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The identification of inhibitory NK cell receptors specific for HLA-I molecules (KIRs and

NKG2A) provided the molecular basis for clarifying the mechanism by which NK cells kill

transformed cells while sparing normal cells. The direct interactions between inhibitory

NK cell receptors and their HLA-I ligands enable NK cells to distinguish healthy from

transformed cells, which frequently show an altered expression of HLA-I molecules.

Indeed, NK cells can kill cancer cells that have lost, or under express, HLA-I molecules,

but not cells maintaining their expression. In this last case, it is possible to use anti-

KIR or anti-NKG2A monoclonal antibodies to block the inhibitory signals generated by

these receptors and to restore the anti-tumor NK cell activity. These treatments fall within

the context of the new immunotherapeutic strategies known as “immune checkpoint

blockade.” These antibodies are currently used in clinical trials in the treatment of

both hematological and solid tumors. However, a more complex scenario has recently

emerged. For example, NK cells can also express additional immune checkpoints,

including PD-1, that was originally described on T lymphocytes, and whose ligands

(PD-Ls) are usually overexpressed on tumor cells. Thus, it appears that the activation of

NK cells and their potentially harmful effector functions are under the control of different

immune checkpoints and their simultaneous expression could provide additional levels

of suppression to anti-tumor NK cell responses. This review is focused on PD-1 immune

checkpoint in NK cells, its potential role in immunosuppression, and the therapeutic

strategies to recover NK cell cytotoxicity and anti-tumor effect.
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INTRODUCTION

The immune system defends our body against foreign microbes/antigens, while simultaneously
preventing self-reactivity. To this aim, immune cells are regulated by a balance between inhibitory
and activating receptors/co-receptors expressed on their surface, which, upon interactions with
their ligands, deliver negative, or positive signals that dictate the outcome of immune responses.

Receptors delivering inhibitory signals function as immune checkpoints and play a more general
role in maintaining peripheral tolerance and preventing autoimmunity (1, 2).

However, immune-regulation displays also its negative tradeoffs. Thus, local tolerance in the
tumor microenvironment represents a common survival strategy, exploited by different tumors to
escape elimination by the immune system (3).
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Immune checkpoint blockade is based on the use of
monoclonal antibodies (mAbs) directed against inhibitory
checkpoints expressed by immune cells (or their ligands
expressed by tumor cells). ThemAb-mediated disruption of these
receptor/ligand interactions may revert the functional inhibition
of these cells and restore an effective anti-tumor cytotoxic
activity, possibly leading to durable tumor regression.

The best-known immune checkpoints are represented by
CTLA-4 and the axis including PD-1 and its ligands PD-Ls (PD-
L1/PD-L2). Both CTLA-4 and PD-1 were originally identified
in T lymphocytes, while PD-Ls may be expressed on different
tumor cells. Since the discovery of these immune checkpoints,
the innovative cancer immunotherapeutic approach was focused
on the restoration of T cell-mediated specific responses to
tumor antigens.

Anti-CTLA-4 mAbs, such as ipilimumab, were the first of this
class of immunotherapeutics that became available in clinical
practice achieving the US FDA approval for the treatment of
metastatic melanoma (4, 5).

The first PD-1/PD-Ls disrupting agent approved for the
treatment of solid tumors was the anti-PD-1 nivolumab;
subsequently, several PD-1/PD-Ls blockers have been
introduced in clinical practice and many others are currently
under investigations across different solid and hematologic
malignancies, including non-small cell lung cancer (NSCLC),
melanoma, head&neck cancer, renal cell carcinoma and
urothelial carcinoma, and high-grade Hodgkin’s lymphoma.
In addition, various combination therapies have recently been
explored in clinical trials, and some combination therapies are
being introduced in clinical practice, with particular reference to
NSCLC, including combinations of nivolumab and ipilimumab,
or platinum-based chemotherapy in association with the anti-
PD-1 pembrolizumab, or a combination of platinum-based
chemotherapy plus the anti-PD-L1 atezolizumab and the
anti-angiogenic bevacizumab. It is possible that combination
therapies may earn a progressively prominent role in clinical
practice in the upcoming years (6, 7).More recently, maintenance
with the anti-PD-L1 agent durvalumab after chemo-radiation for
unresectable, locally advanced NSCLC, resulted in a significant
improvement in terms of progression-free survival and overall
survival (8). While, on one hand, immunotherapy with immune
checkpoint inhibitors is characterized by impressive results
across various solid and hematologic tumors, on the other hand,
the great variability of response among patients (indeed a still
large fraction of patients fails to respond), suggests that the
complex biology of immune checkpoint pathways has not yet
been fully understood. Notably, the documented expression
of PD-L1 on tumors might influence the clinical decision of
treating patients with immune checkpoint inhibitors in specific
settings; indeed, strong expression of PD-L1 (≥50%) is required
for prescribing pembrolizumab as first-line treatment for
advanced NSCLC; similarly, a positive expression of PD-L1 (at
least 1%) is necessary for the administration of pembrolizumab
in second and further lines and for the administration of
durvalumab after chemo-radiation with curative intent for
locally advanced NSCLC. However, the available tumor samples
are frequently represented by biopsies that may yield inadequate

information on the actual PD-L1 expression, eventually
representing a potential issue in the management of NSCLC
(9). Furthermore, the predictive role of PD-L1 expression has
been questioned by additional clinical data; in first place, the
outcomes of PD-1/PD-L1 inhibitors in other malignancies
apart from NSCLC do not appear to be influenced by PD-L1
expression. Furthermore, in NSCLC, single-agent treatments
with nivolumab and atezolizumab for previously treated disease
were effective regardless of PD-L1 expression. Similarly, the
outcomes achieved by combination regimens involving multiple
immune checkpoint blocking agents, such as ipilimumab
plus nivolumab in solid tumors, including renal cell cancer
(RCC), NSCLC, and melanoma, or involving platinum-based
chemotherapy plus a PD-1 or PD-L1 inhibitor in NSCLC were
not influenced by PD-L1 expression (10–13). Taken together,
these data suggest that other factors, apart from the mere
percentage of tumor cells expressing PD-L1, must play a relevant
role in immune checkpoint blockade (14).

In this context, independent research groups published
data on the contributions of host cells in the PD-1/PD-L1
blockade mediated cancer immunotherapy in patients with PD-
L1-negative tumors responding to this blockade therapy (15–18).

Indeed, besides tumor cells, various types of host cells also
constitutively express PD-L1, or can upregulate its expression
upon stimulation with inflammatory cytokines, including IFN-
gamma. These observations imply that PD-L1 from tumor and/or
host compartment works in concert to dampen the anti-tumor
immune response (19). In addition to the PD-1/PD-L1 axis,
also the PD-1/PD-L2 interaction may play an important role
in evading anti-tumor immunity, suggesting that PD-1/PD-L2
blockade must be considered for optimal immunotherapy in
PD-L2-expressing cancers, such as RCC and NSCLC (20, 21).

The Multifaceted Nature of NK Cells
NK cells are classified as lymphocytes on the basis of their
origin from the common lymphoid progenitor cell in the bone
marrow. However, different from T and B lymphocytes, they
do not express antigen-specific cell surface receptors encoded
by rearranging genes. Thus, NK cells are considered to be
players of innate immune defenses, and, in particular, represent
cytotoxic innate lymphoid cells (ILCs) (22, 23). They were
originally identified over 40 years ago (24, 25), on the basis
of their ability to kill tumor/virus-infected cells in the absence
of prior activation. Later, NK cells have been recognized as
immunoregulatory cells, secreting pro-inflammatory cytokines,
and many chemokines, and expressing different receptors for
both cytokines and chemokines. This means that NK cells may
recruit and may be recruited to inflammatory sites where they
can colocalize with other immune cells, including dendritic cells
with which NK cells can cooperate (22, 26, 27). These different
cell-to-cell interactions endow NK cells with regulatory function
affecting both the quality and the strength of adaptive immune
defenses (23, 28).

Several lines of evidence indicate that NK cells or their
receptors play a critical role in immunosurveillance of
spontaneous tumors and in preventing tumor metastases.
In addition, it has been shown that impairment in NK cytotoxic
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activity is associated with a higher cancer risk (29). Indeed,
tumors have evolved mechanisms to escape NK cell control. This
knowledge prompted efforts to exploit NK cell functions for
better management of cancer patients.

The Discovery of NK Cell
Immune Checkpoints
Similar to T cells, NK cells express surface receptors that can be
targeted in checkpoint blockade strategies (30, 31).

The first NK cell immune checkpoints were identified
by Alessandro Moretta in 1990 with the discovery of p58
molecules that were later called killer cell immunoglobulin-
like receptors (KIRs). He demonstrated that KIRs were
specific for allotypic determinants of HLA-I molecules. He
also greatly contributed to the identification of additional
receptors interacting with HLA-I molecules including the HLA-
E specific CD94/NKG2A heterodimer (32–34). These findings
represented a true revolution in the field of human NK cell
biology and opened new avenues in the field of NK cell-based
immunotherapeutic approaches.

Initially, NK cell-based immunotherapy had mainly been
exploited to treat hematological malignancies and relied either
on the adoptive transfer of NK cells or on NK cells generated
from transplanted hematopoietic stem cell to treat high-risk
leukemia (35, 36).

Recent approaches have been based on mAb-mediated
blockade of specific NK cell immune checkpoints (37).

In 1999, Alessandro Moretta, together with Eric Vivier,
Hervé Brailly, Marc Bonneville, Jean-Jacques Fournié and
Francois Romagné, founded Innate Pharma, the first Biotech
Company that aimed to target NK cells in innovative anti-tumor
immunotherapeutic strategies (https://www.innate-pharma.
com/en/profile/founders). Starting from mAbs generated in
Alessandro’s lab, directed against the HLA-I specific inhibitory
receptors, the first two immune checkpoint inhibitors were
generated: lirilumab targeting pan-KIR2D and monalizumab
targeting NKG2A. These therapeutic antibodies, with the
capacity to disrupt the interactions between KIR or NKG2A and
HLA-I, are expected to unleash the anti-tumor NK cell cytotoxic
activity mimicking “missing-self ” response. Both lirilumab and
monalizumab have been shown to be safe with limited side
effects upon prolonged treatments in phase I clinical trials (38).
These agents are currently undergoing phase I/II clinical trials
across a range of hematologic and solid tumors in monotherapy
or in combination with other agents, including rituximab (an
anti-CD20 mAb), and other forms of immune checkpoint
blockade (39–41).

In addition to KIR and NKG2A, other inhibitory checkpoints
may be expressed on NK cells. They include the T-cell Ig and
ITIM domain (TIGIT), CD96 (TACTILE), LAG-3 and TIM-3.

TIGIT and CD96 are co-inhibitory receptors expressed on
both T and NK cells and compete with the activating receptor
DNAM-1 for binding to PVR (CD155) and Nectin-2 (CD112)
(42). TIGIT expression has been reported as upregulated in
tumor-associated NK cells in different malignancies (43). Thus,
it has been hypothesized that TIGIT could play a role in

carcinogenesis due to its ability to inhibit NK cell cytotoxicity.
A recent study provided evidence that TIGIT blockade may
induce anti-tumor immune activity in preclinical models, and its
combination with PD-1/PD-L1 inhibitors is being explored (44).
Pre-clinical data also showed that blockade of CD96 alone or
in combination with anti-PD-1 or anti-CTLA-4 or doxorubicin
promotes NK cell activity (in terms of IFN-γ release) and a better
control of tumor progression (45, 46).

LAG-3 is a negative costimulatory receptor homologous to
CD4 and expressed on activated T and NK cells (47). High-
affinity ligands for LAG-3 are HLA-II molecules that are mainly
expressed by antigen presenting cells, but also by some cancer
cells. Despite its inhibitory activity has been defined only in T
cells, this immune checkpoint is currently considered as a good
target for immunotherapy because of its potential to activate
both T and NK cells. Indeed, LAG-3 mAbs are currently in pre-
clinical development in association with standard chemotherapy
(NCT02614833) and in combination with anti-PD-1 therapy
(NCT02676869, NCT01968109).

TIM-3 is a checkpoint receptor that binds several ligands
including galectin-9 (Gal-9) (48), phosphatidylserine on
apoptotic cells (49), high mobility group box 1 (HMGB1) (50),
and CEA-related cell adhesion molecule-1(CEACAM1) (51).
TIM-3 is expressed on both adaptive and innate immune cells
(52, 53). The engagement of this inhibitory checkpoint on NK
cells may have different and opposite effects (53). These divergent
functions are likely associated with the existence of multiple and
different TIM-3 ligands. Blockade of TIM-3 could restore T-cell
effector function in preclinical models and result in increased
NK cytotoxicity (54).

The Identification of the PD-1+ NK
Cell Subset
The effect of the PD-1/PD-L1 blockade has been usually
attributed to the restoration of cytotoxic T lymphocyte activity,
and killing of tumor cells expressing HLA-I molecules. However,
a partial or complete loss of HLA-I expression is one of the most
frequent mechanisms of tumor escape from the host’s immune
system in different human tumor types. In this context, it is
important to remember the “missing self ” hypothesis postulated
by Karre in 1986 (55), and formally proven in humans by
AlessandroMoretta (56–59). The “missing self ” hypothesis stated
that absence, or reduced expression, of self -HLA-Imoleculesmay
be sufficient to render a target cell susceptible to killing by NK
cells. Thus, NK cells recognize tumors that avoid T cell-mediated
killing through abnormal or absent HLA-I expression. This is
clinically relevant for patients with tumors displaying low levels
of HLA-I at diagnosis and suggests the potential of NK cell-based
adoptive immunotherapy.

Along this line, we were convinced that even NK cells could
contribute to the clinical benefit of immunotherapeutic strategies
targeting PD-1/PD-L1 axis, but to confirm our hypothesis we
first had to demonstrate that even NK cells could express
PD-1 (Figure 1).

Initially, we tested different mAbs to check the best reagent to
analyze this receptor onNK cells.We selected a reagent generated
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FIGURE 1 | New insight on the potential role of PD-1 in NK cells and in other ILCs.

by our friend and international scientist Daniel Olive, as the most
performing among all the tested mAbs (60, 61). Regarding the
biological samples, we started the analysis of healthy donors, and
thanks to the high number of healthy donors analyzed and also to
the excellent reagent used, we were able to identify a subset of NK
cells expressing high level of PD-1 in 25% of the donors analyzed
(62). In order to verify what we were observing, we increased

the cases and the controls; this allowed us not only to confirm
this expression but also to characterize this new PD-1+ NK cell
subset. PD-1 expression was confined to CD56dim NK cells and,
if present, to CD56neg NK cells, whereas the CD56bright subset
was consistently PD-1neg. By comparing the PD-1+ and PD-1neg

NK cells derived from the same healthy donor, we found that
the PD-1+ subset was confined to fully mature NK cells. Indeed,

Frontiers in Immunology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 1242

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pesce et al. PD-1 in NK Cells

these PD-1+ NK cells were homogeneously characterized by the
CD56dimKIR+LIR-1+NKG2AnegCD57+NCRdim phenotype.

The fact that only one fourth of the individuals analyzed
were characterized by a PD-1+ NK cell subset could be the
result of given acute or chronic infection affecting only part
of the population. Further analysis revealed that a direct
correlation between HCMV infection and presence of a PD-
1+ NK cell subset could be established. Indeed, the totality of
PD-1+ individuals was seropositive for HCMV. Furthermore,
as expected, the PD-1+ donors showed a reconfiguration
of the NK cell receptor repertoire, typically induced by
HCMV infection (62, 63). Interestingly, different PD-1 mRNA
splicing isoforms and a cytoplasmic pool of PD-1 protein
are detectable in virtually all NK cells analyzed (mainly
CD56dim), thus indicating a possible rapid recruitment of this
molecule on cell surface in response to precise, yet undefined,
stimuli (64).

Once the presence of PD-1 on healthy donor NK cells
was demonstrated, we moved to cancer patients. Given our
previous expertise in ovarian cancer (65), we decided to focus our
attention on NK cells derived from this kind of tumor patients.
Our analyses showed that PD-1+ NK cells were detectable in
the peripheral blood (PB) of the majority of these patients.
More importantly, this NK cell subset was further increased
in the tumor microenvironment, thus suggesting a possible
accumulation/induction of this subset in this compartment.
Again, the PD-1+ NK cells were confined to the CD56dim NK
subset, although our ongoing analyzes indicate that the features
of the tumor-associated PD-1+ NK cell subset are different
from those of the subset present in healthy donors (manuscript
in preparation).

As the interest on PD-1+ NK cells is now turned on, several
papers have been recently published, confirming the presence
of the PD-1+ NK cell subset in tumor patients. In particular
higher proportions of PD-1+ NK cells can be also detected
on PB NK cells from multiple myeloma or Kaposi sarcoma
patients and on PB and tumor-associated NK cells in head&neck
cancer patients (41, 66). In vitro, PD-1 expression may be
induced on NK cell surface upon persistent stimulation by
tumor cells expressing ligands for activating NK receptors (66).
In addition, virus infection (e.g., HCMV) (62) and/or soluble
factors released in the tumor microenvironment (including
endogenous glucocorticoids) may be involved in PD-1 induction
(67, 68) (Figure 1).

This phenotype correlates with an impaired NK cell
activity (cytotoxicity, proliferation, and cytokine production)
against PD-Lpos tumor cells that can be partially restored
by mAb-mediated disruption of PD-1/PD-L interaction
(41, 62, 69) (Figure 1).

This is an important detail because we know how
in vivo the use of anti-PD-1 or anti-PD-L mAbs
may generate beneficial effects toward the anti-tumor
response mediated by T lymphocytes, but evidently also
from NK cells.

Therefore, when we talk about tumor and NK cells we should
not consider the recognition of HLA by the main inhibitory
checkpoints expressed by NK cells, i.e., KIR or NKG2A, as the

only system that plays a fundamental role in the control of
tumor transformation, but we should also consider a possible
participation of PD-1 in this system. In fact, simultaneous
expression of different inhibitory checkpoints could provide
multiple levels of suppression to anti-tumor responses of
NK cells.

Now, several data suggest that NK cells are potential PD-
1 blockade responders and that NK cell removal abrogates the
anti-tumor efficacy of this immunotherapy (69).

Furthermore, PD-1 expression on NK cells may correlates
with poor prognosis in different type of cancers (70). These
findings strongly suggest a possible role for NK cells in
immunotherapeutic strategies targeting the PD-1/PD-L1
axis particularly against HLA-I deficient tumor cells, but,
interestinlgy, NK responses were still important for controlling
cancer development also in cancer models in which CD8+ T
cells played a substantial role (69) (Figure 1).

Thus, the analysis of expression/coexpression and function of
inhibitory checkpoints is extremely important in order to design
innovative immunotherapeutic strategies.

In this context, clinical trials are presently undergoing in
which anti-NKG2A (monalizumab) or anti-KIR (lirilumab)
antibodies are used as a combotherapy with anti PD-1
(nivolumab) for various type of solid tumors in order to
obtain a complete reconstitution of anti-tumor NK cell citolytic
activity (71).

These innovative approaches have a particular relevance
especially if we think that tumor infiltrating T cells may express
PD-1 but also KIR and/or NKG2A. Thus, the combined blockade
of different checkpoints may simultaneously activate both innate
and adaptive immune responses.

Interestingly, recent data indicate that PD-1 is also expressed
by and may regulate both ILC2s and ILC3s, and that mAb-
mediated blocking of PD-1 restored their effector functions.
Since ILCs play a critical role in different inflammatory
conditions, including tumors, these cells may represent
interesting targets for immunotherapy (52, 72, 73) (Figure 1).
Novel immunotherapeutic approaches could be based on the use
of microRNA. In this context, it has been recently shown that the
hsa-miR-146a-5p may negatively regulate the surface expression
of certain KIRs by mimicking a “missing self ” condition and, as
a consequence, by improving the NK cell mediated cytotoxicity
(74). Moreover, recent studies have provided novel evidence that
miR-148a-3p and miR-873 negatively regulate tumor cell PD-L1
expression (75, 76). Thus, these regulatory miRNA/targets axes
might serve as an additional tool in tumor therapy.

CONCLUDING REMARKS

Tumor development often induces a suppressive
microenvironment hampering cytotoxic lymphocytes effector-
functions thus promoting tumor progression. T and NK
cells result powerless just when we need them more. One of
the main escape mechanisms by which tumor turn off our
defense is the exploitment of immune checkpoints pathway.
Restoring and harnessing immune cells to cure cancer represents
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an attractive challenge for scientists. In the 90s, Alessandro
Moretta discovered the first NK cell immune checkpoints:
KIRs and NKG2A. Soon after, Innate Pharma generated the
first two therapeutic immune checkpoint inhibitors: lirilumab,
targeting KIR, and monalizumab, targeting NKG2A. This was
the beginning of a revolution. In the same years, Tasuku Honjo
and Jim Allison discovered that the reactivation of the immune
system by blocking twomajor immune checkpoints, CTLA-4 and
PD-1, could represent a practice-changing approach in oncology.

Honjo and Allison received the Nobel Prize in Medicine
2018 “for their discovery of cancer therapy by inhibition of
negative immune regulation.” During his speech at the Nobel
Banquet, Honjo stated: “As a result, Jim and I have experienced
many occasions that have made us feel well-rewarded, such
as meeting cancer patients who say their lives were saved by
our therapies.” He also added: “Jim and I both know that the
development of our discovery is just beginning. We encourage
many more scientists to join us in our efforts to keep improving
cancer immunotherapy.”

Alessandro realized that immunotherapy with anti-PD-1
mAbs can be also useful for reactivating NK cells against
the tumor in particular in the case of T-mediated tumor
resistance (HLA-Ineg tumor cells). This intuition was confirmed
by the identification of the PD-1 receptor on a subset of
NK cells by his group. This subset is increased in the tumor
microenvironment, as also shown by different research groups
around the world (41, 62, 66).

The very recent discovery that PD-1 is also expressed on
other groups of ILCs, including ILC2s and ILC3s, opens up new
scenarios (52, 72, 73).

Once again Alessandro Moretta gave a fundamental
contribution to the field of NK cell biology and to the clinical use
of NK cell immune checkpoints. Initially, with the discovery of
the first inhibitory checkpoints, then with the discovery of the

various NK cell activating receptors (77), here not discussed, and

finally, with the identification of the PD-1 immune checkpoint
expression on NK cells. This latest discovery by Alessandro
was certainly one of his most important contributions, and we
collaborators, but above all friends, know what the discovery
of this molecule on his beloved NK cells and its clinical
implications has meant to him. Still today, all Alessandro’s
discoveries represent important bases for understanding how to
best use NK cells in cancer therapies (Figure 1).

Thank you Alessandro for allowing us in your life, for
supporting of us whenwe needed it most, formaking us all always
feel special and, most of all, for teaching us how to move forward
with courage, simplicity and dignity.

Thank you Alessandro for having taught us how to do science,
day by day, with scientific strictness, together with modesty.
Thank you for having instilled in us your curiosity, and infinite
passion for Science. Being afraid doesn’t make any sense.

We miss you every moment in our life!
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