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ABSTRACT13

Disparity-through-time analyses can be used to determine how14

morphological diversity changes in response to mass extinctions, or to15

investigate the drivers of morphological change. These analyses are16

routinely applied to palaeobiological datasets, yet although there is much17

discussion about how to best calculate disparity, there has been little18

consideration of how taxa should be sub-sampled through time. Standard19

practice is to group taxa into discrete time bins, often based on20

stratigraphic periods. However, this can introduce biases when bins are of21

unequal size, and implicitly assumes a punctuated model of evolution. In22

addition, many time bins may have few or no taxa, meaning that disparity23

cannot be calculated for the bin and making it harder to complete24

downstream analyses. Here we describe a different method to25

complement the disparity-through-time tool-kit: time-slicing. This method26

uses a time-calibrated phylogenetic tree to sample disparity-through-time27

at any fixed point in time rather than binning taxa. It uses all available28

data (tips, nodes and branches) to increase the power of the analyses,29

specifies the implied model of evolution (punctuated or gradual), and is30

implemented in R. We test the time-slicing method on four example31

datasets and compare its performance in common disparity-through-time32

analyses. We find that the way you time sub-sample your taxa can change33

your interpretations of the results of disparity-through-time analyses. We34

advise using multiple methods for time sub-sampling taxa, rather than35

just time binning, to gain a better understanding disparity-through-time.36
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INTRODUCTION37

Disparity-through-time analyses are common in palaeontology (Gould,38

1991; Briggs et al., 1992; Wills et al., 1994; Foote, 1994). They reveal how the39

morphological diversity of clades has changed through time, and allow us40

to make inferences about the breadth of ecological niches extinct taxa41

occupied (Foote, 1997). Results from disparity-through-time studies also42

provide insights into the ecological impacts of mass extinctions,43

competitive replacements, and the drivers of morphological evolution44

(Brusatte et al., 2008b; Foote, 1996; Friedman, 2010). Unfortunately, the way45

we perform these analyses may have profound effects on our conclusions.46

Disparity-through-time analyses have two main analysis47

components: calculating disparity, and creating time sub-subsets of the48

data. Here we focus on the latter. The nature of disparity (i.e. it is a49

diversity metric), means it cannot be calculated using a single individual,50

so some way of sub-sampling taxa is required. Changes in51

disparity-through-time are generally investigated by calculating the52

disparity of taxa present during specific time intervals or time bins (e.g.53

Cisneros & Ruta, 2010; Prentice et al., 2011; Hughes et al., 2013; Hopkins,54

2013; Benton et al., 2014; Benson & Druckenmiller, 2014). These time bins55

are usually defined based on stratigraphy (e.g. Cisneros & Ruta, 2010;56

Prentice et al., 2011; Hughes et al., 2013; Benton et al., 2014) but can also be57

arbitrarily chosen time bins of equal (or approximately equal) duration58

(Butler et al., 2012; Hopkins, 2013; Benson & Druckenmiller, 2014).59

However, this approach has several limitations.60

First, time bins defined by stratigraphy are not of equal size, biasing61

higher disparity towards longer stratigraphic periods. This can be dealt62
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with using rarefaction methods, i.e. repeating the analysis while63

resampling the taxa to have the same number of taxa in each bin (e.g.64

using bootstrapping with limited resampling). This can, however, lead to65

large confidence intervals when there are stratigraphic periods with few66

species. Other studies split large time bins so they are of roughly equal67

size, but this is often an ad hoc procedure that can introduce more bias68

depending on where bins are split. Second, the time binning approaches69

(whether bins are equally sized or not) favour punctuated equilibrium70

modes of evolution. Whether the disparity represents an average across71

the interval (with no interpretation of if or how it varied within the time72

bin), or it is effectively postulated to be constant, when analysing the73

changes in disparity-through-time, this method will only allow changes in74

disparity to occur between intervals rather than also allowing for gradual75

changes within intervals (a pattern that is fairly common in the fossil76

record; Hunt et al., 2015). Third, when investigating changes in disparity77

due to events at a specific time point (e.g. a mass extinction), time bins78

may have not have high enough resolution to resolve changes at the event,79

for example if time bins are every 20 million years it may be hard to80

capture the effects of an event five million years into the bin. Finally, time81

bin analyses are often limited by the number of taxa in each bin. If there82

are insufficient taxa in a time bin, disparity cannot be calculated, so83

further analyses, e.g. correlations of disparity with hypothesised drivers84

of morphological evolution, are not possible.85

To address these issues, we propose a “time-slicing” approach that86

takes advantage of the wealth of palaeontological datasets which now87

have associated phylogenies. Time-slicing uses a phylogenetic tree and88

considers subsets of taxa at specific equidistant points in time, as opposed89
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to considering subsets of taxa between two points in time (a similar90

approach is outlined in Halliday & Goswami, 2016). This results in91

even-sampling across time and permits us to define the underlying model92

of character evolution (punctuated or gradual). Time-slicing also includes93

any element present in the phylogeny (branches, nodes and tips) at the94

time-slice in question as part of the disparity calculation. This allows us to95

measure disparity at time points where there are no sampled terminal96

taxa, and increases the sample size at each time point, making97

downstream analyses of the drivers of disparity much more feasible.98

Here we present our time-slicing methods using four datasets taken99

from the literature. We calculate disparity-through-time for each dataset100

using a range of time binning and time-slicing methods, and then101

compare these approaches with respect to the relative disparities102

calculated, but also investigate how the different approaches influence103

biological conclusions. We find that the choice of time sub-sampling104

method can have profound effects on the conclusions of105

disparity-through-time analyses.106

MATERIALS AND METHODS107

Overview108

To test the different time sub-sampling methods, we followed the protocol109

below (Fig. 1). All the code needed to reproduce these analyses (along110

with detailed instructions) is provided on GitHub111

(https://github.com/nhcooper123/time-slice).112
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Figure 1: Outline of the disparity-through-time pipeline. 1) We use ances-
tral character estimation to infer nodal character states; 2) we measure the
pairwise Gower distance between the tip character states and nodal char-
acter states; 3) we ordinate the distance matrix using principal coordinates
analysis (PCoA/PCO); 4) we time sub-sample the PCoA matrix using time
bins defined by stratigraphic periods, equally sized time bins and time-
slices (using six methods to estimate ordination scores for branches); and
finally 5) we measure disparity-through-time for each of these methods.
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Example datasets113

To test the different time binning/slicing methods we selected four114

datasets: a mammal dataset from Beck & Lee (2014), two theropod115

datasets from Brusatte et al. (2014b) and Bapst et al. (2016b), and a crinoid116

dataset from Wright (2017b). Table 1 and the Supporting Information117

Appendix S1 provide more details. Each dataset consists of first and last118

occurrence dates for all taxa, a matrix of morphological characters in119

NEXUS format, and a time-scaled phylogeny. These datasets are freely120

available with their accompanying papers (Table 1), but for reproducibility121

purposes we also provide the data we used on GitHub122

(https://github.com/nhcooper123/time-slice/data).123
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Table 1: Details of the datasets used in this study. Age ranges are root time to most recent tip taxon.
Beck2014 Brusatte2014 Bapst2016 Wright2017

Group mammals theropods theropods crinoids
# taxa 106 152 89 42

# characters 421 853 374 87

Age range (MYA) 171.8 - 0 168.5 - 66 207.2 - 66 485.4 - 372.2
Mass extinction (MYA) 66 (K-Pg) NA NA 443 (O-S)
Reference Beck & Lee (2014) Brusatte et al. (2014b) Bapst et al. (2016b) Wright (2017b)
Data reference Beck & Lee (2014) Brusatte et al. (2014a) Bapst et al. (2016a) Wright (2017a)
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Preparing the data for disparity-through-time analysis124

Estimating ancestral character states. For each dataset we estimated the125

ancestral character states at each node using the AncStatesEstMatrix126

function from the Claddis R package (Lloyd, 2015; R Core Team, 2015).127

This function uses the re-rooting method (Yang et al., 1996; Garland &128

Ives, 2000) to get Maximum Likelihood estimates of the ancestral states for129

each character at every node in the phylogeny (based on the130

rerootingMethod function in phytools; Revell, 2012). Inapplicable and131

missing characters for any taxon were treated as ambiguous characters132

(i.e. any possible observed state for the character). To prevent poor133

ancestral state estimations from biasing our results, especially when a lot134

of error is associated with the estimations, we only included ancestral135

state estimations with a scaled Likelihood ≥ 0.95. Ancestral state136

estimations with scaled Likelihoods below this threshold were recoded as137

missing data (“?”). This allowed our results to be less dependent on the138

quality (or the absence thereof) of the ancestral state estimations methods,139

especially in parts of the datasets where data were sparse. This approach140

is similar to Brusatte et al. (2011) but uses model based estimations (rather141

than parsimony) allowing us to control for ambiguous (i.e. poorly142

estimated) nodes.143

Building morphospaces. To explore disparity-through-time in our datasets,144

we used a morphospace approach (e.g. Foote, 1994, 1996; Wesley-Hunt,145

2005; Brusatte et al., 2008b; Friedman, 2010; Toljagic & Butler, 2013;146

Hughes et al., 2013). Morphospaces can be obtained from any147

multidimensional morphological data set but can differ in the data used148
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(e.g. discrete or continuous), and whether they include phylogenetic data149

or not. Although empirical morphospaces from discrete or continuous150

data have been shown to have similar properties (Foth et al., 2012;151

Hetherington et al., 2015), our morphospaces are based on discrete152

morphological data (originally collected for phylogenetic analysis; c.f.153

geometric morphometric data) and include some phylogenetic154

information (see above). Mathematically, our morphospaces are n155

dimensional objects that summarise the distances between discrete156

morphological characters of the taxa present and their ancestors.157

Constructing distance matrices. To estimate the morphospaces for each of our158

datasets we first constructed pairwise distance matrices of length n, where159

n is the total number of tips and nodes in the dataset. We calculated the160

n×n distances using the Gower distance (Gower, 1971), i.e. the number of161

mismatched characters over the number of shared characters. This allows162

us to correct for distances between two taxa that share many characters163

and could be closer to each other than to taxa with fewer characters in164

common (i.e. because some pairs of taxa share more characters in165

common than others, they are more likely to be similar). For discrete166

morphological matrices, using this corrected distance is preferable to the167

raw Euclidean distance because of its ability to deal with discrete or/and168

ordinated characters as well as with missing data (Anderson & Friedman,169

2012). However, the Gower distance cannot calculate distances when taxa170

have no overlapping data. Therefore, we used the TrimMorphDistMatrix171

function from the Claddis R package to remove pairs of taxa with no172

cladistic characters in common. This led to us removing nine taxa from173

the Bapst et al. (2016b) dataset, and 19 from the Brusatte et al. (2014b)174
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dataset, but none from the other two datasets (see Supporting Information175

Appendix S1 for details of which species).176

Ordination. After constructing our distance matrices we transformed them177

using classical multidimensional scaling (MDS; Torgerson, 1965; Gower,178

1966; Cailliez, 1983). This method (also referred to as PCO; e.g. Brusatte179

et al. 2015; or PCoA; e.g. Paradis et al. 2004; but distinguished in Legendre180

& Legendre 2012) is an eigen decomposition of the distance matrix.181

Because we used Gower distances instead of raw Euclidean distances,182

negative eigenvalues can be calculated. To avoid this problem, we first183

transformed the distance matrices by applying the Cailliez correction184

(Cailliez, 1983) which adds a constant c∗ to the values in a distance matrix185

(apart from the diagonal) so that all the Gower distances become186

Euclidean (dGower + c∗ = dEuclidean; Cailliez 1983). We were then able to187

extract k eigenvectors for each matrix (representing the k dimensions of188

the morphospace) where k is equal to n − 2, i.e. the number of taxa in the189

matrix (n) minus the last two eigenvectors that are always null after190

applying the Cailliez correction. Contrary to previous studies (e.g191

Brusatte et al., 2008a; Cisneros & Ruta, 2010; Prentice et al., 2011; Anderson192

& Friedman, 2012; Hughes et al., 2013; Benton et al., 2014), we use all k193

dimensions of our morphospaces and not a sub-sample representing the194

majority of the variance in the distance matrix (e.g. selecting only x195

dimensions that represent up to 90% of the variance in the distance matrix;196

Brusatte et al. 2008b; Toljagic & Butler 2013). Note that our morphospaces197

represent an ordination of all possible morphologies coded in each study198

through time. It is unlikely that all morphologies will co-occur at each199

time point, therefore, the disparity of the whole morphospace is expected200
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to be greater than the disparity at any specific point in time.201

Disparity-through-time analyses202

Disparity-through-time analyses were performed using the dispRity R203

package (Guillerme, 2016).204

Calculating disparity. Disparity can be calculated in many different ways205

(e.g. Wills et al., 1994; Ciampaglio, 2004; Thorne et al., 2011; Hopkins, 2013;206

Huang et al., 2015), however a majority of studies in palaeobiology207

estimate disparity using four metrics: the sum and products of ranges and208

variances, each of which gives a slightly different estimate of how the data209

fits within the morphospace (Foote, 1994; Wills et al., 1994; Brusatte et al.,210

2008a,b; Cisneros & Ruta, 2010; Thorne et al., 2011; Prentice et al., 2011;211

Brusatte et al., 2012; Toljagic & Butler, 2013; Ruta et al., 2013; Benton et al.,212

2014; Benson & Druckenmiller, 2014). However, these metrics have213

limitations. First, the range metrics are affected by the uneven sampling of214

the fossil record (Butler et al., 2012). Second, because we include all k215

dimensions in the analysis (see above), the products of ranges and216

variances will tend towards zero since the scores of the last dimension are217

usually really close to zero themselves. We therefore use the sum of218

variances metric to estimate disparity here:219

disparity = ∑ σ2ki (1)

where σ2ki is the variance for the kth
i dimension ranging from n to n − 2220

with n being the number of taxa in the dataset. Note that there are still221

statistical issues with this metric (such as the co-variance between222
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dimensions not being measured), but for the purposes of comparison with223

previous work we decided to use a standard metric for these analyses.224

Time sub-sampling To estimate disparity-through-time we first need to split225

the data into time sub-samples. Here we use three time sub-sampling226

methods.227

1. Stratigraphic time bins. This is the traditional method, where all the228

taxa within each stratigraphic period are included in the disparity229

calculation. This often leads to bins of unequal duration. Here we230

use stratigraphic stages and epochs.231

2. Equally sized time bins. This is another commonly used method,232

where the time frame of interest is split into equally sized time bins,233

then all the taxa within each time bin are included in the disparity234

calculation.235

3. Time-slicing. We describe this in more detail below, but in brief,236

time-slicing uses a phylogeny, and rather than binning the data, it237

takes slices through a phylogeny and includes all the taxa and nodes238

in that slice within the disparity calculation.239

Time-slicing. The “time-slicing” approach considers subsets of taxa in the240

morphospace at specific equidistant points in time, as opposed to241

considering subsets of taxa between two points in time. This results in242

even-sampling of the morphospace across time and allows us to use243

different underlying models of character evolution (punctuated or244

gradual).245
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In practice, time-slicing considers the disparity of any element246

present in the phylogeny (branches, nodes and tips) at any point in time.247

When the phylogenetic elements are nodes or tips, the ordination scores248

for the nodes (estimated using ancestral state reconstruction as described249

above) or tips are directly used for calculating disparity. When the250

phylogenetic elements are branches we choose the ordination score for the251

branch using one of two evolutionary models:252

1. Punctuated evolution. This model selects the ordination score from253

either the ancestral node or the descendant node/tip of the branch254

regardless of the position of the slice along the branch. Similarly to255

the time bin approach, this reflects a model of punctuated evolution256

where changes in disparity occur either at the start or at the end of a257

branch over a relatively short time period, and clades undergo long258

periods of stasis during their evolution (Gould & Eldredge, 1977;259

Hunt, 2007). We apply this model in four ways:260

(i) The “acctran” model, always selecting the ordination score of261

the descendant node/tip of the branch.262

(ii) The “deltran” model, always selecting the ordination score of263

the ancestral node of the branch.264

(iii) The “random” model, randomly selecting the ordination score265

of either the ancestor or the descendant of the branch.266

(iv) The “proximity” model, selecting the ordination score of the267

ancestor if the slice occurs in the first half of the branch, and the268

descendant if the slice occurs in the second half of the branch.269

The two first models assume that changes always occur early270
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(accelerated transition) or late along the branches (delayed transition).271

The third model makes neither assumption and simply selects data272

from the ancestor or the descendant at random, and the fourth bases273

the selection of either the ancestor or the descendant on where the274

slice occurs along the branch. These punctuated models only select275

either the ordination score from the ancestor and the descendant276

once in the whole disparity analysis. For example, if using the277

“random” model, if the data of the ancestor has been randomly278

chosen, only this data will be used during the bootstrapping (see279

below) and for the disparity calculation.280

2. Gradual evolution. Unlike the punctuated models, the following281

models do not select the ordination score of either the ancestor or282

the descendant but associate a probability to both. This reflects a283

model of gradual evolution where changes in disparity are gradual284

and cumulative along the branch.285

(v) The “equal splits” model (probabilistic), selects the ordination286

score from both the ancestor and the descendant with an equal287

probability:288

p(ancestor) = p(descendant) = 0.5 (2)

(vi) The “gradual splits” model (probabilistic), selects the289

ordination score from both the ancestor and the descendant290

with a probability function of the distance between the291
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nodes/tip at the ends of the branch and the slice:292

p(ancestor) =
d(ancestor, slice)

d(ancestor, descendant)
(3)

293

p(descendant) = 1 − p(ancestor) (4)

where d(x, y) is the distance between the two elements x, y294

(ancestor, slice or descendant) measured in units of branch295

length.296

In these models, the ordination scores of both the ancestor and297

descendant contribute to the disparity calculation. For example,298

using the “gradual splits” model, if the slice occurs in the third299

quarter of a branch joining node A to node/tip B (75% of the total300

branch length), after bootstrapping, the disparity results will be301

based on 25% of the data from A and 75% of the data from B.302

Because of the probabilistic nature of these models, they are only303

meaningful when calculating disparity from bootstrapped datasets.304

It is important to note that the time-slicing method is not an305

ancestral states estimation method per se. This method does not estimate306

values along a branch applying a model (c.f. methods described for307

ancestral character estimation in the “Preparing the data for308

disparity-through-time analysis” section above) but rather chooses309

between the two available pieces of information (the ordination score of310

the descendant or the ancestor) using the methods described above. This311

allows the method to be used in post-ordination analysis where the data312

used in each time-slice is data already present in the morphospace. In313
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other words, this method does not require a re-ordination of the314

morphospace every time a slice goes through a branch, thus allowing the315

properties of the morphospace (e.g. distance between species, variance of316

each axis, etc.) to remain constant. For example, using the “equal.splits”317

model on an ancestor and a descendant with PCO1 values of respectively318

0.04 and 0.03, after a sufficient number of bootstrap replicates (e.g. 100)319

the value along the branch will be close to 0.5 × 0.04 + 0.5 × 0.03 = 0.035.320

By estimating this value rather than generating it (i.e. creating a new321

element mid-way along the branch that would be the average of the322

descendant and ancestor - 0.035) we obtain the same results without323

modifying the morphospace properties.324

Comparing time sub-sampling methods325

To compare the time binning and time-slicing approaches we applied the326

methods as follows (see Fig. ??).327

1. Stratigraphy: time sub-samples defined by stratigraphic periods (Fig.328

2).329

(i) Time bins (unequal). We calculated disparity for the taxa in330

each stratigraphic period (stage or epoch). To reduce the331

influence of outliers on our disparity estimates, we332

bootstrapped each disparity measurement for each time bin by333

randomly resampling with replacement a new sub-sample of334

taxa from the observed taxa in the bin 100 times. We then335

calculated the median disparity value for each time bin along336

with the 50% and 95% confidence intervals.337
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Figure 2: Outline of the three time sub-sampling methods. Stratigraphy:
time sub-samples are defined by stratigraphic periods. Here there are five
stratigraphic periods in the 20 My (million years) time frame of interest, i.e.
five bins/slices with variable sizes/intervals. Duration: time sub-samples
are defined based on the mean duration of stratigraphic periods in the
time frame of interest. Here, the mean duration of stratigraphic periods is
5 My, so there are four bins/slices of 5 My duration (or four slices with 5

My intervals between them) in the 20 My time frame of interest. Number:
time sub-samples are defined based on the number of stratigraphic periods
in the time frame of interest. Here, there are five stratigraphic periods, so
there are five bins/slices of 4 My duration (or five slices with 4 My intervals
between them) in the 20 My time frame of interest.
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(ii) Time-slices (non-equidistant). We calculated disparity using338

our time-slicing approach with slices occurring at the midpoint339

of each stratigraphic period (stage or epoch), and using all six340

time-slicing methods (acctran, deltran, random, proximity,341

equal splits and gradual splits). To reduce the influence of342

outliers on our disparity estimates, we bootstrapped each343

disparity measurement as described above for the stratigraphic344

time bins.345

2. Duration: time sub-samples defined by the duration of stratigraphic346

periods (Fig. 2).347

(i) Time bins (equal). We calculated disparity for the taxa in each348

time bin where time bin size was defined by the mean duration349

of the stratigraphic period (stage or epoch), and bootstrapped350

the disparity values as described above.351

(ii) Time-slices (equidistant). We calculated disparity using our352

time-slicing approach where the interval between slices, was353

defined by the mean duration of the stratigraphic period (stage354

or epoch). We used the six time-slicing methods and355

bootstrapped as described above.356

3. Number: time sub-samples defined by the number of stratigraphic357

periods (Fig. 2).358

(i) Time bins (equal). We calculated disparity for the taxa in each359

time bin where the number of time bins was defined by the360

number of stratigraphic periods (ages or epochs) in the time361

frame of interest, and bootstrapped the disparity values as362
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described above.363

(ii) Time-slices (equidistant). We calculated disparity using our364

time-slicing approach where the number of slices, was defined365

by the number of stratigraphic periods (ages or epochs) in the366

time frame of interest. We used the six time-slicing methods367

and bootstrapped as described above.368

We also recorded the number of taxa (or taxa and nodes for369

time-slicing methods) in each sub-sample as a proxy for taxonomic370

diversity.371

Testing for differences in the time sub-sampling methods372

Testing for statistical differences among the time sub-sampling methods373

described above is difficult, as we need to compare similar units, and also374

to tackle questions important to the interpretation of375

disparity-through-time analyses. We therefore present three different,376

simple ways of comparing the time sub-sampling methods as follows.377

Systematic differences in disparity-through-time. To test whether using time bins378

or time-slices resulted in significantly different disparity values at379

common time points, we used paired Wilcoxon tests to compare the380

median bootstrapped disparities obtained in the stratigraphy (time381

sub-samples defined by stratigraphic periods), duration (time sub-samples382

defined by the duration of stratigraphic periods), and number (time383

sub-samples defined by the number of stratigraphic periods) analyses384

described above.385

Due to the uneven spread of taxa across phylogenies, some time bins386
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will contain one or no species, meaning that we cannot estimate disparity387

for that time bin. We first, therefore, removed the time bins, and388

corresponding time-slices, without disparity estimates. We then389

performed paired Wilcoxon tests with Bonferroni corrected p-values, so390

that bins and slices for the same time period are being compared.391

Significant results suggest that there is a systematic difference in disparity392

values at each time point, depending on whether bins or slices are used.393

Disparity peaks. We are perhaps more interested in how the conclusions of394

disparity-through-time analyses are influenced by the choice of time395

sub-sampling method, rather than the disparities estimated by each396

method per se, especially as these will be influenced by the number of taxa397

(and/or nodes) included in each sub-sample. Therefore, we also398

investigated where peaks of disparity occurred in each of our datasets for399

the different time sub-sampling methods. We calculated the maximum400

bootstrapped disparities for each dataset and for each time sub-sampling401

method, along with their associated confidence intervals. Significant shifts402

in disparity peaks suggest that the choice of time sub-sampling method403

will influence our conclusions about relative changes in the disparity of404

our groups through time.405

Effects of mass extinction events. Many analyses of disparity-through-time406

aim to demonstrate differences in disparity before and after mass407

extinction events. Two of our four datasets contain taxa before and408

immediately after a mass extinction (Cretaceous-Paleogene 66 MYA; Beck409

& Lee 2014; Ordovician-Silurian 455-430 MYA; Wright 2017b), so we used410

Wilcoxon tests with Bonferroni corrected p-values to compare disparity in411
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the time bin/slice prior to the appropriate mass extinction, to that of the412

time bin/slice following the extinction event. Significant results suggest413

an effect of the mass extinction on disparity in the group. We then414

compare these results across the time sub-sampling methods to determine415

if our conclusions change depending on the method used. We repeated416

these analyses using the two time bins/slices after the one immediately417

following the mass extinction event to account for any lag effects of the418

mass extinction on disparity.419

RESULTS420

Disparity-through-time analyses421

Disparity changes through time for each of our four datasets (Fig. 3,422

Supporting Information Appendix S2: Figs A1-A2). Relative disparities423

tend to be lower with time binning methods, likely because these contain424

fewer taxa than time-slicing methods. The six different time-slicing425

methods (acctran, deltran, random, proximity, equal splits and gradual426

splits) show similar patterns, so we focus only on the results for one427

method with a punctuated model of evolution (specifically the ‘proximity’428

method), and one method with a gradual model of evolution (specifically429

the ‘gradual splits’ method). Results for all six methods can be found in430

Supporting Information Appendix S2: Figures A1-A2.431

Testing for differences in the time sub-sampling methods432

Systematic differences in disparity-through-time. There is no overall significant433

systematic difference among the disparities calculated using time bins and434

those calculated using the time-slicing methods (Table 2, Supporting435
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Figure 3: Relative disparity-through-time. Median bootstrapped dispari-
ties were calculated using time binning and time-slicing approaches. Green
points represent time binning methods, purple points are time-slices with
a punctuated model of evolution (‘proximity’ method), and blue points are
time-slices with a gradual model of evolution (‘gradual splits’ method).
Relative disparities (median bootstrapped disparity divided by the maxi-
mum median bootstrapped disparity for a dataset and analysis method) are
presented so they can be compared across datasets/methods. Stratigraphy
uses unequal time bins or non-equidistant time-slices, where the width of
the bin, or the interval between slices, is equivalent to stratigraphic epochs.
Duration uses equal time bins or equidistant time-slices, where the width
of the bin, or the interval between slices, is the mean duration of strati-
graphic epochs in the time frame of the dataset. Number uses equal time
bins or equidistant time-slices, where the number of bins, or the number
of slices, is the mean number of stratigraphic epochs in the time frame of
the dataset. In all cases, time bin disparities are plotted at the midpoint of
the bin, and error bars represent the 95% confidence intervals around the
bootstrapped median disparity. The four dataset names are on the first plot
for each dataset (see Table 1 for details). Results for stratigraphic stages,
and for other time-slicing methods, are in the Supporting Information Ap-
pendix S2: Figures A1-A2.
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Information Appendix S2: Table A1). Instead, the differences depend on436

the dataset and method in question. For example, the Brusatte et al.437

(2014b), Bapst et al. (2016b) and Wright (2017b) datasets, show significant438

differences when using bins versus time-slices defined by stratigraphy, but439

the Beck & Lee (2014) dataset appears robust to these different440

approaches. Likewise, the Beck & Lee (2014), Brusatte et al. (2014b) and441

Bapst et al. (2016b) datasets have different disparities when the number of442

bins or slices is the mean number of stratigraphic periods, but this is not443

seen in the Wright (2017b) dataset. Note that for epochs, we find fewer444

significant differences simply because the smaller numbers of bins and445

slices being compared means we have low power to detect a significant446

difference.447

Disparity peaks. In the Beck & Lee (2014) and Bapst et al. (2016b) datasets,448

disparity peaks occur much at much older ages when time-slicing rather449

than time binning approaches are used (Fig. 4; Supporting Information450

Appendix S2: Figs A3-A4). This is also true for stratigraphic time bins in451

the Wright (2017b) dataset, although when using equal time bins the452

peaks are later than the time-slicing methods, or very similar (Fig. 4;453

Supporting Information Appendix S2: Figs A3-A4). Across the three time454

binning methods, the Brusatte et al. (2014b) dataset has similar disparity455

peaks whichever method is used, the Wright (2017b) dataset only had456

variation in peaks when using unequal time bins (stratigraphy), whereas457

in the Bapst et al. (2016b) and Beck & Lee (2014) datasets, stratigraphic458

(unequal) versus equally sized time bins make a large difference to where459

the disparity peak occurs (Fig. 4; Supporting Information Appendix S2:460

Figs A3-A4). Additionally, there seem to be small discrepancies within the461
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Table 2: Results of paired Wilcoxon tests investigating whether disparities
calculated using time bins are significantly different to those calculated
using time-slices. Time-slices used either a punctuated (proximity method)
or gradual (gradual.split method) model of evolution. Stratigraphy uses
unequal time bins or non-equidistant time-slices, where the width of the
bin, or the interval between slices, is equivalent to stratigraphic ages or
epochs. Duration uses equal time bins or equidistant time-slices, where
the width of the bin, or the interval between slices, is the average duration
of stratigraphic ages or epochs in the time frame of the dataset. Number
uses equal time bins or equidistant time-slices, where the number of bins,
or the number of slices, is the average number of stratigraphic ages or
epochs in the time frame of the dataset. P-values were Bonferroni corrected.
∗ ∗ ∗p < 0.001. Results for other time-slicing methods are in the Supporting
Information Appendix S2: Table A1.
Dataset Period Method Stratigraphy Duration Number
Beck2014 Age gradual.split 111 115*** 65***
Beck2014 Age proximity 105 83 68***
Beck2014 Epoch gradual.split 21 39 43***
Beck2014 Epoch proximity 21 36 32

Brusatte2014 Age gradual.split 28*** 61*** 52***
Brusatte2014 Age proximity 27*** 31 28***
Brusatte2014 Epoch gradual.split 3 6 6

Brusatte2014 Epoch proximity 0 5*** 5

Bapst2016 Age gradual.split 93 153 165

Bapst2016 Age proximity 57*** 47 75***
Bapst2016 Epoch gradual.split 4 6 12

Bapst2016 Epoch proximity 2 0*** 8

Wright2017 Age gradual.split 152*** 155 116

Wright2017 Age proximity 160*** 175*** 101

Wright2017 Epoch gradual.split 28 29 21

Wright2017 Epoch proximity 23 28 18
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time-slicing methods (gradual.split vs. proximity) except in the Beck &462

Lee (2014) dataset where the gradual split model recovered disparity463

peaks at younger ages than the proximity model (Fig. 4; Supporting464

Information Appendix S2: Figs A3-A4)465

Effects of mass extinction events. Mass extinction events influence disparity in466

both the Beck & Lee (2014) and Wright (2017b) datasets (Fig. 5). However,467

whether this change in disparity is significant or not depends on the468

method used to create time sub-samples (Fig. 5), and whether stages or469

epochs are used. In general, for the Beck & Lee (2014) dataset, time470

binning tended to give more significant results than time-slicing methods,471

but this was not the case for the Wright (2017b) dataset.472

DISCUSSION473

Disparity-through-time analyses are influenced by the choice of time474

sub-sampling method used to divide the taxa. While differences in the475

relative disparities calculated among time sub-sampling methods may not476

be of much biological importance, these changes can have important477

implications for the conclusions of downstream analyses. For example,478

using stratigraphic epochs as our reference time period, there are 21479

potential methods for time sub-sampling our data (splitting by480

stratigraphy, number and duration, see methods, and using time bins or481

one of six time-slicing methods). Of these 21 methods, in 16 (76%) we482

show that placental mammals (Beck & Lee, 2014) significantly increased in483

disparity in the time bin/slice immediately after the K-Pg mass extinction484

event, and in 20 (95%) we show that crinoids (Wright, 2017b) significantly485

decreased in disparity in the time bin/slice immediately after the O-S486
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Figure 4: Timing of peak disparity. Median bootstrapped disparities were
calculated using time binning and time-slicing approaches. Green points
represent time binning methods, blue points are time-slices with a punc-
tuated model of evolution (‘proximity’ method), and purple points are
time-slices with a gradual model of evolution (‘gradual splits’ method).
Stratigraphy uses unequal time bins or non-equidistant time-slices, where
the width of the bin, or the interval between slices, is equivalent to strati-
graphic epochs. Duration uses equal time bins or equidistant time-slices,
where the width of the bin, or the interval between slices, is the mean dura-
tion of stratigraphic epochs in the time frame of the dataset. Number uses
equal time bins or equidistant time-slices, where the number of bins, or the
number of slices, is the mean number of stratigraphic epochs in the time
frame of the dataset. For time bins the points indicate the maximum and
minimum ages of the time bin within which peak disparities appeared. The
four dataset names are on the first plot for each dataset (see Table 1 for de-
tails). Results for stratigraphic stages, and for other time-slicing methods,
are in the Supporting Information Appendix S2: Figures A3-A4.
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Figure 5: Effects of mass extinction events on disparity. Pink cells and blue
cells indicate respectively a significant or non significant change in dis-
parity before and after the mass extinction event (Cretaceous-Paleogene 66

MYA; Beck & Lee 2014; Ordovician-Silurian 455-430 MYA; Wright 2017b).
e:1, e:2, and e:3 denote whether the comparison was between the time bin or
time-slice immediately after the mass extinction (e:1), or the second (e:2) or
third (e:3) bin/slice after the mass extinction to account for any lag effect.
The top seven rows use stratigraphic stages and the bottom seven rows
use stratigraphic epochs. Labels on the left hand side indicate whether
time bins (“bins”) were used, or which of the six time-slicing methods was
used.
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mass extinction event. Given the high congruence (76% and 95%) of these487

results, one could argue that time-sub-sampling methods are not488

important. However, if we had chosen to investigate crinoid disparity only489

using time bins and splitting these so the number of time bins was equal490

to the number of epochs (number), we would have concluded that the O-S491

extinction had no effect on crinoid disparity. Likewise, the timing of peak492

disparity differs among methods. This is particularly evident when493

comparing stratigraphic time bins to time slicing methods, where for most494

of our datasets we see a much later time to peak disparity. This could495

have major implications for our understanding of how morphological496

diversity changes through time, for example in response to climate. These497

results highlight the sensitivity of disparity-through-time analyses to the498

choice of time sub-sampling method. Fortunately this issue is easy to499

solve; either disparity-through-time analyses should use, and report500

results from, multiple time sub-sampling methods (as demonstrated here),501

or great care should be taken in determining the appropriate time502

sub-samples to answer the question of interest.503

Time-slicing has several advantages over time binning (using either504

equally or unequally sized bins) approaches. First, it allows us to use as505

much of the information available to us, in the form of phylogenetic506

relationships and ancestral taxa, as possible. This increases our ability to507

investigate key biological questions, such as how do various drivers508

influence morphological diversity through time, and how do mass509

extinctions influence disparity (Brusatte et al., 2008b; Foote, 1996;510

Friedman, 2010), both by increasing the statistical power of analyses and511

through the availability of data at key time points in the history of our512

groups. Second, we are able to be more explicit about the mode of513
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evolution in our clades; in time-slicing we can apply punctuated or514

gradual models of trait change rather than making an assumption of515

punctuated evolution. This may be important, as gradual change is a516

common pattern of trait evolution in the fossil record (Hunt, 2007).517

Of course the method also has limitations. The main one of these is a518

practical one; it requires a time-calibrated phylogeny and these are not519

available for all palaeontological datasets. Furthermore, like most520

phylogeny based methods, time-slicing depends on ancestral state521

estimations. Care should be taken in interpreting these, as they are highly522

dependent on the data and models used for the estimations (Slater et al.,523

2012; Ekman et al., 2008). The difference between the time-binning and524

time-slicing results could also simply be due to the nature of the fossil525

record. Rates of sedimentation vary in time and space influencing the526

groups found within the rock record and their temporal distribution. In527

this case, different beds could represent different “packages” of fauna528

through time separated by gaps, resulting in natural “bins” rather than529

slices of the data. Slicing through such strata will yield similar results no530

matter where in time the slice occurs. It is important to note however, that531

the time slicing method also includes ancestral estimations (either through532

the nodes or the branches) that are by definition not available in the fossil533

record and thus are not influenced by its nature. Additionally, this effect is534

likely to be most obvious in groups where the fossil record is “patchy”,535

e.g. vertebrates, but less problematic for groups with a more continuous536

record like Foraminifera. Finally, Hunt et al. (2015) found that time series537

are best characterized by gradual directional changes (biased random538

walks). In fact, homogeneous directional changes are more likely to be539

supported than heterogeneous ones (e.g. punctuated changes) in longer540
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duration series with few samples in each series. In our implementation of541

time-slicing, the models are not selected based on any model fit criterion542

(e.g. AIC) but merely on researcher assumptions. We thus suggest that543

both types of models (punctuated and gradual) are tested during analysis,544

unless there is strong independent support for one or the other.545

CONCLUSIONS546

The choice of time sub-sampling method can alter the conclusions we547

obtain from disparity-through-time studies. Time-slicing methods, with548

explicit models of evolution, provide an alternative to traditional time549

binning approaches. Note that while we introduce the time-slicing550

methods here, and describe their advantages, we do not suggest551

time-slicing is necessarily the “best” method for time sub-sampling in all552

cases. As with all methods, the choice of methodology should be553

appropriate for the question and data at hand. However, we do strongly554

recommend performing disparity-through-time analyses using a series of555

appropriate time sub-sampling methods, and comparing these, to ensure556

that results are not merely a consequence of the time sub-sampling557

method employed.558
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