of both compound and composable policies.

On the other hand, in this chapter, the action value functions of the composable policies
are only used in the policy evaluation step of these policies. However, these models capture
the performance of the policies in their respective tasks, and therefore they are important
sources of information that could be considered by the compound policy.

Finally, an important motivation for task decomposition is reusing the composable poli-
cies in new tasks. Future work will analyze the behavior of the composable policies when
they are reused in different compound tasks. It is important to know how the performance
of new compound policies is affected by composable policies obtained in different contexts.
Moreover, the experiments conducted in this chapter were focused in tasks that are decom-
posed in two subtasks. Future work will consider tasks that could be decomposed in more
than two subtasks and tasks where the components of the action vector can be assigned
completely to specific tasks, e.g. bimanual tasks.

4.7 Summary

This chapter detailed a hierarchical RL approach for tasks that can be decomposed into a
collection of subtasks that require to be performed concurrently. The Gaussian policies
corresponding to these subtasks are combined using a set of activation vectors. These
activation vectors permit to consider concurrently actions sampled from all the low-level
policies and preferences among specific components. Furthermore, two methods were
proposed to obtain a compound policy that is also Gaussian and a function of the means and
covariances matrices of the composable policies.

Moreover, the chapter described an algorithm for learning both compound and compos-
able policies within the same learning process by exploiting the off-policy data generated from
the compound policy. Note that populating the replay memory buffer with rich experiences
is essential for acquiring multiple skills in an off-policy manner. The composable policies
learned unintentionally had similar performance than the policies obtained in single-task
formulations only when the compound policy was able to efficiently explore the environment.
For this reason, the algorithm was built on a maximum entropy RL framework to favor
exploration during the learning process.

Chapter 5

EXPLOITING GOOD AND BAD
EXPERIENCES IN POLICY
LEARNING

As with any other RL agent, the experiences that a robot obtains while learning a task are
not always good or successful. Thus, the resulting undesired behavior is irrational with
respect to the performance measure that defines the objective of the task. As a consequence,
most of the robot learning formulations will increase the probability of occurrence of high
return trajectories and give only low probability to the failures by updating the robot’s policy
[10, 42]. However, reducing the likelihood of actions that induce the undesirable rollouts
does not necessarily prevent their repetition. For example, an aggressive exploration, a
flawed definition of the robot/environment state, the existence of limited useful data or the
stochasticity of the environment may lead the robot to fail again and therefore generate bad
or undesirable rollouts.

Furthermore, complex nonlinear models, such as deep neural networks (NN), allow the
representation of policies that induce complex behaviors and permit to work directly with
sensory input data [74, 75, 99]. Nonetheless, the prohibitively amount of data required
when learning these models has been significantly reduced with guided policy search (GPS)
algorithms. GPS methods are data-efficient because they transform the policy search problem
into supervised learning, where the training data is generated by a computational teacher that
produces data that is best suited for training the final policy.

Failures can be even more critical in GPS, because the guiding policies seek to optimize
an expected surrogate return which includes not only the task-related reward, but also a term
that encourages the guiding policies to resemble the complex global policy. The latter term

5.1 Related Work 52

may lead the guiding policies to produce undesired events that generate a sudden decrement
in the reward values, which we necessarily want to avoid in the following iterations. Our
desire to avoid these failures can, to a certain extent, be captured by a well-designed reward
function. However, as in the case of mirror descent guided policy search (MDGPS) [100], the
change of the guiding policies is limited by a Kullback-Leibler (KL) divergence constraint,
and therefore samples generated by these updated policies may produce the same undesired
failures of previous iterations. Additionally, the supervision step in GPS uses all the trajectory
samples that were generated by the guiding policies, therefore fitting the global policy to
trajectories that, in fact, we are trying to avoid. Consequently, next guiding policies will be
constrained to be similar to a global policy that was trained with flawed samples.

This chapter proposes an alternative approach for reducing the occurrence of failures
during the learning process by modeling the undesirable behavior and making it explicitly
influence the robot’s policy. More specifically, the interactions that result in failures, and that
are usually overlooked for the robot’s policy, are explicitly considered by modeling policies,
so-called bad policies, that can reproduce them. Similarly, good policies are constructed from
only successful executions, and along the bad policies, influence the skill acquisition process
as dualist constraints. Thus, the robot’s policy is not directly updated from the performance
of the resulted behavior. Instead, it is additionally updated according to its similarity with
the good policies, that induce successful executions, and dissimilarity with the bad policies,
that induce failures. In addition, neither performance measure and good-bad policies are
considered directly by the policy, which is modeled with a NN. Instead, it is proposed an
extension of GPS that considers trajectories optimized with the dualist constraints. The
conducted experiments suggest that NN policies guided by trajectory distributions optimized
with this method reduce the failures during the policy exploration phase, and therefore
encourage safer interactions.

5.1 Related Work

The possibility to use robust algorithms and simple local policies with few parameters has
made GPS a popular framework to learn complex policies. Simple local policies are employed
as computational teachers that generate guiding distributions for a nonlinear global policy.
Such simple policies are usually trajectory-centric representations such as splines, dynamic
movement primitives [101] and time-varying linear-Gaussian (TVLG) controllers. The latter
are popular in stochastic optimal control and various trajectory optimization methods, such as
the iterative linear quadratic Gaussian (iLQG) algorithm [102, 103]. Typically the algorithms

5.1 Related Work 53

used to optimize TVLG controllers assume a known (or iteratively learned) dynamics model
[23, 104]. In this chapter, TVLG controllers are employed to represent the simple policies
but also the trajectory distributions constructed from both successful and failed executions.

No GPS algorithm exploits the existence of poorly performing samples. For example, in
PI-GPS [105] the samples with high cost-to-go (low return) values are practically ignored
if better samples are obtained in the same iteration because of the assigned low-probability
scores. As a consequence, the high-cost (low-reward) samples are barely considered in
subsequent policy updates. Note that giving this treatment to failed executions may generate
policy updates that still lead to failures in the next few iterations. Nevertheless, learning
from failures is a promising approach to discover successful and safer ways to accomplish
tasks. For example, if a dataset of negative/undesired samples is explicitly considered, it is
possible to exclude regions in the parameter space that lead to failures by favoring regions
that conduce to successful executions [106, 107].

Notice that in inverse reinforcement learning (IRL), considering negative state-action
trajectories generates more accurate reward functions than methods relying on positive
trajectories exclusively. Shiarlis et al. [108], for example, included negative demonstrations
into the optimization of a maximum-causal-entropy IRL method. In such a way, the method
obtained, in less iterations, linear rewards functions that generalized better even when the
successful and failed demonstrations were contrasting, overlapping, or complementary.
Similarly, Choi et al. [109] proposed to use a Gaussian process to represent a non-linear
reward function whose kernel moved the prediction close to positive samples and away from
negative ones. Beyond the fact that the approach detailed in this chapter addresses a policy
search problem, the main difference of this approach with respect to the aforementioned
techniques is that the agent does not have access to previous datasets of positive and negative
trajectories. Instead, both types of trajectories are obtained during its interaction with the
environment and latter classified as good or bad samples based on their return.

The method proposed in this chapter is inspired by the dual relative entropy policy
search (DREPS) [24] algorithm, a generalization of REPS [110] that takes into account
both good and bad samples when computing a policy. In DREPS, a closed form update
of the parameters is obtained from the Lagrangian of an optimization problem that bounds
the KL divergence between the new policy and precomputed low- and high-performance
clusters of parameters. In this chapter the robot policy is represented by neural networks,
models with high dimensional parameter spaces where constructing the clusters is difficult
and applying REPS unfeasible. Instead, the good and bad samples are used to construct
trajectory distributions which are latter considered as constraints for simple low-dimensional

5.2 Preliminaries 54

policies. In consequence, there are several differences with DREPS, the most important one
is that the good and bad interactions are considered indirectly by the robot policy, because
the guiding policies are the only ones that take them into account. Second, the algorithm
in this chapter is formulated in a step-based policy search setting, which means that the
method has notion of state-space and sequential decisions. Finally, the proposed algorithm is
formulated on a model-based RL setting, where a (local) dynamics model has to be learned
before carrying out the policy optimization step.

5.2 Preliminaries

A robot behavior is generated by a parametrized stochastic policy πθθθ (a|s), a conditional
distribution over action a given the state s. In this chapter, episodic tasks are considered,
as a consequence, the policy and the transition dynamics p(st+1|st ,at) induce a trajectory
τ = {s1,a1, . . . ,sT ,aT} with probability

πθθθ (τ) = p(s1)
T

∏
t=1

πθθθ (at |st)p(st+1|st ,at),

where p(s1) is the initial state distribution. Thus, the goal of policy search (PS) is to optimize
the parameters θθθ with respect to the expected accumulated reward or return

Eτ∼πθθθ (·) [G(τ)] = Eπθθθ

[
T

∑
t=1

r(st ,at)

]
.

5.2.1 Model-based trajectory-centric reinforcement learning

The iterative linear quadratic Gaussian algorithm (iLQG) [102, 103] is an efficient shooting
method 1 in trajectory optimization. Unlike differential dynamic programming (DDP) [111]
which considers higher-order terms, iLQG only uses the first derivative of the discrete-
time dynamics, thus allowing a faster dynamics evaluation that outweighs the decrease in
performance. iLQG considers a quadratic expansion of the reward r(st ,at) around a nominal
trajectory τ̄ = {s̄1, ā1, . . . , s̄T , āT}, and a local linear-Gaussian approximation of the dynamics
N (fstst + fatat + fct ,Ft) with a covariance Ft , and a mean given by the gradients fst and fat ,
and a constant term fct . Under these assumptions, the first and second derivatives of the

1also called indirect trajectory optimization.

5.2 Preliminaries 55

action-value function Qπ(st ,at) and the state-value function V π(st) are:

Qsat = rsat + fTsatVst+1

Qsa,sat = rsa,sat + fTsatVs,st+1 fsat

Vst = Qst−QT
a,stQ

−1
a,atQat

Vs,st = Qs,st−QT
a,stQ

−1
a,atQa,st

where the derivatives are denoted by subscripts, so for example, rsat is the gradient of the
reward at time step t with respect to [s,a]T and rsa,sat the Hessian. The optimal linear control
law that maximizes Qπ(st ,at) is g(st) = Kt(st − s̄t)+kt + āt , where Kt =−Q−1

a,atQa,st and
kt =−Q−1

a,atQat .
A Gaussian trajectory distribution p(τ) can be obtained by considering a linear-Gaussian

controller p(at |st) =N (Ktst +kt ,Ct). The mean of this distribution is given by the above
deterministic solution assuming, for notational convenience, that the nominal states and
actions are zero. The covariance Ct is proportional to the curvature of the Q-function,
Ct = Q−1

a,at . Note that this linear-Gaussian controller also optimizes the maximum entropy
objective as shown in [23], which is formulated as:

p(τ)← argmax
p(τ)∈N (τ)

Ep(τ) [G(τ)]+H(p(τ))

s.t. p(st+1|st ,at) =N (fstst + fatat + fct ,Ft)

When the dynamics is unknown, a distribution p(st+1|st ,at) can be estimated around
the trajectories sampled from the real system under the previous linear-Gaussian controller,
denoted by p̂(at |st). To prevent the dynamic programming pass in the iLQR from drastically
modifying the new controller, which makes the local dynamics invalid around the new
trajectory distribution, the policy update should be constrained. Levine and Abbeel [23]
proposed to include a KL divergence constraint on the previous trajectory distribution p̂(τ),
as follows:

max
p(τ)

Ep(τ)[G(τ)] s.t. DKL(p(τ)||p̂(τ))≤ ε, (5.1)

where ε denotes the maximal information loss, and the dynamics constraint has been omitted
for clarity. The Lagrangian of (5.1) is

L(p(τ),η) = Ep(τ)[G(τ)]+η [ε−DKL(p(τ)||p̂(τ))],

5.2 Preliminaries 56

and since p(st+1|st ,at) = p̂(st+1|st ,at), the resulting Lagrangian becomes

L(p(τ),η) =

[
T

∑
t=1

Ep(st ,at)[r(st ,at)+η log p̂(st ,at)]

]
+ηH(p(τ))+ηε (5.2)

The above problem is solved in [23] by dual gradient descent, alternating between a
dynamic programming pass to optimize the Lagrangian with respect to p(τ), and adjusting
η according to the amount of constraint violation 2.

5.2.2 Guided policy search algorithms

Despite the important advances in model-based and model-free PS methods [42], their ap-
plication is generally limited to specific policy representations with less than a hundred
parameters, or require a prohibitively amount of interactions with the environment [99]. In-
stead of optimizing the parameters directly from the expected return, GPS methods transform
the policy search problem into supervised learning, where the training set is generated by a
computational teacher, optimized by either simple trajectory-centric RL algorithms [75] or
complex trajectory optimization methods [112]. In such a way, the convergence of a global
policy that maximizes the expected accumulated reward is obtained by solving

max
θθθ ,p(τ)

Ep(τ)[G(τ)] s.t. pi(at |st) = πθθθ (at |st) ∀t,∀i, (5.3)

meaning that the learning process of the global policy is indeed divided into a domain-specific
optimization of local policies pi(at |st), and a supervised phase for the global policy πθθθ (at |st)

so that it matches the simple policies. When pi(at |st) is represented by a TVLG controller,
the method described in section 5.2.1 can be used.

The constrained maximization problem in (5.3) guarantees that the global policy max-
imizes the expected return at convergence, but barely focus on the robot behavior in inter-
mediate iterations. This limitation is solved by MDGPS [100] which, under linearity and
convexity assumptions, approximates a local TVLG controller π̄θθθ (at |st) to the global policy

2The derivation of [23] is actually for the Lagrangian of a minimization cost problem. However, the
Lagrangian of the maximization reward problem proposed here is equivalent when the formulation of iLQG
described in this section is considered.

5.3 Deep reinforcement learning with dualist updates 57

πθθθ (at |st) by reformulating the local policy constraint in (5.1) as:

max
p(τ)

Ep(τ)[G(τ)] s.t. DKL(p(τ)||π̄θθθ (τ))≤ ε, (5.4)

where π̄θθθ (τ) is the trajectory induced by π̄θθθ (at |st).
Note that the global policy learned by GPS exclusively focus on behaviors provided by the

guiding distributions pi(τ), meaning that it ignores completely how these trajectories were
obtained. Thus, if we require the complex global policy to consider bad behaviors during the
learning process, the local policies updates must explicitly consider the undesired low-return
experiences into the optimization problem. In such a way, the policy search is expected to
avoid policy parameters that generate unsafe or unsuccessful executions, therefore being less
prone to failures.

5.3 Deep reinforcement learning with dualist updates

First of all, let us define G and B as the sets representing good and bad experiences, respec-
tively. In a policy search setting, these experiences are encoded by good and bad trajectory
probability distributions that are generated from successful (high-return) or failed (low-
return) task executions. These trajectory distributions can be explicitly considered in the
policy update by including an upper bound on the KL divergence between the new and good
trajectory distributions, and a lower bound on the KL divergence between the new and bad
trajectory distributions. In this way, similarly to [24], we reformulate the policy update as
follows

θθθ =argmax
θθθ

Eπθθθ (τ)
[G(τ)] (5.5)

s.t. DKL(πθθθ (τ)||gc(τ))≤ χ, c ∈ G

DKL(πθθθ (τ)||bd(τ))≥ ξ , d ∈ B

where gc(τ) are the good trajectory distributions in G, bd(τ) are the bad trajectory distribu-
tions in B, χ the maximal information loss with respect to the good trajectory distributions
and ξ the minimal information loss with respect to the bad trajectory distributions. The
interpretation of these dualist constraints is very intuitive: the parameterized policy that
considers dualist constraints induces a trajectory distribution that differs from trajectory
distributions that generate bad behaviors and whose sampled trajectories resemble previous
successful executions.

5.3 Deep reinforcement learning with dualist updates 58

Note that when the policy is represented by a deep neural network, the optimization
process using typical RL methods is infeasible due to the high dimensionality of the policy
parameters. Therefore, GPS (described in section 5.2.2) is proposed in order to generate
guiding local policies to assist and accelerate the policy search process. In this sense, GPS
needs to be reformulated in order to include dualist constraints as explained next.

5.3.1 Model-based (trajectory-centric) RL with dualist updates

Without loss of generality, let us assume that both good and bad behaviors are generated
from a single trajectory distribution each. Then, the cardinalities of the good and bad sets
are |G|= |B|= 1. Let us also define good and bad policies as g(at |st) and b(at |st), that
induce a good trajectory distribution g(τ) and a bad trajectory distribution b(τ), respectively.
Therefore, the policy update in PS can be reformulated as

p(τ)←argmax
p(τ)

Ep(τ)[G(τ)]

s.t. DKL(p(τ)||p̂(τ))≤ ε

DKL(p(τ)||g(τ))≤ χ

DKL(p(τ)||b(τ))≥ ξ . (5.6)

The Lagrangian of (5.6) is defined as

L(p(τ),η ,ω,ν) =Ep(τ)[G(τ)]+η [ε−DKL(p(τ)||p̂(τ))]

+ω[χ−DKL(p(τ)||g(τ))]

+ν [DKL(p(τ)||b(τ))−ξ], (5.7)

where η , ω and ν are the Lagrange multipliers controlling the relevance of each inequality
constraint in (5.6). Due to the linear-Gaussian dynamics assumption, the maximization of
(5.7) with respect to p(τ) can be written as:

max
p(τ)

Ep(τ)

[
T

∑
t=1

Ep(st ,at)[r̃(st ,at)]

]
+H(p(τ))

+
1

η +ω−ν
[ηε +ωχ−νξ] (5.8)

5.3 Deep reinforcement learning with dualist updates 59

Algorithm 2 Dualist GPS
1: Initialize local policies pi
2: for iteration k = 1 to K do
3: Run pi to collect trajectory samples Di = {τi}
4: Fit linear-Gaussian dynamics pi(st+1|st ,at) to Di
5: Fit linearized global policy π̄θθθ i(at |st) to Di
6: Update g(τ) and b(τ) from Di
7: Adjust ε

8: Optimize pi from (5.9)
9: Optimize πθθθ from (5.13)

10: end for

where

r̃(st ,at) =
1

η +ω−ν
[r(st ,at)+η log p̂(at |st)+ω logg(at |st)−ν logb(at |st)] .

Then, considering this augmented reward r̃(st ,at), the primal problem in (5.6) can also
be solved using (5.8) with a process similar to that described in section 5.2.1.

5.3.2 Dualist GPS

Learning a complex nonlinear policy by solving problem (5.5) usually requires a large
amount of interactions, where failed (possible dangerous) executions might arise until an
acceptable suboptimal policy is obtained. These failures may lead to serious consequences
on the robot and the environment it interacts with. Therefore, by reformulating the GPS
framework to include dualist constraints, we can reduce not only the interactions required to
learn πθθθ (at |st), but also the robot failures during the learning process.

As mentioned in section 5.2.2, a global policy learned by the classical GPS optimizes its
parameters based only on the behaviors provided by the guiding distributions pi(τ). Thus,
using trajectory distributions optimized with the trajectory-centric RL algorithm proposed in
the previous section, implies that the global policy πθθθ (at |st) considers both good and bad
experiences, as outlined in Algorithm 2.

5.3 Deep reinforcement learning with dualist updates 60

The proposed algorithm employs MDGPS to learn the global policy. Therefore, the
optimization problem (5.6) for each local policy i is rewritten as

pi(τ)←argmax
pi

Epi(τ)

[
T

∑
t=1

r(st ,at)

]
(5.9)

s.t. DKL(pi(τ)||π̄θθθ i(τ))≤ ε (5.10)

DKL(pi(τ)||gi(τ))≤ χ (5.11)

DKL(pi(τ)||bi(τ))≥ ξ (5.12)

where, π̄θθθ i(τ) is the trajectory induced by the local TVLG approximation π̄θθθ i(at |st). Note
that good gi(τ) and bad bi(τ) distributions are defined for each pi(τ), and updated by samples
generated by their respective TVLG controller.

The supervision step in MDGPS is the same as the original formulation, meaning that the
parameters of the global policy πθθθ are obtained by:

θθθ ← argmin
θθθ

∑
t,i, j

DKL(πθθθ (at |st,i, j)||pi(at |st,i, j)) (5.13)

where st,i, j is the jth sample from pi(st) acquired by performing pi(at |st).

5.3.3 Defining good and bad experiences

Classifying a sampled trajectory either as good or bad, clearly involves an assessment
based on different, possibly many, criteria. If the learning process is carried out under the
supervision of a human, then the human may provide feedback regarding the goodness of
every robot execution. But in autonomous settings, our expectations of what we want the
robot to do and not to do are mainly captured by the reward function. The main goal of a
robot in an RL problem is to maximize the expected accumulated reward or return G(τ). For
this reason, bad experiences are here defined as undesirable trajectories that have low return.
Similarly, good experiences are trajectories with high return. In such a way, at each iteration
k, ng good samples and nb bad samples are used to update the trajectory distributions in
G and B, respectively. Note that these definitions rely on the fact that the reward function
captures not only how the robot behavior should be to perform optimally, but also how it
should never be.

As mentioned before, it is assumed that the cardinalities of the good and bad sets are
|G| = |B| = 1. This involves that all the ng trajectory samples with higher return are used

5.4 Experiments 61

Figure 5.1 Reaching task of a planar manipulator. The robot should learn to reach a target Cartesian pose
(depicted in green) without touching an obstacle (red cylinder). During the iterative learning process, the
robot may collide with the obstacle generating low-return executions that are considered failures. Such failed
executions are exploited by dualist GPS to provide safer global policies.

to update a single good trajectory distribution g(τ) and all the nb trajectory samples with
low return are used to update a single bad trajectory distribution b(τ). However, there are
different ways to construct the distributions g(τ) and b(τ), in this chapter they are obtained
by following the same method employed in MDGPS to get the local TVLG approximation
π̄θθθ (τ). Specifically, at each iteration k, a TVLG controller fits the observed good trajectories
and another TVLG controller the observed bad trajectories.

5.4 Experiments

The proposed framework was evaluated in two reaching tasks with collision avoidance. Both
a simulated 3-DoF planar manipulator and a simulated humanoid robot were required to
reach a desired Cartesian pose while avoiding an obstacle that is halfway.

5.4.1 Tasks description

The first reaching task is performed by a 3-DoF planar manipulator as shown in Figure 5.1.
The state of the task is defined by s∈R12, composed of joint positions q∈R3, joint velocities
q̇ ∈ R3, and end-effector pose relative to the target g ∈ R3 and to the obstacle o ∈ R3. The
action a ∈ R3 corresponds to the robot torque commands.

5.4 Experiments 62

The reward function that evaluates the performance of the task execution was defined as:

r(τ) = r(sT ,aT)+
T−1

∑
t=1

r(st ,at) (5.14)

with final reward

r(sT ,aT) = w1(γ1 + ||gT ||2)1/2 +w2||gT ||2 + w3max(dSAFE−d(oT),0),

and stage reward

r(st ,at) = w4(γ2 + ||gt ||2)1/2 +w5||gt ||2 +w6max(dSAFE−d(ot),0)+w7||ut ||2

where d(o) is the signed distance evaluated on the obstacle pose o. The term max(dSAFE−
d(o),0) is a hinge loss that does not penalize the robot if the distance o is further than dSAFE

and favors collision avoidance behaviors [113]. The values for the different variables in this
reward function are depicted in Table 5.1.

The second reaching task was carried out by a simulated CENTAURO robot. In this
environment, the humanoid seeks to reach a Cartesian pose while avoiding a cylindric
obstacle that is halfway, as shown in Figure 5.2. The state of the task is defined by s ∈ R26,
composed of joint positions of the right arm q ∈ R7, joint velocities of the right arm q̇ ∈ R7,
and both position and orientation errors between the right hand of the robot and both the
target g ∈ R6 and the obstacle o ∈ R6. The action a ∈ R7 corresponds to the robot right arm
task-torque commands. As we can notice, this learning task is more complex than the one in
the previous experiment because, first, its state-action space has higher dimensionality, and
second, the target is closer to the obstacle which increases the possibility of colliding with
the obstacle.

The reward function of the reaching task with CENTAURO is similar than the one
performed by the 3DoF planar manipulator, except by the use of a Lorentzian ρ-function [11].
Specifically, the terms (γ1 + ||gT ||2)1/2 and (γ2 + ||gt ||2)1/2 are replaced by log(γ1 + ||gT ||2)
and log(γ2 + ||gt ||2), respectively. In addition, the new values for the variables in the reward
function are depicted in Table 5.1.

The NN global policies for both robots consisted of fully connected feed-forward neural
networks with two hidden layers and ReLU nonlinearities. The hidden layers for the 3DoF
planar manipulator and CENTAURO had 40 and 64 units respectively. Four Cartesian target
and obstacle poses were randomly generated for each robot, therefore four TVLG controllers
(i = 4) were iteratively optimized as guiding policies.

5.4 Experiments 63

Figure 5.2 Reaching task of CENTAURO. The humanoid is requested to learn to reach a desired Cartesian pose
(depicted in green) with its right arm without touching the obstacle (red cylinder).

3DoF planar robot CENTAURO
w1 −1×104 -300
w2 -50 -300
w3 −2×106 -500
w4 -10 -30
w5 −5×10−2 -30
w6 −2×103 -50
w7 −1×10−6 -0.1
γ1 10−10 10−5

γ2 10−10 10−5

dSAFE 0.15 0.217

Table 5.1 Values considered in the reward function for the reaching task for the 3DoF planar manipulator and
CENTAURO

5.4.2 Results

The first experiments conducted in the reaching task with the 3DoF planar manipulator were
focused on analyzing how many times and how fast the robot approached, or even collided,
with the obstacle, during the iterative learning process. The experiments aimed at observing
the effect of discarding the worst samples in the supervised learning (SL) step of MDGPS,
and optimizing the NN parameters to match the remaining trajectory samples. As a result,
the NN was trained to match a smaller dataset but composed of non-bad trajectories. This
intuitive strategy may be justified by the fact that we require the global policy to not reproduce
the trajectories that generated low return. The results of the experiments are depicted in
Figure 5.3.

5.4 Experiments 64

0 5 10 15 20 25 30 35 40 45 50
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

D
is

ta
nc

e
to

 ta
rg

et

MDGPS
MDGPS no 1/6 worst
MDGPS no 2/6 worst

0 5 10 15 20 25 30 35 40 45 50
Iteration

0

100000

200000

300000

400000

Sa
fe

-D
is

ta
nc

e
C

os
t

MDGPS
MDGPS no 1/6 worst
MDGPS no 2/6 worst

Figure 5.3 Experiment disregarding worst trajectory samples. Disregarding the worst samples in the SL step of
MDGPS does not avoid the planar robot from failing. MDGPS corresponds to the case where all the 6 samples
for each local policy are considered. MDGPS no 1/6 worst, means that the worst trajectory sample (the one
with lowest return) is disregarded. MDGPS no 2/6 worst means that the two trajectory samples with lowest
return are disregarded.

The right plot in Figure 5.3 displays the accumulated safe-distance cost, ∑
T
t=1 max(dSAFE−

d(ot),0), for the training conditions, where high values indicate that the resulting trajectory
generated a dangerous robot end-effector movement as it was very close to the obstacle.
Thus, the higher the value, the worst the trajectory, and therefore the more important it is
to avoid trajectory distributions that generate this undesired behavior. Note that despite the
negative samples that generated the higher values of this cost were identified and discarded
as training data for the SL step, the NN policy (and subsequently the samples from the
trajectory distributions that guided it) continued passing near the obstacle. Only after some
more iterations the updated trajectory distributions resulted in end-effector movements that
avoided the obstacle. On the other hand, the left plot of Figure 5.3 shows that discarding the
bad samples makes the robot require more iterations to reach the desired pose, therefore, it
has a negative impact on the main objective of the task. This effect may arise as consequence
of the reduction of the training dataset used to train the neural network, which deteriorated
its performance. Again, only after some more iterations (and no more bad trajectories), the
final performance was the same as the standard MDGPS.

Later, three different GPS formulations were compared in the reaching tasks of both
robots. The first one did not consider neither (5.11) nor (5.12) constraints, hence correspond-
ing to the standard MDGPS. The second formulation only took into account bad experiences,
which means that (5.11) was not considered in the policy updates. The third formulation
corresponded to the full dualist approach proposed in this chapter, which exploits both good
and bad experiences. These formulations are here referred to as MDGPS, B-MDGPS and
D-MDGPS, respectively. All of them were run using the same set of hyper-parameters,
except by those related with the dualist constraints. In the case of the planar manipulator
50 iterations of the algorithm were performed and six trajectories were sampled at each

5.4 Experiments 65

iteration from every local policy. In both reaching tasks, the sample with higher return was
used to update the good trajectory distribution, while the sample with lowest return was
used to update the bad trajectory distribution (ng = 1 and nb = 1). Both dualist trajectory
distributions had a fixed covariance. In order to carry out fair comparisons, the noise required
by the whole exploration phase was identical for all the three aforementioned cases.

As stated previously, the main motivation to learn from bad experiences is to reduce
failures during training. Figure 5.4 shows the accumulated safe-distance cost generated during
the exploration phase in the training process of the 3DoF planar manipulator. Observe that
the formulation with only bad experiences and our approach iterated more safely during the
exploration when compared to the classic MDGPS. Note that B-MDGPS tended to produce
fewer failures, in other words, it generated fewer undesired end-effector movements that led
to collisions with the obstacle. However, these safer trajectory distributions compromised
learning convergence (Figure 5.5), as more iterations were required to train the NN policy in
contrast to the other two formulations. On the other hand, the training phase of the proposed
D-MDGPS generated less dangerous robot end-effector movement than the standard MDGPS.
Moreover, the resulting NN policy showed a performance quite similar to the standard
MDGPS. Therefore, the proposed approach offers a good compromise that leads the robot to
fail less and smoothly update its policy.

Note that there is a peak in the safe-distance cost at iteration 3 in Figure 5.4. This due to
the fact that the robot end-effector is initially quite far away from the target, which can be
considered as an undesired behavior based on the given reward function. Consequently, D-
MDGPS fits a bad trajectory distribution to these samples, and then by constraint (5.12), the
new updated trajectory distributions are different than these low-return trajectories. Despite
these updates are quite aggressive and the robot generates trajectories with high safe-distance
cost at iteration 3, these executions are now considered bad, and then the updated trajectory
distributions do not generate such negative trajectories in the next iteration (iteration 4).

Figure 5.6 shows the accumulated safe-distance cost generated by CENTAURO during
the exploration phase of the reaching task. As in the previous experiment, both B-MDGPS
and D-MDGPS generated safer trajectories because they involved lower safe distance cost.
On the other hand, Figure 5.7 shows the final distance of the right hand with respect to
the target. As we can notice, because both B-MDGPS and D-MDGPS force the updated
trajectory distribution to be dissimilar to the high safe-distance cost trajectories, the new
trajectories generated at the next iteration have lower safe-distance cost. For this reason,
we can see strong changes at the following iterations. Unfortunately, because the target is
designed to be closer to the cylinder, in comparison to the previous experiment, the proposed

5.4 Experiments 66

0 5 10 15 20 25 30 35 40 45 50
Iteration

0

25000

50000

75000

100000

125000

150000

175000

Sa
fe

-D
is

ta
nc

e
C

os
t

MDGPS
B-MDGPS
D-MDGPS

Figure 5.4 Safe-distance cost with planar robot. Total safe-distance cost, ∑
T
t=1 max(dSAFE−d(ot),0), incurred

by the trajectory samples of the planar manipulator robot in each iteration.

0 5 10 15 20 25 30 35 40 45 50
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
to

 ta
rg

et

MDGPS
B-MDGPS
D-MDGPS

0 5 10 15 20 25 30 35 40 45 50
Iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
is

ta
nc

e
to

 ta
rg

et

MDGPS
B-MDGPS
D-MDGPS

Figure 5.5 Final distance with planar robot. Final distance from the end-effector of the planar robot to the
target Cartesian pose. Left figure shows the performance on the initial conditions used to train the policy, and
the right figure, the performance on the test set.

method tries to maximize the total accumulated reward, and then tries again to generate
trajectories closer to the desired Cartesian pose, and then because the stochasticity of the
local policies, close again to the obstacle. This situation generated the behavior observed in
the Figure 5.7.

0 5 10 15 20 25 30 35 40 45 50
Iteration

0

250

500

750

1000

1250

1500

1750

Sa
fe

-D
is

ta
nc

e
C

os
t

MDGPS
B-MDGPS
D-MDGPS

Figure 5.6 Total safe-distance cost, ∑
T
t=1 max(dSAFE− d(ot),0), of the trajectory samples generated by the

CENTAURO robot in each iteration.

5.5 Challenges 67

0 5 10 15 20 25 30 35 40 45 50

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
nc

e
to

 ta
rg

et

MDGPS
B-MDGPS
D-MDGPS

0 5 10 15 20 25 30 35 40 45 50

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
is

ta
nc

e
to

 ta
rg

et

MDGPS
B-MDGPS
D-MDGPS

Figure 5.7 Final distance from the CENTAURO’s right-hand to the target Cartesian pose. Left figure shows the
performance on the initial conditions used to train the policy, and the right figure, the performance on the test
set.

5.5 Challenges

A possible limitation of the approach proposed in this chapter is that the optimization problem
in (5.6) could be infeasible because there might not be trajectory distributions satisfying all the
hard constraints at the same time. Additionally, considering dualist constraints might produce
very conservative or aggressive policy updates, then increasing the number of samples
required to converge. A possible solution to overcome these problems is to automatically
adjust the upper and lower bounds of the good and bad trajectories at each iteration, similarly
as done with the bound between the new policy and the TVLG controller approximation
of the global policy in MDGPS. A second alternative is to relax the optimization problem
and consider the dualist constraints as soft constraints, in such a way the weights of the KL
divergence for good and bad trajectory distributions may either be hyperparameters of the
algorithm or adjusted by the aforementioned option.

5.6 Summary

In this chapter it is proposed a reinforcement learning algorithm that allows considering
both successful and failed executions during the learning process of deep neural network
controllers. The method extends the Guided Policy Search algorithm by providing experience
from trajectory distributions optimized with dualist constraints. These constraints are aimed
at assisting the policy learning so that the trajectory distributions, updated at each iteration,
are similar to good trajectory distributions (e.g., sucessful executions) while differing from
bad trajectory distributions (e.g. failures). The results of the conducted experiments show that
neural network policies guided by trajectories optimized with the proposed method reduce
the failures during the policy exploration phase, and therefore encourage safer interactions.

Chapter 6

CONCLUSIONS

Obtaining rational policies is the ultimate goal of robot skill learning. The performance
measure assigned to a behavior defines the level of rationality of the control policy regarding
a particular task. Because learning implies improving this quantity over time, most robot
learning approaches use the interaction data collected during the task execution to directly
modify the policy in order to enhance its performance. However, considering the skill
acquisition process as an isolated stage, disconnected from a continual learning activity,
limits both the models and algorithms that might be used.

This thesis have tried to change the way how robot learning approaches use the interaction
data by learning models that are useful for both the current learning process and future ones.
In this sense, the robotic motor skills are obtained from alternative objectives and not through
the direct optimization of a specific learning criterion. The three indirect methods proposed
in this thesis seek to be more data efficient and extract more information from the interaction
data collected either from expert’s demonstrations or the robot’s own experience. The main
characteristics and benefits of these methods are given in the following section, and potential
avenues for future research discussed in 6.2.

6.1 Summary 69

6.1 Summary

6.1.1 Learning and transferring shared latent spaces of robotic skills

In chapter 3, it was shown that, in the context of behavioral cloning by imitation learning,
the rational behavior captured in the demonstrations can be encoded with a shared latent
variable model. By adding a smooth mapping (back-constraint) to this model, a state is
projected to the latent space, so-called skill space, from which the action is generated. This
state-latent-action mapping is an indirect policy because the action is inferred from the skill
variable, compared to a direct policy represented by a state-to-action mapping. That is, the
robot policy obtained from the demonstrations is reduced to a conditional distribution that
uses only the skill variable.

When several robots should learn the same rational behavior, the skill space obtained for
one robot is invariant among the different robots if the state representation of the environment
and the influence of an action to the evolution of this state are both independent of the robot
executing the task. Therefore, learning the same skill among different robots is formulated as
a transfer learning problem, where the state-to-latent map and the skill space of one robot
is used to learn the latent representation for others. More specifically, a model pretrained
in one robot is transferred to another by fixing the latent variables and the state-to-latent
mapping, and optimizing only the latent-to-action mapping for the others. In the chapter,
the shared latent space was modeled with a shared GP-LVM, a non-parametric probabilistic
model which performs a non-linear dimensionality reduction over the state-action data. The
experiments demonstrated that a good imitation performance and a faster learning rate are
obtained when the shared latent space for one robot is reused by other robots with similar
kinematic structure, compared to processes where learning the shared latent space is carried
out independently.

6.1.2 Concurrent discovery of compound and composable policies

In chapter 4, it was shown how learning a rational policy for a complex task with a single-task
model-free reinforcement learning (RL) process is reformulated as a two-level hierarchical
approach. First, a set of Gaussian policies, constituting the low level of the hierarchy, are
composed at the high level by means of state-dependent activation vectors defined for each
policy. These activation vectors allow to consider concurrently actions sampled from all the
low-level policies and preferences among specific components of the action. Furthermore,
two alternatives were proposed to obtain a compound Gaussian policy as a function of

6.1 Summary 70

the parameters of the low-level policies and their corresponding activation vectors. As a
result, the behavior in the complex task is not generated directly by actions sampled from a
single policy trained in the task. Instead, the behavior is generated by policies specialized in
different aspects of the task.

Additionally, the Hierarchical Intentional Unintentional (HIU) algorithm was proposed
in order to learn the different components of the hierarchical policy, by exploiting the off-
policy data generated from the compound policy for learning the activation vectors and
indirectly the low-level policies concurrently. The resulting multi-task formulation was built
on a maximum entropy RL setting to favor exploration during the learning process, and
the soft actor-critic (SAC) algorithm used to learn the hierarchical policy. Therefore, the
experience collected from the compound policy is exploited in a such a way that not only
improves the performance in this task, but also acquire meaningful composable policies in
an off-policy manner. Several experiments with composable tasks performed by simulated
robots were conducted to validate the proposed approach. The obtained results suggest that
HIU-SAC allows to solve the complex task but also to obtain useful composable policies that
successfully perform in their respective tasks with comparable or better performances than
direct single-task RL formulations.

6.1.3 Exploiting good and bad experiences in policy learning

In chapter 5, it is proposed a model-based trajectory-centric reinforcement learning algorithm
that explicitly considers good and bad experiences in order to reduce the occurrence of
failures during the learning process. More specifically, the interactions that result in failures
are explicitly considered by modeling policies, so-called bad policies, that can reproduce
them. Similarly, good policies can be learned by considering only the successful executions.
Later, both type of policies are considered in the policy update step by means of dualist
constraints, that are KL divergence bounds between the new trajectory distribution and the
trajectory distributions induced by the good and bad policies. Thus, the robot’s policy is not
directly updated from the performance of the resulted behavior. Instead, the policy update
includes also the similarity to the good policies and dissimilarity with the bad policies.

In addition, it was proposed to use the trajectories optimized with this method as guiding
samples in a guided policy search setting. Specifically, the mirror descent guided policy
search (MDGPS) algorithm was used for training a high-dimensional global policy rep-
resented by a general-purpose neural network. Thus, neither performance measure nor
good-bad policies are considered directly by the global policy, but indirectly through the

6.2 Open challenges and future work 71

guiding policies. In this way, it is possible to obtain a deep neural network policy that
considers both good and bad behaviors in its learning process, which extends the MDGPS
learning capabilities. The approach was evaluated in two reaching tasks using a simulated
planar robot and a simulated humanoid robot. The reported results supported the hypothesis
that specifying dualist updates reduces the cost related to failures during the exploration
phase. Additionally, the results also showed that discarding bad samples from the training
dataset in which the global policy is trained on, does not necessarily avoid that the policy
generates bad trajectories.

6.2 Open challenges and future work

Learning a latent space from the interaction data have shown benefits in the transfer of robotic
skills. However, some challenges need to be addressed to further exploit the potential of
learning skill spaces. First, the experiments in this thesis have been conducted with robots
with similar kinematic structure, and thus, with equivalent action spaces. For this reason,
is an open problem discovering how the skill spaces can be exploited with robots that have
significant differences in their actions. However, in view of our obtained results, if the skill
space is properly built the proposed method should still lead to good results.

An important motivation for task decomposition is reusing the composable policies
in new tasks, however the experiments conducted in this thesis have been limited only in
learning the policies but no in their reuse. Future work will be to analyze the behavior of the
composable policies when they are reused in different compound tasks. It is important to
know how the performance of new compound policies is affected by composable policies
obtained in different contexts. Moreover, the experiments carried out in this thesis were
focused in tasks that are decomposed in two subtasks. Future work will consider tasks that
could be decomposed in more than two subtasks and tasks where the components of the
action vector can be assigned completely to specific tasks, e.g. bimanual tasks.

A control policy is sufficient to define either a bad or good behavior, and thus the main
motivation for capturing them by policy models. However, trajectory distributions are
unimodal, and thus require several of them in order to capture different but still relevant good
and bad experiences. Similarly, on-policy data was used in order to update the trajectory
distributions, and then, they only captured the recent experience for guiding the neural
network policy. Future work will consider alternative and more complex models for capturing
both good and bad experiences, and extensions of the algorithm will consider off-policy
data. On the other hand, defining bad trajectories in terms of the total reward obtained in

6.2 Open challenges and future work 72

one particular task has sense because the performance measure reflex the rationality of the
behavior for that task. However, what is unacceptable for that task is not necessarily bad to
others. Considering a higher continual learning activity, how these bad policies can influence
the learning process of other tasks is an open question.

REFERENCES

[1] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2010.

[2] Marc Toussaint, Helge Ritter, and Oliver Brock. The optimization route to robotics—
and alternatives. KI - Künstliche Intelligenz, 29(4):379–388, Nov 2015.

[3] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1st edition, 1957.

[4] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena
Scientific, Belmont, MA, USA, 3rd edition, 2005.

[5] Jan Peters, Daniel D. Lee, Jens Kober, Duy Nguyen-Tuong, J. Andrew Bagnell, and
Stefan Schaal. Robot learning. In Bruno Siciliano and Oussama Khatib, editors,
Handbook of Robotics, chapter 15, pages 357–398. Springer, 2016. 2nd Edition.

[6] Henrik I. Christensen and Gregory D. Hager. Sensing and estimation. In Bruno
Siciliano and Oussama Khatib, editors, Handbook of Robotics, chapter 5, pages
91–112. Springer, 2016. 2nd Edition.

[7] Christopher G. Atkeson. Roles of knowledge in motor learning. PhD thesis, Mas-
sachusetts Institute of Technology, 1986.

[8] Eric W. Aboaf, Christopher G. Atkeson, and David J. Reinkensmeyer. Task-level
robot learning. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1309–1310, April 1988.

[9] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 3(6):233–242, 1999.

[10] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 32(11):1238–1274, 2013.

[11] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation
skills with guided policy search. In IEEE International Conference on Robotics and
Automation (ICRA), pages 156–163, 2015.

[12] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In International Conference on Machine learning (ICML), 2004.

[13] Jens Kober and Jan Peters. Learning motor primitives for robotics. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2112–2118, 2009.

REFERENCES 74

[14] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. Robot motor skill coordi-
nation with em-based reinforcement learning. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3232–3237, 2010.

[15] Leslie P. Kaelbling and Tomás Lozano-Pérez. Learning composable models of pa-
rameterized skills. In IEEE International Conference on Robotics and Automation
(ICRA), pages 886–893, 2017.

[16] Marc Deisenroth and Carl E. Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In International Conference on Machine Learning (ICML),
pages 465–472, 2011.

[17] Olivier Sigaud and Freek Stulp. Policy search in continuous action domains: An
overview. Neural Networks, 113:28–40, 2019.

[18] Carl Henrik Ek. Shared Gaussian Process Latent Variables Models. PhD thesis,
Oxford Brookes University, 2009.

[19] Katsu Yamane, Yuka Ariki, and Hodgins Jessica. Animating non-humanoid characters
with human motion data. In ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 169–178, 2010.

[20] Aaron P. Shon, Keith Grochow, and Rajesh P.N. Rao. Robotic imitation from human
motion capture using gaussian processes. In IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pages 129–134, 2005.

[21] Brian Delhaisse, Domingo Esteban, Leonel Rozo, and Darwin Caldwell. Transfer
learning of shared latent spaces between robots with similar kinematic structure. In
International Joint Conference on Neural Networks (IJCNN), pages 4142–4149, 2017.

[22] Domingo Esteban, Leonel Rozo, and Darwin G. Caldwell. Hierarchical reinforcement
learning for concurrent discovery of compound and composable policies. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019. (Accepted),
preprint: arXiv:1905.09668.

[23] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy
search under unknown dynamics. In Neural Information Processing Systems (NIPS),
pages 1071–1079, 2014.

[24] Adrià Colomé and Carme Torras. Dual reps: A generalization of relative entropy
policy search exploiting bad experiences. IEEE Transactions on Robotics, 33(4):
978–985, 2017.

[25] Domingo Esteban, Leonel Rozo, and Darwin G. Caldwell. Learning deep robot
controllers by exploiting successful and failed executions. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 1087–1094, 2018.

[26] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 2nd edition, 2018.

REFERENCES 75

[27] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey
of robot learning from demonstration. Robotics and Autonomous Systems, 57(5):
469–483, 2009.

[28] Aude G. Billard, Sylvain Calinon, and Rudiger Dillmann. Learning from humans.
In Bruno Siciliano and Oussama Khatib, editors, Handbook of Robotics, chapter 74,
pages 1995–2014. Springer, 2016. 2nd Edition.

[29] Shin’ichiro Nakaoka, Atsushi Nakazawa, Fumio Kanehiro, Kenji Kaneko, Mitsuharu
Morisawa, Hirohisa Hirukawa, and Katsushi Ikeuchi. Learning from observation
paradigm: Leg task models for enabling a biped humanoid robot to imitate human
dances. The International Journal of Robotics Research, 26(8):829–844, 2007.

[30] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions on Graphics (TOG), 37(4):143:1–143:14, 2018.

[31] Leonel Rozo, Sylvain Calinon, Darwin G. Caldwell, Pablo Jiménez, and Carme Torras.
Learning physical collaborative robot behaviors from human demonstrations. IEEE
Transactions on Robotics, 32(3):513–527, June 2016. ISSN 1552-3098.

[32] Eric L. Sauser, Brenna D. Argall, Giorgio Metta, and Aude G. Billard. Iterative
learning of grasp adaptation through human corrections. Robotics and Autonomous
Systems, 60(1):55–71, 2012.

[33] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous helicopter aerobatics
through apprenticeship learning. The International Journal of Robotics Research, 29
(13):1608–1639, 2010.

[34] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and
Pieter Abbeel. Deep imitation learning for complex manipulation tasks from virtual
reality teleoperation. In IEEE International Conference on Robotics and Automation
(ICRA), pages 5628–5635, 2018.

[35] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. In
Neural Information Processing Systems (NIPS), pages 1087–1098, 2017.

[36] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot
visual imitation learning via meta-learning. In Conference on Robot Learning (CoRL),
pages 357–368, 2017.

[37] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[38] G. A. Rummery and M. Niranjan. On-line q-learning using connectionist systems.
Technical Report 166, Cambridge University Engineering Departtment, 1994.

[39] Christopher John Cornish Hellaby Watkins. Learning from Delayed Rewards. PhD
thesis, King’s College, Cambridge, UK, 1989.

REFERENCES 76

[40] Roland Hafner and Martin Riedmiller. Reinforcement learning on an omnidirectional
mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 418–423, 2003.

[41] Jun Morimoto and Kenji Doya. Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning. Robotics and Autonomous Systems, 36(1):37–51,
2001.

[42] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search
for robotics. Foundations and Trends in Robotics, 2(1–2):1–142, 2013.

[43] Lucian Buçoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana Palunko.
Reinforcement learning for control: Performance, stability, and deep approximators.
Annual Reviews in Control, 46:8–28, 2018.

[44] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983.

[45] Voot Tangkaratt, Abbas Abdolmaleki, and Masashi Sugiyama. Guide actor-critic for
continuous control. In International Conference on Learning Representations (ICLR),
2018.

[46] Athanasios S. Polydoros and Lazaros Nalpantidis. Survey of model-based reinforce-
ment learning: Applications on robotics. Journal of Intelligent & Robotic Systems, 86
(2):153–173, May 2017.

[47] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control: a survey.
Cognitive Processing, 12(4):319–340, 2011.

[48] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free
fine-tuning. In IEEE International Conference on Robotics and Automation (ICRA),
pages 7559–7566, 2018.

[49] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter
Abbeel. Deep spatial autoencoders for visuomotor learning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 512–519, 2016.

[50] Axel Rottmann and Wolfram Burgard. Adaptive autonomous control using online
value iteration with gaussian processes. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2106–2111, 2009.

[51] Michael C. Yip and David B. Camarillo. Model-less feedback control of continuum
manipulators in constrained environments. IEEE Transactions on Robotics, 30(4):
880–889, 2014.

[52] Igor Mordatch, Nikhil Mishra, Clemens Eppner, and Pieter Abbeel. Combining model-
based policy search with online model learning for control of physical humanoids. In
IEEE International Conference on Robotics and Automation (ICRA), pages 242–248,
2016.

REFERENCES 77

[53] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted
learning. Artificial Intelligence Review, 11(1-5):11–73, 1997.

[54] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. Local gaussian process regres-
sion for real time online model learning and control. In Neural Information Processing
Systems (NIPS), pages 1193–1200, 2008.

[55] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[56] Aaron P. Shon, Keith Grochow, Aaron. Hertzmann, and Rajesh P.N. Rao. Learning
shared latent structure for image synthesis and robotic imitation. In Advances in
Neural Information Processing Systems (NIPS), pages 129–134, 2006.

[57] Fanny Ficuciello, Pietro Falco, and Sylvain Calinon. A brief survey on the role of
dimensionality reduction in manipulation learning and control. IEEE Robotics and
Automation Letters, 3(3):2608–2615, 2018.

[58] Adrià Colomé and Carme Torras. Dimensionality reduction and motion coordination in
learning trajectories with dynamic movement primitives. In International Conference
on Intelligent Robots and Systems (IROS), pages 1414–1420, 2014.

[59] William Curran, Tim Brys, David Aha, Matthew Taylor, and William D Smart. Dimen-
sionality reduced reinforcement learning for assistive robots. In AAAI Fall Symposium
Series, 2016.

[60] Sebastian Bitzer, Matthew Howard, and Sethu Vijayakumar. Using dimensionality
reduction to exploit constraints in reinforcement learning. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3219–3225, 2010.

[61] Matthew Field, David Stirling, Zengxi Pan, and Fazel Naghdy. Learning trajectories
for robot programing by demonstration using a coordinated mixture of factor analyzers.
IEEE Transactions on Cybernetics, 46(3):706–717, 2016.

[62] Sinno Jialin Pan, James T. Kwok, and Qiang Yang. Transfer learning via dimen-
sionality reduction. In AAAI Conference on Artificial Intelligence, pages 677–682,
2008.

[63] Botond Bócsi, Lehel Csató, and Jan Peters. Alignment-based transfer learning for
robot models. In International Joint Conference on Neural Networks (IJCNN), pages
1–7, 2013.

[64] Ndivhuwo Makondo, Benjamin Rosman, and Osamu Hasegawa. Knowledge transfer
for learning robot models via local procrustes analysis. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 1075–1082, 2015.

[65] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

[66] Markus Schneider and Wolfgang Ertel. Robot learning by demonstration with local
gaussian process regression. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 255–260, 2010.

REFERENCES 78

[67] Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-
valued functions: A review. Foundations and Trends in Machine Learning, 4(3):
195–266, 2012.

[68] Neil D. Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. In Advances in Neural Information Processing Systems (NIPS),
pages 329–336, 2004.

[69] Neil D. Lawrence and Joaquin Quiñonero-Candela. Local distance preservation in the
gp-lvm through back constraints. In International Conference on Machine Learning
(ICML), pages 513–520, 2006.

[70] Nikos G. Tsagarakis, Darwin G. Caldwell, and et al. Walk-man: a high performance
humanoid platform for realistic environments. Journal of Field Robotics, 2016.

[71] Nikos G. Tsagarakis, Stephen Morfey, Gustavo Medrano Cerda, Li Zhibin, and
Darwin G. Caldwell. Compliant humanoid coman: Optimal joint stiffness tuning
for modal frequency control. In IEEE International Conference on Robotics and
Automation (ICRA), pages 673–678, 2013.

[72] L. Baccelliere, N. Kashiri, L. Muratore, A. Laurenzi, M. Kamedula, A. Margan,
S. Cordasco, J. Malzahn, and N. G. Tsagarakis. Development of a human size and
strength compliant bi-manual platform for realistic heavy manipulation tasks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

[73] GPy. GPy: A gaussian process framework in python. http://github.com/SheffieldML/
GPy, since 2012.

[74] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. In International Conference on Learning Representation (ICLR),
2016.

[75] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. Journal of Machine Learning Research, 17(1):1334–1373,
2016.

[76] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical
relative entropy policy search. Journal of Machine Learning Research, 17(93):1–50,
2016.

[77] Katharina Mülling, Jens Kober, and Jan Peters. Learning table tennis with a mixture
of motor primitives. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids), pages 411–416, 2010.

[78] Takayuki Osa, Jan Peters, and Gerhard Neumann. Hierarchical reinforcement learning
of multiple grasping strategies with human instructions. Advanced Robotics, 32(18):
955–968, 2018.

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

REFERENCES 79

[79] Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, and
Sergey Levine. Composable deep reinforcement learning for robotic manipulation. In
IEEE International Conference on Robotics and Automation (ICRA), pages 6244–6251,
2018.

[80] Nathan Sprague and Dana Ballard. Multiple-goal reinforcement learning with modular
sarsa(o). In International Joint Conference on Artificial Intelligence (IJCAI), pages
1445–1447, 2003.

[81] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete event dynamic systems, 13(1-2):41–77, 2003.

[82] Jens Kober and Jan Peters. Learning elementary movements jointly with a higher
level task. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 338–343, 2011.

[83] Chunming Liu, Xin Xu, and Dewen Hu. Multiobjective reinforcement learning: A
comprehensive overview. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 45(3):385–398, March 2015.

[84] Christopher Simpkins and Charles Isbell. Composable modular reinforcement learning.
In AAAI Conference on Artificial Intelligence, 2019.

[85] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple
model-based reinforcement learning. Neural Comput., 14(6):1347–1369, June 2002.

[86] Eiji Uchibe and Doya Doya. Combining learned controllers to achieve new goals
based on linearly solvable mdps. In IEEE International Conference on Robotics and
Automation (ICRA), pages 5252–5259, 2014.

[87] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski,
Adam White, and Doina Precup. Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 761–768, 2011.

[88] Serkan Cabi, Sergio Gómez Colmenarejo, Matthew W Hoffman, Misha Denil, Ziyu
Wang, and Nando De Freitas. The intentional unintentional agent: Learning to solve
many continuous control tasks simultaneously. In Conference on Robot Learning
(CoRL), pages 207–216, 2017.

[89] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function
approximators. In International Conference on Machine Learning (ICML), pages
1312–1320, 2015.

[90] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsuper-
vised auxiliary tasks. In International Conference on Learning Representation (ICLR),
2016.

[91] Zhaoyang Yang, Kathryn Merrick, Hussein Abbass, and Lianwen Jin. Hierarchical
deep reinforcement learning for continuous action control. IEEE Transactions on
Neural Networks and Learning Systems, 29(11):5174–5184, Nov 2018.

REFERENCES 80

[92] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave,
Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Tobias Springenberg. Learn-
ing by playing - solving sparse reward tasks from scratch. In International Conference
on Machine Learning (ICML), volume 80, pages 4344–4353, 2018.

[93] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maxi-
mum causal entropy. PhD thesis, Carnegie Mellon University, 2010.

[94] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-
regularized markov decision processes. arXiv preprint arXiv:1705.07798, 2017.

[95] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International Conference on Machine Learning (ICML), pages 1861–1870, 2018.

[96] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial
and review. arXiv preprint arXiv:1805.00909, 2018.

[97] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic
algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[98] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for
games, robotics and machine learning. http://pybullet.org, 2016–2018.

[99] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning
(ICML), pages 1889–1897, 2015.

[100] William Montgomery and Sergey Levine. Guided policy search as approximate mirror
descent. In Advances in Neural Information Processing Systems (NIPS), 2016.

[101] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
Dynamical movement primitives: learning attractor models for motor behaviors.
Neural computation, 25(2):328–373, 2013.

[102] Emanuel Todorov and Weiwei Li. A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems. In American
Control Conference, pages 300–306, 2005.

[103] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of com-
plex behaviors through online trajectory optimization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4906–4913, 2012.

[104] Rudolf Lioutikov, Alexandros Paraschos, Jan Peters, and Gerhard Neumann. Sample-
based informationl-theoretic stochastic optimal control. In IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 3896–3902, 2014.

[105] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and
Sergey Levine. Path integral guided policy search. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3381–3388, 2017.

http://pybullet.org

REFERENCES 81

[106] Daniel H. Grollman and Aude G. Billard. Robot learning from failed demonstrations.
International Journal of Social Robotics, 4(4):331–342, 2012.

[107] Akshara Rai, Guillaume De Chambrier, and Aude Billard. Learning from failed
demonstrations in unreliable systems. In IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pages 410–416, 2013.

[108] Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Inverse reinforcement learning
from failure. In International Conference on Autonomous Agents & Multiagent Systems
(AAMAS), pages 1060–1068, 2016.

[109] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demonstration
using leveraged gaussian processes and sparse-constrained optimization. In IEEE
International Conference on Robotics and Automation (ICRA), pages 470–475, 2016.

[110] Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In
AAAI Conference on Artificial Intelligence, pages 1607–1612, 2010.

[111] David H. Jacobson and David Q. Mayne. Differential dynamic programming. Ameri-
can Elsevier Pub. Co New York, 1970.

[112] Igor Mordatch and Emo Todorov. Combining the benefits of function approximation
and trajectory optimization. In Robotics: Science and Systems (RSS), 2014.

[113] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep
control policies for autonomous aerial vehicles with mpc-guided policy search. In
IEEE International Conference on Robotics and Automation (ICRA), pages 528–535,
2016.

	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notation
	1 INTRODUCTION
	1.1 Learning motor skills in robotics
	1.2 Limitations of direct learning processes
	1.3 Contributions and thesis outline

	2 BACKGROUND
	2.1 Robot learning from observed expert data
	2.1.1 Imitation learning by behavioral cloning

	2.2 Robot learning from the experienced interaction data
	2.2.1 Model-free reinforcement learning
	2.2.2 Model-based reinforcement learning

	3 LEARNING AND TRANSFERRING SHARED LATENT SPACES OF ROBOTIC SKILLS
	3.1 Related work
	3.2 Preliminaries
	3.2.1 Direct policy learning with Gaussian processes
	3.2.2 Learning a latent space with GP-LVM

	3.3 Shared latent spaces for transfer learning of robot skills
	3.3.1 Modeling a robotic skill as a shared latent space
	3.3.2 Exploiting robotic skill spaces for transfer learning
	3.3.3 Transfer learning of robotic skills with shared GP-LVMs

	3.4 Experiments
	3.4.1 Setup description
	3.4.2 Results

	3.5 Challenges
	3.6 Summary

	4 CONCURRENT DISCOVERY OF COMPOUND AND COMPOSABLE POLICIES
	4.1 Related work
	4.2 Preliminaries
	4.2.1 Maximum entropy reinforcement learning
	4.2.2 Soft Actor-Critic algorithm

	4.3 Composition of modular Gaussian policies
	4.3.1 Hierarchical model for composing modular policies
	4.3.2 Hierarchical policy and Q-functions modeling

	4.4 Simultaneous learning and composition of modular maximum entropy policies
	4.4.1 Off-Policy multi-task policy search
	4.4.2 Multi-task Soft Actor-Critic

	4.5 Experiments
	4.5.1 Tasks description
	4.5.2 Robot learning details
	4.5.3 Results

	4.6 Challenges
	4.7 Summary

	5 EXPLOITING GOOD AND BAD EXPERIENCES IN POLICY LEARNING
	5.1 Related Work
	5.2 Preliminaries
	5.2.1 Model-based trajectory-centric reinforcement learning
	5.2.2 Guided policy search algorithms

	5.3 Deep reinforcement learning with dualist updates
	5.3.1 Model-based (trajectory-centric) RL with dualist updates
	5.3.2 Dualist GPS
	5.3.3 Defining good and bad experiences

	5.4 Experiments
	5.4.1 Tasks description
	5.4.2 Results

	5.5 Challenges
	5.6 Summary

	6 CONCLUSIONS
	6.1 Summary
	6.1.1 Learning and transferring shared latent spaces of robotic skills
	6.1.2 Concurrent discovery of compound and composable policies
	6.1.3 Exploiting good and bad experiences in policy learning

	6.2 Open challenges and future work

	REFERENCES

