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Abstract

Economic evaluation of climate policy traditionally treats uncertainty by appealing to

expected utility theory. Yet our knowledge of the impacts of climate policy may not be of

sufficient quality to justify probabilistic beliefs. In such circumstances, it has been argued

that the axioms of expected utility theory may not be the correct standard of rationality.

By contrast, several axiomatic frameworks have recently been proposed that account for

ambiguous beliefs. In this paper, we apply static and dynamic versions of a smooth ambiguity

model to climate mitigation policy. We obtain a general result on the comparative statics

of optimal abatement and ambiguity aversion and illustrate this sufficient condition in some

simple examples. We then extend our analysis to a more realistic, dynamic setting, and

adapt a well-known empirical model of the climate-economy system to show that the value

of emissions abatement increases as ambiguity aversion increases, and that this ‘ambiguity

premium’ can in some plausible cases be very large.

1 Introduction

The literature on optimal climate change mitigation policy has thus far remained faithful to the
long tradition of welfare analysis based on expected utility maximization. The integrated assess-
ment models that are widely used for policy evaluation all have a common welfare-analytic core.
Most studies employ deterministic models (Manne & Richels, 1992; Nordhaus, 2008; Tol, 1997),
allowing for efficient determination of optimal policies, which are then subjected to sensitivity
analysis in order to test their robustness to changes in model parameters. Other studies employ
stochastic models (Hope, 2006), and generally do not find optimal policies, but rather provide wel-
fare assessments of exogenously specified greenhouse gas emissions pathways. A few authors have

∗Email address for correspondence: a.millner@berkeley.edu. We thank Cameron Hepburn, Christian Traeger,
Martin Weitzman, and Raphael Calel for very helpful comments, and Malte Meinshausen for supplying us with the
empirical estimates of the climate sensitivity distributions.
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combined these two approaches by solving stochastic-dynamic control problems to endogenously
determine optimal policies that account for future risks (Pizer, 1999; Keller et al., 2004; Kelly &
Kolstad, 1999). Thus, while there are several models of varying complexity and emphasis, they
share a common commitment to the expected utility framework.

The reasons for the primacy of expected utility theory as a normative model of rational choice
are well known to economists. Its axiomatic foundations have been developed by several au-
thors (von Neumann & Morgenstern, 1944; Savage, 1954; Anscombe & Aumann, 1963). Savage’s
presentation is widely considered the most satisfactory, since it derives both utility functions
and subjective probabilities from primitive preferences over ‘acts’, i.e. maps between states and
outcomes. Indeed his axioms are often considered to be synonymous with rational choice. Never-
theless, Savage himself took a cautious approach to his theory, suggesting that it should only be
applied in small worlds, in which it is possible to ‘look before you leap’, i.e. imagine every possi-
ble contingency, and identify a complete ordering of acts over these contingencies (see Binmore,
2009, for a discussion). Further potential limitations on the domain of applicability of Savage’s
theory were famously identified by Ellsberg (1961), who showed that when our state of knowledge
is more accurately described as uncertainty rather than risk (we use these terms in the sense of
Knight (1921)), we may wish to violate Savage’s second axiom, the ‘sure-thing principle’. A strong
Bayesian would interpret Ellsberg’s results as a contribution to positive, rather than normative,
decision theory. Bayesians believe that Savage’s axioms define rational choice, in which case the
preferences Ellsberg observes in his investigations are deemed irrational, and all uncertainty is al-
ways describable by a unique probability distribution. This viewpoint has however been strongly
contested. As noted by Ellsberg (1961) and Slovic & Tversky (1974), people often stick to choices
that violate the sure-thing principle in Ellsberg’s choice experiments, even when this violation is
pointed out to them. This is in stark contrast to other decision theoretic ‘paradoxes’, such as
the Allais paradox, where people often revert to the prescriptions of expected utility once their
violation of the axioms is explained. It has been argued, we think convincingly, that when our
information about the world is incomplete, inconsistent, or nonexistent, Savage’s axioms need not
be the correct standard of rationality (Gilboa et al., 2008, 2009), and it does not necessarily make
sense to describe our state of knowledge with a unique probability distribution over states of the
world1.

Given these views, our assessment of the validity of the expected utility approach to the welfare
analysis of climate change policy must depend on how structured our beliefs about the climate
system2 are. If we have sufficiently high quality information to justify probabilistic beliefs, then
the approach adopted thus far in the literature is unequivocally useful. If not, we need to justify
why this approach is a useful approximation, or attempt to define welfare measures that are true
to our actual state of knowledge about the climate system, and reflect our preferences over bets
with unknown probabilities. Very often a good way of justifying an approximation is to embed
it in a more general framework, and show that the increased power of this framework does not
materially alter the results achieved by the approximation. Thus, provided we suspect that our

1Ellsberg himself emphasizes that ‘...either the postulates failed to be acceptable in those circumstances as
normative rules, or they failed to predict reflective choices...But from either point of view, it would follow that there
would be simply no way to infer meaningful probabilities for those events from their choices, and theories which
purported to describe their uncertainty in terms of probabilities would be quite inapplicable in that area.’

2Our work focusses on uncertainty about a key parameter of the climate system – the climate sensitivity – and
for the most part assumes that economic parameters are known. More on this later.
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knowledge of the climate system is not very high quality, there would seem to be good reason
to develop approaches to policy evaluation which account for uncertainty and not just risk, since
these will either justify our reliance on existing methods, or provide appropriate tools for future
work.

What is our state of knowledge about the climate system, and can it be described by unique
probabilities? We feel it is important to break the state of scientific knowledge about climate into
two categories: broad scientific principles, and detailed empirical predictions. In the first category
belong concepts such as the laws of thermodynamics, fluid dynamics, and statements of fact
such as ‘CO2 traps outgoing long-wave radiation, causing warming’. We believe these principles
to be unimpeachable. In the second category belong the sophisticated models scientists use to
convert these principles into predictions – energy balance models (EBMs), earth systems models of
intermediate complexity (EMICs), and full-scale general circulation models (GCMs). These models
can be enormously complex, and attempt to predict, among other things, the response of the global
climate to increases in the concentrations of greenhouse gases. Because of the complexity of their
task, and the intrinsic difficulties of prediction in highly nonlinear multi-dimensional physical
systems (see Smith (2002, 2007); Stainforth et al. (2007); Frame et al. (2007) for illuminating
discussions of the scientific and philosophical challenges of climate prediction), these models are
not always in agreement with one another. As an example of this, consider Figure 1, which plots
the results of several recent studies’ attempts to use different models and observational data to
estimate the climate sensitivity3, a critical parameter for estimating the response of the climate
to increases in CO2 concentrations which features prominently in integrated assessment models.
From the figure it is clear that there are many inconsistent estimates of this important quantity.
This suggests that we are indeed in an environment characterized by uncertainty, rather than
risk. There are two standard responses to this assertion: Why not simply aggregate the different
estimates into a single probability density (Bayesian response); and surely all the estimates are not
equally valid, so why not simply choose the ‘best’ estimate (scientists’ response)? The point we
are making is that the spread in the set of distributions is an indication of the intrinsic ambiguity
in our state of knowledge. If decision makers perceive this ambiguity, and are averse to it as
Ellsberg’s results suggest they will be, their beliefs cannot be described by a single probability
distribution. How then should policy reflect this uncertainty?

Since Ellsberg’s work there has been a series of theoretical advances in decision theory which
provide axiomatic representations of preferences that account for uncertainty or ambiguity. Semi-
nal contributions include Arrow & Hurwicz (1977); Schmeidler (1989); Gilboa & Schmeidler (1989)
and Klibanoff et al. (2005). These are elegant models, and have found application in several areas
of economics, especially finance (e.g. Dow & da Costa Werlang, 1992; Bassett et al., 2004; Gol-
lier, 2009; Bossaerts et al., 2010). Hansen & Sargent (2007) have applied similar techniques in
macroeconomics in order to derive policies that are robust to model misspecification. Despite the
appeal of these models in other areas of applied economics, they have only just begun to filter
into the argument around climate policy. Henry & Henry (2002) is perhaps the first paper to view
climate policy through this lens, and focusses on formalizing precautionary policies as policies that
account for ambiguity in scientific knowledge. Lange & Treich (2008) provide some comparative

3The climate sensitivity is the amount by which global mean surface temperature rises for a doubling of CO2

concentration, in equilibrium.
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Figure 1: Estimated probability density functions for the climate sensitivity from a variety of
published studies, collated by Meinshausen et al. (2009).

statics results on the effect of ambiguity on optimal abatement in a two-period model. Although
not confined to climate applications, the work of Traeger (2009) and Gollier & Gierlinger (2008)
on the effect of ambiguity aversion on the social discount rate is clearly relevant and has important
implications for the assessment of mitigation investments.

In this paper we hope to provide a further step along the path sketched out by these authors.
In Section 2 we provide insight into the comparative statics of ambiguity aversion in stylized

timeless models of greenhouse gas emissions abatement policy choice. Examining the static case
helps to build intuition for the effect of ambiguity aversion on optimal decisions. We introduce a
model of decision under ambiguity, analyze its basic properties, and derive a new and quite general
condition that allows us to perform comparative statics. This condition is sufficient for an increase
in ambiguity aversion to increase optimal abatement, or conversely, to decrease it. We then extend
our comparative statics to two simple illustrative examples of abatement policy. The first example
directly applies our sufficient condition to obtain conditions on the model’s input assumption
which ensure that optimal abatement is increasing in ambiguity aversion. Our sufficient condition
is not satisfied in our second example, but it is possible to explicitly compute optimal abatement,
and its relation with ambiguity aversion. In Section 3 we extend this analysis to the dynamic case,
and attempt to understand how ambiguity aversion affects the welfare assessment of dynamic
abatement policies. The dynamic aspects of ambiguity models are especially difficult, and we only
consider their implications to a limited extent. In particular, we do not account for the dynamic
resolution of ambiguity over time through learning, but rather focus on computing welfare measures
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in two extreme cases – when ambiguity is expected to resolve completely after one time period, and
when ambiguity persists unchanged for all time. These extremes allow us to bound the welfare
effects of alternative abatement policies. We compute welfare measures for sample exogenous
abatement pathways which are fed into the integrated assessment model DICE (Nordhaus, 2008)
to generate consumption streams, and assess how ambiguity over the correct probability density
for the climate sensitivity affects them. We show that the effect of ambiguity aversion on welfare
evaluations depends sensitively on the damage function assumed in DICE, with steep damages at
high temperatures giving rise to a large ‘ambiguity premium’ on abatement. We interpret these
empirical results by appealing to theoretical work on the social discount rate under ambiguity.
Section 4 discusses the results of our analysis, and concludes.

2 The smooth ambiguity model and optimal abatement

A potential difficulty with several of the decision models that account for ambiguity is that they
do not achieve a separation between ambiguous beliefs and attitudes towards ambiguity. This
was overcome by the contribution of Klibanoff et al. (2005), who provided a preference represen-
tation that separates tastes from beliefs, and allows us to parameterize attitudes to ambiguity
via a differentiable function, in a manner analogous to the way utility functions represent risk
preferences4. Their formalism is thus perfectly suited to understanding how different degrees of
ambiguity aversion affect policies and welfare estimates. We introduce their model below.

Define an ‘act’ à la Savage as a map between states and outcomes (see e.g. Gilboa (2009) for a
detailed explanation of Savage acts). Klibanoff et al. (2005) define a set of axioms for preferences
over ambiguous acts, and show that when these axioms are satisfied act f is preferred to act g if
and only if

Epφ(Eπu ◦ f) > Epφ(Eπu ◦ g), (1)

where u is a von Neumann-Morgenstern utility function, φ is an increasing function, and p is a
subjective second-order probability over a set Π of probability measures π that the decision maker
(DM) deems to be relevant to her decision problem. When φ is concave, the DM can be said to be
ambiguity averse, i.e. she dislikes mean-preserving spreads in the set of expected utilities implied
by her model set Π. To immediately give this model a climatic interpretation, suppose that the
choice variable is the level of abatement a of greenhouse gas emissions. Assume that there are m

probability models of how abatement affects expected utility. For each model, write the expected
utility obtained as a function of a as EUm(a). Now suppose that the DM is ambiguity averse, and
that she has smooth ambiguity preferences a la Klibanoff et al. (2005). Let φ define her ambiguity
preferences, i.e. φ′ > 0, φ′′ < 0, and pm be the subjective second-order probability of model/prior
m. Her objective function V is then:

V (a) :=
∑

m

pmφ (EUm(a)) . (2)

4Ghirardato et al. (2004) achieve a similar separation between tastes and beliefs, but their framework is not well
suited to the comparative statics analysis and dynamic applications we consider in this paper.
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The first-order conditions can be written as

∑

m

p̂m(a∗)
dEUm

da

∣∣∣∣
a=a∗

= 0 (3)

where a∗ is the optimal abatement level, and we have defined the ambiguity-adjusted second-order
probabilities p̂m as:

p̂m(a∗) =
φ′(EUm(a∗))pm∑
n φ′(EUn(a∗))pn

. (4)

Equation (3) just says that the weighted sum over models of marginal expected utility with respect
to abatement should be zero, where the weighting factors are just the p̂m. It is identical to the
condition one would obtain under ambiguity neutrality, except that pm is replaced by p̂m(a∗), the
ambiguity-adjusted weight on model m.

If we look at (4), it is clear that the ambiguity weighting emphasizes those models that predict
low expected utilities, since φ′ is a decreasing function. Moreover, an increase in ambiguity
aversion puts more weight on models with low expected utilities, and less on those with high
expected utilities. This can be formalized using the concept of monotone likelihood ratios. Gollier
& Gierlinger (2008) prove the following result:

Proposition 1. Suppose there is a set M of possible models of cardinality M , and indexed by
m. Without loss of generality, assume that the EUm are ordered such that EU1 ≤ . . . ≤ EUM .
Let φ2 = f(φ1), where f is increasing and concave, and let (p̂1

m)m∈M, (p̂2
m)m∈M be the ambiguity-

adjusted second-order probabilities associated with φ1 and φ2 respectively, as given by equation
(4). Then (p̂1

m)m∈M dominates (p̂2
m)m∈M in the sense of the monotone likelihood ratio order, i.e.

(
p̂2

m/p̂1
m

)
m∈M is decreasing in m.

The proof is very simple - the ratio p̂2
m/p̂1

m ∝ f ′(φ1(EUm)), where the proportionality constant
is independent of m. Since φ is increasing, f ′ is decreasing, and the EUm are increasing in m,
the factor on the right decreases when m increases. This provides a simple characterization of
the effect of increased ambiguity aversion on the first-order condition. It is important to stress
however that the weights (p̂m)m∈M are endogenous to the optimization problem, as they depend
on a∗. Thus translating how these weights change into statements about how optimal abatement
changes when ambiguity aversion increases is a non-trivial task in general.

General results on the comparative statics of ambiguity aversion are hard to come by, and
depend on the properties of the sequence of functions (EUm(a))m∈M. The following proposition
defines conditions on these functions that allow us to ascertain the effect of an arbitrary increase
in ambiguity aversion on optimal abatement:

Proposition 2. Suppose that d2EUm
da2 < 0 for all m, and assume that for every fixed value of

a, the sequences (EUm(a))m∈M and
(

dEUm(a)
da

)

m∈M
are anti-comonotonic5 (comonotonic) in m.

Then an increase in ambiguity aversion increases (decreases) the optimal level of abatement for
the objective (2).

Proof. See Appendix A.
5Two sequences are anti-comonotonic if one is increasing and the other is decreasing. They are comonotonic if

they are both increasing, or both decreasing.
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EU
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)

EUm(a) and dEUm/da comonotonic

 

 

a

EU
(a

)

EUm(a) and dEUm/da anti−comonotonic

EU1(a)

EU2(a)

EU3(a)

EU4(a)

Figure 2: Examples of comonotonic (left) and anti-comonotonic (right) relationships between the
sequences (EUm(a))m∈M and

(
dEUm(a)

da

)

m∈M
.

To understand the conditions on the functions EUm(a) in this proposition, consider the diagram
in Figure 2, in which abatement a is plotted horizontally and EUm(a) is plotted vertically for a
model set containing 4 distinct models. Anti-comonotonicity means that for each value of a the
models with low expected utilities have high derivatives of expected utility with respect to a –
this case is represented in the right panel of Figure 2. Hence when these conditions are satisfied
an increase in abatement will reduce the spread of expected utilities across models and reduce
the cost of ambiguity, so that a rise in ambiguity aversion leads to more abatement. Conversely,
if the sequences are comonotomic then a decrease in abatement will decrease the spread between
expected utilities (represented in the left panel of Figure 2) and so an increase in ambiguity aversion
leads, rather counterintuitively, to a drop in abatement.

Note that an increase in ambiguity aversion always implies a policy change leading to a smaller
spread of expected utilities. With anti-comonotonicity this means more abatement and with
comonotonicity it means less. If abatement pays off most when consumption is low, it is likely that
those models which have risk distributions that are skewed towards the low values of consumption
(because, for example, they place a lot of weight on high values of climate sensitivity) have both
low expected utility, and high marginal expected utility. Thus the relationship between expected
utility and marginal expected utility is likely to be anti-comonotonic in this case. Conversely, if
abatement pays off least when consumption is low, marginal expected utility will be low in those
models which place a lot of weight on low consumption, i.e. when expected utility is low; we are
now in the realm of comonotonicity. Which (if any) condition holds in practice is an empirical
question. Proposition 2 requires all the graphs of EUm(a) to be non-intersecting, and for the
distance between any consecutive pair of expected utilities to be decreasing (or increasing in the
case of comonotonicity) in a. It is quite possible that neither condition is satisfied, so we next
present two examples to investigate further the comparative statics of ambiguity aversion. The
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first example satisfies the conditions of proposition 2, while the second does not, but can be solved
analytically to yield some insight into the comparative statics. In this latter example we will see
that it is once again the effect of abatement on the spread in expected utilities that determines
the comparative statics of ambiguity aversion.

Example 1. Suppose that we have two models of the effect of greenhouse gases on climate:

• Model 1: Climate is not sensitive to anthropogenic emissions.

• Model 2: Climate is sensitive to anthropogenic emissions. Suppose that, conditional on this
model being correct, there are two climate states, a high damage state H, and a low damage
state L. Abatement increases the probability of state L materializing.

The DM attaches a default utility level u0 to today’s climate. Let u0 − dH be the utility level
in the high climate damages state, and u0 − dL be the utility level in the low damages state,
with dH > dL. The DM must decide the level of abatement, a. The utility cost of abatement is
given by a function Λ(a), and let π(a) be the probability of the low-damages state occurring as a
function of abatement. Clearly we need π′(a) > 0, Λ′(a) > 0. Proposition 2 allows us to obtain
the following:

Proposition 3. Suppose that π′′(a) < 0 and Λ′′(a) > 0. Then an increase in ambiguity aversion
increases optimal abatement in Example 1.

Proof. The expected utilities obtained in models 1 and 2 are:

EU1 = u0 − Λ(a) (5)

EU2 = π(a)(u0 − dL − Λ(a)) + (1− π(a))(u0 − dH − Λ(a))

= u0 − Λ(a) + π(a)(dH − dL)− dH . (6)

Clearly, EU1 > EU2, since π(a) ∈ [0, 1]. In addition, simple differentiation shows that dEU1
da <

dEU2
da . Thus the sequences (EU1, EU2) and

(
dEU1

da , dEU2
da

)
are anti-comonotonic for all a. Finally,

the conditions π′′(a) < 0, Λ′′(a) > 0 ensure that d2EUm
da2 < 0, m = 1, 2. Thus the conditions of

proposition 2 are satisfied, and the result is established.

Example 2. Consider a stylized abatement problem, an extension of an example examined by
Gollier (2009). Assume we have a set of risk distributions πθ(x), indexed by the continuous
parameter θ, where x is the magnitude of additive consumption damages from climate change.
We can moderate these risks by investing in abatement a. Abatement reduces the magnitude of
damages by a multiplicative factor that is linear in a. The effectiveness of abatement is controlled
by a constant b1, so that damages averted at abatement level a are given by b1ax. Abatement
comes at a consumption cost that is linear in a, with b2 the cost per unit of abatement. We are
ambiguity averse, so the objective function is:

V (a) =
∫

p(θ)φ
(∫

U(c0 + (1− b1a)x− b2a)πθ(x)dx

)
dθ. (7)

8



Proposition 4. Assume that

U(c) = − 1
A

exp(−Ac) (8)

φ(U) = −(−U)1+ξ/(1 + ξ) (9)

x ∼ N (θ,σ) (10)

θ ∼ N (µ, σ0) (11)

where A, ξ,σ,σ0, b1, b2 and c0 are non-negative constants, and the sign of µ is arbitrary. Then
when −b1µ/b2 is greater (less) than 1 the abatement level a∗ that maximizes (7) is increasing
(decreasing) in ξ. Moreover, a change in ξ only affects the mean of the ambiguity-adjusted second-
order probability distribution p̂(θ), which is decreasing (increasing) in ξ when −b1µ/b2 is greater
(less) than 1.

Before proving the proposition we unpack the interpretation of the parameters: our choices for
U and φ correspond to constant absolute risk aversion (parametrized by A) and constant relative
ambiguity aversion (parameterized by ξ) respectively. We have assumed that each of the risks
πθ(x) is a normal distribution, with fixed standard deviation σ, and an uncertain mean θ. It
can be shown that under these assumptions the expected utilities (EUθ(a))θ∈R are concave in a,
but do not satisfy either of the comonotonicity properties required by proposition 2. The second-
order distribution p(θ) of the means θ is also normal, with mean µ and standard deviation σ0.
Note that since x is intended to represent negative climate impacts, we implicitly assume that
µ < 0, although this condition is not required in any of our results. Even with µ < 0 however,
for each risk distribution there is a non-zero probability that impacts will be positive, since the
normal distribution has support on the whole real line – this represents the possibility of climate
windfalls. Finally, b1 determines the effectiveness of abatement (marginal benefits of abatement
are just −b1x), b2 is the marginal cost of abatement, and c0 is a baseline consumption level. We
now turn to a proof of the proposition:

Proof. V (a) can be computed explicitly (see Appendix B), and maximized to show that the optimal
value of a is

a∗ =
1
b1

+
b1µ + b2

Ab1(σ2 + (1 + ξ)σ2
0)

. (12)

Thus when −b1µ/b2 is greater (less) than 1, the optimal value a∗ is increasing (decreasing) in ξ.
Some standard computations (see Appendix B) then show that

p̂(θ) ∼ N (µ− σ2
0ξA(1− b1a

∗), σ2
0)

= N
(

µ +
σ2

0ξ(b1µ + b2)
σ2 + (1 + ξ)σ2

0

, σ2
0

)
(13)

Thus in this case, the only effect of ambiguity aversion is to shift the mean of the second-order prob-
abilities p̂(θ) downwards (upwards) when−b1µ/b2 is greater (less) than 1. Thus when−b1µ/b2 > 1,
as ambiguity aversion increases, increased weight is placed on those risk distributions with mean
θ < µ, while the weights on risks with θ > µ decline. The converse obtains when −b1µ/b2 < 1.

The condition −b1µ/b2 > 1 in the proposition is intuitively compelling. Recall that the benefit
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of abatement a when damages are x is just −b1xa, and the costs are b2a. Thus we may read
our condition as (Expected benefit)/Cost > 1. The result says that if the expected benefit of
abatement outweighs costs, then ambiguity aversion increases optimal abatement. An increase in
ambiguity aversion means that the DM is more averse to spreads in expected utility, so in order
to understand the comparative statics we need to understand how a change in a affects the spread
in expected utilities. If, on average, an increase in a increases consumption (i.e the argument of
U in (7)), the spread in expected utilities will decrease, since by concavity U , and therefore its
expected value, becomes less sensitive to variations in consumption when consumption increases.
For a fixed value of x, the argument of U increases with a if and only if −b1x/b2 > 1. Thus our
condition −b1µ/b2 > 1 may be interpreted as ensuring that on average an increase in a increases
consumption, which in turn reduces the spread in expected utilities. Since a reduction of the spread
in expected utilities is desirable when ξ increases, it is optimal to increase a. When −b1µ/b2 < 1
the converse case obtains, with a decrease in a increasing consumption on average, and thus being
desirable when ξ increases. The fact that in this case the effect of ambiguity aversion depends
only on the benefit/cost ratio of abatement is due to the linearity of consumption in a.

3 Evaluating dynamic abatement pathways under ambigu-

ity

The preceding section abstracted the climate change abatement problem to a high level. Perhaps
most importantly, the models examined thus far have all been atemporal. While static models are
useful for gaining an intuition for the new effects that ambiguity aversion introduces into familiar
problems, they are of limited use for deriving results that are meaningful for climate policy. The
abatement problem is in its essentials a dynamic decision problem, in that it requires us to trade off
near-term costs against uncertain long-term benefits. This section examines how ambiguity over
the future benefits of abatement affects the welfare analysis of alternative climate policies. We first
introduce a dynamic extension of the smooth ambiguity model of Klibanoff et al. (2005), derived
in Klibanoff et al. (2009). Doing so immediately raises issues of how dynamic consistency and
learning are incorporated in such a model, and we discuss these. Second, we make an empirical
application of the Klibanoff et al. (2009) model to climate policy, using the DICE integrated
assessment model (Nordhaus, 2008) to generate consumption streams given choices of abatement
strategy, in the face of ambiguous information about the climatic response to greenhouse gas
emissions (i.e. represented by the climate sensitivity parameter). We proceed directly to these
numerical simulations, since in the full dynamic context there is a limited amount that can be
deduced about the relationship between abatement and ambiguity aversion analytically: much
depends on the empirical details.

3.1 Dynamic welfare functions

Klibanoff et al. (2009) obtain a representation of preferences over time- and state-dependent acts,
i.e. contingent plans that map the nodes of a decision tree into consumption streams. If we let
st = (x1, . . . , xt) ∈ Γ denote a decision node, where xτ ∈ Xτ is an observation at time τ and Γ is
the set of all nodes, then a generic plan f maps st into consumption. Klibanoff et al. (2009) show
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that preferences over plans that satisfy consequentiality, dynamic consistency, and further axioms
that are similar to those employed in the static representation result, can be represented by

Vst(f) = u(f(st)) + βφ−1

[∫

Θ
φ

(∫

Xt+1

V(st,xt+1)(f)dπθ(xt+1; st)

)
dp(θ|st)

]
, (14)

where θ ∈ Θ indexes the set of alternative probability models, and β is a discount factor. They
refer to this representation as the recursive form, for obvious reasons. Although the focus of
their paper is on achieving this result, Klibanoff et al. (2009) also derive an alternative, distinct,
preference representation, which they call the reduced form:

V̂st(f) = u(f(st)) + βφ−1




∫

Θ
φ




∑

s∈Γ∩{st}

πθ(s|st)
∑

τ≥t+1

βτ−(t+1)u(f(s)(τ))



 dp(θ|st)



 . (15)

The difference between these two representations arises from the different requirements they im-
pose on consistency between so-called first- and second-order acts (see Klibanoff et al., 2009, for
details). The recursive form requires consistency only for ‘one-step-ahead continuation plans’,
while the reduced form requires consistency for all continuation plans. It turns out that the re-
cursive form is dynamically consistent, while the reduced form is not. To see why notice that the
reduced form evaluates all future consumption streams by averaging over the current second-order
uncertainty distribution p(θ|st). However it should be clear that this is not the distribution that
we would use to compute expectations at a future decision node, since in reaching that future
node new observations would be made that allow us to update the second-order probabilities –
this constitutes a violation of dynamic consistency. In fact, the reduced form representation re-
quires DMs to act as if all the second-order uncertainty will be resolved in the next time period.
The recursive formulation respects dynamic consistency, since it only uses the current information
to average over continuation values, which are themselves recursively defined in terms of averages
over future (updated) information. It is thus capable of representing preferences that coherently
account for the persistence of ambiguity. The conflict between these two distinct representations
is a new feature of inter-temporal choice which arises from the desire to simultaneously represent
ambiguity-sensitive preferences and respect consequentialism (Klibanoff et al., 2009, p. 946). Note
that when φ is affine, i.e. the DM is ambiguity neutral, the two representations are identical; this
explains why these issues are not encountered in the standard risk case.

While the recursive form (14) can be treated as a Bellman-like equation that can be used to
solve for optimal abatement policies once a noise distribution for temperature observations has
been specified, this approach entails considerable computational complications (see e.g. Kelly &
Kolstad, 1999). This is due to the high dimensionality of the state space when there are multiple
distributions for the climate sensitivity that need to be tracked and updated as observations of
temperature are made6. We hope to take up this task in future work. Instead of solving for

6To get an idea of what a full dynamic analysis might entail, suppose that there there are 20 possible distributions
for climate sensitivity, each of which comes with a second order weight (19 independent weights in total), and that
each distribution can be described by two sufficient statistics, each of which is updated with each new observation.
Then there are 2 × 20 + 19 = 59 ‘informational’ state variables which appear as arguments of the value function.
The curse of dimensionality means that obtaining solutions to dynamic programming problems of this size is not
possible by conventional computational methods.

11



optimal policies, we will content ourselves with evaluating exogenous policies, and assessing the
dependence of these evaluations on ambiguity. Evaluating exogenous policies is a desirable step –
emissions pathways may, for example, be subject to political constraints that prevent them from
being ‘optimal’, yet we may still wish to evaluate their effects on welfare, and determine how those
effects depend on our attitude to ambiguity.

It will be convenient in what follows to have a means of representing the welfare difference be-
tween two policies in consumption units, since this makes welfare changes for different preferences
directly comparable. Because we must potentially deal with non-marginal changes in welfare (be-
cause very high climate sensitivities could lead to very large climate damages), the measure we will
use in order to convert welfare changes into consumption units is the Stationary Equivalent (SE)
(Weitzman, 1976). The SE of a welfare function V is defined as the value of consumption c(V )
which, when held constant, gives rise to welfare equivalent to V . Thus we define c(V ) through

∑

t=0

βtPtu(c(V )) = V, (16)

where Pt is the population at time t. Define the fractional change in the SE induced by an abate-
ment policy, relative to a business as usual (hereafter BAU) baseline, as ∆. A simple calculation
shows that when u is of the constant relative risk aversion (CRRA) form (see (19) below), ∆ is
given by:

∆ :=
c(VABATE)− c(VBAU )

c(VBAU )
=

(
VABATE

VBAU

) 1
1−η

− 1, (17)

where ABATE denotes a generic abatement policy. All the results that follow use ∆ to represent
welfare differences.

3.2 The DICE model, policies, and preferences.

To make the discussion concrete, we will now use the DICE model to analyse the empirical
effect of ambiguity on climate policy, focusing on ambiguity over the climate sensitivity. We
will not be using the DICE model to solve for optimal abatement policies, but will rather use it
to generate consumption streams that depend on exogenous policy settings, and a value for the
climate sensitivity.

If we denote the climate sensitivity by S, the exogenous savings rate by σ(t), and the exogenous
abatement effort by a(t), then we view DICE as the following function:

DICE (S;σ(t), a(t)) = c(t), (18)

where c(t) is a consumption stream. We can now compute this function for a variety of values
of S, holding σ(t) and a(t) constant, to see how the consumption stream depends on the climate
sensitivity. Before specifying our choice of the controls, a few words are in order about the DICE
model, which is explained in full detail in Nordhaus (2008). DICE is a well known integrated
assessment model of the connections between economic activity and climate change. A standard
Ramsey-Cass-Koopmans growth model with aggregate capital and labour inputs is linked to cli-
mate change through emissions of greenhouse gases, which cause global warming and, with a lag,
reduce output by means of a reduced-form ‘damage function’ (more on this later). This damage
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function incorporates assumptions about adaptation to climate change, which can reduce output
losses, leaving the representative agent with the choice of how much to invest in emissions abate-
ment a(t), as well, of course, as how much to invest in the composite capital good. The model
includes many economic and climate parameters, all of which are at least to some extent uncertain.
However, for the sake of tractability, we focus on uncertainty (specifically ambiguity) about the
climate sensitivity S. This is justified, since S is known to be one of the most important uncer-
tainty parameters in integrated assessment of climate change, with a potentially strong influence
on the value of abatement strategies (Weitzman, 2009). Moreover, as we have argued above, it is
a parameter about which our knowledge is appropriately represented as ambiguous7. Future work
could also, where appropriate, treat knowledge about other parameters as ambiguous.

In our empirical results below, we pick specific values for the controls σ(t) and a(t). For
simplicity, we assume that the savings rate σ(t) is a constant 22%. In order to fix the abatement
effort a(t), we consider three emissions abatement scenarios. Abatement effort is represented in
DICE by the emissions control rate, a number between 0 and 1, which controls the emissions
intensity of gross economic output (i.e. before climate damages are incurred). When the control
rate is a(t), a fraction 1 − a(t) of gross output contributes to emissions. Our three scenarios
for the control rate are a ‘Business as usual’ scenario, a scenario that limits the atmospheric
concentration of CO2 to twice its pre-industrial level (560 parts per million, hereafter referred to
as the 2 CO2 scenario), and a more aggressive abatement scenario that limits the concentration
of CO2 to only one-and-a-half times its pre-industrial level (420ppm, hereafter referred to as the
1.5 CO2 scenario)8. Both of the abatement scenarios have been prominent in recent international
negotiations about climate policy. The emissions control rates corresponding to our three scenarios
are depicted in Figure 3. They are each taken from Nordhaus (2008)9.

Suppose now that we have a set of M distributions {πm(S)} for the climate sensitivity S,
indexed by m, with initial second-order probability weights given by pm. How can we compare
the welfare effects of the two abatement pathways? Ideally we would like to use the recursive
preference representation (14), however we immediately run into difficulties. In order to apply
this representation we need to know how the first- and second-order probabilities (πm(S), pm)
change over time as more information is revealed. Yet this information is not part of our primitive
inputs to the model – all we know is the values of our plan f(st), but not how the sequence of
realized states {xt}t=1...∞ affects beliefs πm(S) and pm. Moreover, strictly speaking, the manner
in which we make use of the DICE model implies that all uncertainty (i.e. risk and ambiguity) is

7In fact, there are good reasons to believe that the upper tails of the various distributions of S estimated in
the climate science literature are not well constrained by observations, and depend heavily on scientists’ subjective
choice of prior (Allen et al., 2006). We are arguing that scientists’ prior beliefs about S are not sufficiently structured
for them to be representable by a unique probability distribution; hence unique posteriors also do not exist.

8Note that the control rates associated with the two abatement scenarios are designed so that they achieve the
specified stabilization targets in an idealized run of DICE in which damages are zero for concentrations below the
stabilization target, and rise sharply to very high values above the target. This is the method used by Nordhaus
(2008) to generate controls that achieve a given stabilization target, however it should be born in mind that these
controls will not in general achieve this target when they are used as inputs to DICE for alternative damage
functions, or values of S. Since all we require for our purposes is a plausible choice of controls, we need not concern
ourselves too much with whether they achieve a given stabilization target.

9It may be seen that there are kinks in the emissions control rates corresponding to the 2 CO2 and 1.5 CO2

scenarios, which are taken directly from Nordhaus (2008). The kink in 2015 that is especially evident in the 2 CO2

scenario is due to the fact that the control rate in 2005 is not allowed to vary. Nordhaus does not explain the other
kinks that are evident. He also only states the control values until 2105. We have linearly extrapolated the controls
to 2215, assuming a control rate of 1 at 2215 for the abatement policies.
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Figure 3: Emissions control rates for our sample abatement scenarios.

resolved immediately. This is so since in our setup the DICE model is a deterministic function.
This implies that as soon as a single time period has elapsed the DM can use the known model
equations to work back from the changes in the state variables to deduce the exact value of the
climate sensitivity10. Clearly this does not map onto the scientific situation in reality, in which
uncertainty about the climate sensitivity is likely to persist for some time.

There are two resolutions to these difficulties. The first is to use the reduced-form representa-
tion to evaluate welfare. As mentioned above, this implies that we are evaluating policies today as
if all ambiguity were to be resolved in the very next time step. This has the disadvantage of not
respecting dynamic consistency (except of course in the unlikely event that we believe ambiguity
really will be resolved after one time step), but has the advantage of being consistent with our
usage of the DICE model as a deterministic function. The reduced form approximation can be
made more realistic by increasing the length of the time step, so that an a priori plausible amount
of time passes before ambiguity is resolved. Thus in our computations below we increase the
length of the time step in DICE from one to three decades. Since DICE’s initial period is 2005,
ambiguity is assumed to be resolved in 2035 for the reduced form welfare measure.

The second resolution is to use the recursive form, and assume an ad hoc model for how
beliefs about ambiguity and risks are updated over time. This has the advantage of allowing for a
persistent (albeit arbitrary) dynamic representation of ambiguity, but requires us to pretend that
the consumption streams at our disposal are divorced from the model that generated them, i.e.
we pretend that we do not know the model equations, so that uncertainty is not resolved in the
first time step. An extreme version of this strategy would be to assume that no information is

10This is so provided the model’s state equations are ‘invertible’ (i.e. we can infer parameter values from sequential
realizations of the state variables). The immediate resolution of uncertainty in our model is due to the fact that
there are no noise terms in the state equations.
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obtained at any point in time, i.e. ambiguity is perfectly persistent, and the DM never updates
her beliefs. In addition, we need to assume that the DM believes that the system will be in the
same state at every time step, i.e. the probability tree she faces at every decision node is identical.
These are not terribly realistic assumptions, as they require us to make welfare evaluations as if
the DM cannot anticipate the effect of the dynamics on the system’s states and her beliefs. They
will however be sufficient to capture some of the effects of persistent ambiguity on the welfare
evaluation.

Our strategy will be to use both the reduced form and the recursive form with perfectly
persistent ambiguity to compute welfare measures. It seems reasonable to believe that these two
approaches provide meaningful bounds on the value of an abatement project. Any model which
admits updating of probabilities must fall somewhere between these two extremes11.

For the sake of argument we assume equal second-order weights on each of the distributions
for climate sensitivity depicted in Figure 1, and choose u and φ both to be isoelastic functions
(constant relative risk and ambiguity aversion respectively):

u(c) =
c1−η

1− η
, (19)

φ(u) =

{
U1−ξ

1−ξ η < 1
−(−U)1+ξ

1+ξ η > 1
, (20)

where η (ξ) is the coefficient of relative risk (ambiguity) aversion. Note that since φ operates on
utility, which is measured in different units to consumption and will usually be estimated over
a quite different range of absolute values, larger values of ξ are considered plausible, compared
with η. For instance, Gollier & Gierlinger (2008) calibrated the above model by considering a
simple binary lottery with unknown probabilities. A uniform distribution over the second-order
probabilities of the two outcomes is assumed, and the ambiguity premium is set at 10% of the
expected value of the lottery, based on the experimental results reported in Camerer (1999).
Calibrating the model at η = 2, they found ξ ∈ [5, 10] to be roughly plausible. This is roughly
consistent with the analysis of asset returns under ambiguity in Ju & Miao (2009), which found
ξ = 8.864. We will take the upper estimate of ξ = 10 as our representative case of an ambiguity-
averse decision maker, however we note that in general the issue of calibrating the ambiguity model
is a difficult one, and the method described above is by no means the last word on the subject12.
Consequently in some of our figures below we report a wider range, ξ ∈ [0, 50].

We then use DICE to generate consumption streams for climate sensitivities in the range
[1, 10]13, and compute welfare measures for each of the two representations of ambiguity and
abatement strategies. In all our computations, we set the annual discount rate on utility to 0.1%,
consistent with recent viewpoints by, for example, Stern (2008), Dasgupta (2008), and Heal (2009).

11The fact that the recursive form is equivalent to the reduced form when the learning process employed in
the recursive model resolves all uncertainty in one time step is a trivial consequence of the fact that the two
representations agree on their ranking of one-step-ahead continuation plans.

12To understand some of the complexity of the calibration problem for the ambiguity model, note that since
the representation (1) is not linear in the utilities u in general, the calibration will depend on the choice of the
normalization of utility.

13The simple climate model built into DICE breaks down for S < 1, so we are forced to truncate the distributions
in Figure 1, applying a lower bound value of 1. We do not lose much information in this way, since inspection
of Figure 1 shows that there is a very low probability that S < 1, and that the upper tail is of much greater
importance.
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In our base case, we set the coefficient of relative risk aversion (η) to 2, and we use the standard
DICE damage function,

Ω(t) =
1

1 + α1T (t) + α2T (t)2
, (21)

where T is the increase in global mean temperature above the pre-industrial level, and α1 and
α2 are coefficients. The damage from warming as a fraction of GDP is 1 − Ω(t), which with the
default calibration of α1=0 and α2=0.0028, gives damages of 1.7% of GDP for 2.5◦C warming and
6.5% for 5◦C warming (we comment on the plausibility of these damages below).

Figure 4 plots ∆ for the 1.5 CO2 and 2 CO2 abatement strategies as a function of the coefficient
of relative ambiguity aversion (ξ) for our base case. The figure shows that ∆ increases as ξ

increases. Focussing on the recursive form with perfectly persistent ambiguity (blue), the ∆ of the
1.5 CO2 strategy increases from approximately 0.09% when ξ=0 to approximately 0.25% when
ξ=50. Under the 2 CO2 strategy recursive ∆ increases from 0.63% when ξ=0 to 0.76% when
ξ=50.

That increasing ambiguity aversion has this effect on ∆ essentially reflects the forces at play
in our comparative statics analysis above. Climate is sensitive to emissions, so the higher are
emissions, the more likely it is that high damages result. By proposition 1 an increase in ambiguity
aversion places more weight on models with lower expected utility, or in other words models in
which damages are higher. In these models, costly emissions abatement is of more value as it
avoids greater amounts of climate damage. In Figure 4 the base-case relationships appear close to
linear for the range of ξ that we consider. However it is easy to see that, were it computationally
feasible14 to increase ξ indefinitely, the SE of the policies, and hence ∆, would eventually asymptote
to a constant value15.

Figure 5 considers the relative importance of ambiguity aversion compared with risk aversion,
and how the two preferences interact with one another. It plots ∆ as a function of η for ξ = 0 and
ξ = 10. We discuss the interpretation of this figure in the following sub-section.

3.3 Heuristic explanation of results, and the role of the damage function

In order to understand the qualitative features of Figure 5 we contrast it with the expression
for the certainty-equivalent social discount rate (ρ) under ambiguity aversion, derived in Traeger
(2009) and Gollier & Gierlinger (2008). These derivations assume isoelastic forms for u and φ, and
that consumption grows at an uncertain rate g ∼ N (θ,σ), where the mean growth rate θ is itself
uncertain and distributed according to a second-order probability distribution, θ ∼ N (µ, σ0). It
can then be shown that

ρ = δ + ηµ− η2

2
(σ2 + σ2

0)− ξ|1− η2|σ
2
0

2
, (22)

where δ is the utility discount rate. The first two terms in this expression are familiar from the
standard Ramsey formula for the social discount rate under certainty, and capture inter-temporal
substitution effects. The third term is the standard correction due to the uncertainty in the growth

14The values of ξ it is feasible to consider numerically are limited by the accuracy of floating point arithmetic.
15The limiting values as ξ → ∞ are not the same for the recursive and reduced form welfare measures. The

limiting reduced form SE depends only on the model with the lowest discounted expected utility, while the limiting
recursive form SE depends on the discounted sum of the lowest expected utility of any model at each point in time.
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Figure 4: Percentage change in SE of abatement relative to BAU for 1.5 CO2 (420ppm) and 2
CO2 (560ppm) abatement pathways, as a function of the coefficient of relative ambiguity aversion
(ξ). Estimates based on the reduced form model are plotted in red, while estimates based on the
recursive model with perfectly persistent ambiguity are plotted in blue. η = 2, δ = 0.1% for these
simulations.

rate (note that the variance of the growth rate is the variance of the composite distribution that
arises from the combination of uncertainty about g and θ). The final term is a new addition due
to ambiguity aversion.

Since differences in the expected utilities of abatement and BAU pathways only manifest
significantly in the distant future (when damages are large), it is intuitive that the social discount
rate may play a useful role in explaining our results. If ρ is large, we expect welfare differences
between abatement and BAU policies to be small. Similarly, those values of η for which ρ is highly
sensitive to ξ are also likely to be the values of η for which we see a significant effect of ambiguity
aversion on the welfare difference measure ∆. Although the assumptions about the first- and
second-order uncertainty on consumption growth rates used to derive (22) do not map neatly onto
our empirical application, the expression nevertheless provides useful qualitative insights.

First notice that ρ is decreasing in ξ – this is consistent with our finding in Figure 4 that ∆ is
increasing in ξ. Second, consider the case η = 0, for which ρ = δ − 1

2ξσ2
0 . It is clear that in this

case an increase in ξ can potentially have a large impact on the valuation – in fact if ξ is large
enough ρ can be negative, thus placing increasing weight on the future, which should lead to large
estimates of NPV. This is reflected in Figure 5, where we see that the difference between ∆ξ=0

and ∆ξ=10 is at its largest when η = 0. Third, consider the case η = 1. It is clear that in this case
ρ is independent of ξ, implying that ambiguity aversion has no effect on welfare calculations. This
is also reflected in Figure 5, where we see that ∆ξ=0 and ∆ξ=10 coincide at η = 1. Fourth, notice
that when η becomes large, ∆ tends to zero for both ξ = 0 and ξ = 10 in Figure 5, even though the
risk and ambiguity terms in the social discount rate decrease quadratically with η. This suggests
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Figure 5: Percentage change in SE of the 2 CO2 abatement pathway relative to BAU, as a function
of the coefficient of relative risk aversion (η). The black line plots the relationship when the
coefficient of relative ambiguity aversion ξ = 0, while the blue and red lines plot the relationship
when ξ=10 for the recursive- and reduced-form welfare measures respectively.

that the inter-temporal substitution terms in the expression for ρ dominate the risk and ambiguity
terms in our base-case simulations. For this to be so, the mean growth rate in consumption should
be significantly larger than the variance of consumption growth within a given model, and the
variance of mean consumption growth rates between models. This is born out by our simulation
data, for which we find inter- and intra-model variances in consumption growth to be several
orders of magnitude smaller than the mean growth rate of consumption16. A further interesting
feature of Figure 5 is that the difference between the recursive- and reduced-form welfare measures
is small (indeed they are all but indistinguishable to the naked eye in the figure). Thus, although
the assumptions these two welfare measures make about the resolution of uncertainty are poles
apart, they place tight bounds on the effect of ambiguity aversion on welfare for our simulations.

One set of assumptions in our base-case simulations that deserves further scrutiny is the damage
function (21), which, to recall, implies that 5◦C warming will lead to damages worth the equivalent
of just 6.5% of global GDP17. An increase in the global mean temperature of 5◦C over the pre-
industrial level is greater than the difference in temperature between the present day and the
peak of the last ice age, the Last Glacial Maximum, and is thus expected to lead to biophysical
changes of an unprecedented magnitude (in the context of human experience), occurring at an
unprecedented rate (even in the context of geological history). Because of this, the scientific

16Neither growth rates, nor their variances, are constant in our DICE simulations, with effective annual growth
rates tending to fall from approximately 2% to 1% over our 200-year simulation horizon. However the ratio of inter-
and intra-model growth rate variances to the mean growth rate is smaller than 10−6 for every time step for the
DICE damage function.

17It is important to bear in mind that total damages include both reductions in output and other reductions in
welfare, such as the disutility from destruction of rare habitats, the latter estimated as an equivalent reduction in
output.
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Figure 6: Percentage change in SE for the 2 CO2 abatement pathway relative to BAU, as a function
of the coefficient of relative risk aversion (η), but this time with Weitzman’s damage function. The
black line plots the relationship when the coefficient of relative ambiguity aversion ξ = 0, while
the blue and red lines plot the relationship when ξ=10 for the recursive and reduced form welfare
measures respectively.

community is essentially reduced to speculation about the consequences of around 5◦C warming
or more. The usual approach to calibrating the damage function is to make an estimate of the
output loss accompanying 2.5◦C warming or thereabouts, and then to simply extrapolate to higher
temperatures based on an assumed functional form that is essentially unsupported by data of any
sort. A number of scholars, including Weitzman (2010), consider predicted damages of 6.5% of
GDP given 5◦C warming to be remarkably low, and suggest that the damage function should
be revisited. Thus we follow Weitzman (2010) in replacing (21) with a damage function which
replicates its behaviour at better understood, lower temperatures, but which exhibits rapidly
increasing, continuously differentiable, but threshold-like damages for higher temperatures,

Ω(t) =
1

1 + (α̃1T (t))2 + (α̃2T (t))γ
, (23)

where α̃1=0.049, α̃2=0.16 and γ=6.75. Like the function in (21), this choice gives damages of
1.7% of GDP for 2.5◦C warming and still only 5.1% of GDP for 3.5◦C warming, before increasing
sharply to give damages of 9% of GDP for 4◦C warming, 25% for 5◦C warming, and so on. For
obvious reasons Weitzman (2010, p.15) gives this particular calibration the moniker “give the devil
his due”.

Figure 6 repeats the analysis of Figure 5, but this time for the more extreme damage function
(23). The results are strikingly different. First, notice from the scale of the vertical axis that the
∆ of the 2 CO2 abatement policy is in general significantly larger, as we would have expected
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given the often much greater damages that can be avoided. Second, and most importantly, notice
that ∆ is now much more sensitive to ξ. Indeed, the effect of ambiguity on welfare differences is
now easy to see, with the gap between abatement and BAU policies widening substantially once
ambiguity aversion is accounted for. While ∆ξ=0 and ∆ξ=10 necessarily still coincide at η = 1, the
ambiguity effect is large for all other values of η we are able to include, and, in particular, increases
when η rises above unity. We can again explain this result by recourse to the expression for the
certainty-equivalent social discount rate in (22). With high damages, the intra- and, critically,
inter-model variance in consumption growth is now larger in relation to mean growth18. Thus the
third and fourth terms in (22) are larger and work against the positive first and second terms more
effectively, causing ρ to decline significantly relative to its value for the DICE damage function.
This gives rise to an ambiguity effect that can be very large for the higher values of η.

Finally and perhaps somewhat surprisingly, Figure 6 also shows that the ranking of the re-
cursive and reduced form welfare measues is not independent of the value of η. When η is below
approximately 2, the reduced form gives a lower estimate of ∆ than the recursive form, while
the opposite is true for all other values of η (except of course η = 1). In general the ranking of
these measures as a function of η is highly complex, and depends on the empirical details of the
consumption streams, the distribution set {πm(S)}, and the value of ξ. For a heuristic explanation
of the origins of the complexity of this dependence, see our discussion of a simplified model in
Appendix C. Of course, the ranking of these measures is of no consequence if our primary concern
is to place meaningful upper and lower bounds on the true welfare evaluation – all we need to
know is that the true value lies between these two measures.

4 Discussion and conclusions

This paper aimed to provide insight into how ambiguous beliefs, and aversion to ambiguity, affect
the welfare analysis of climate change abatement policy. We have argued that our knowledge
of the climate system is not of sufficiently high quality to be described with unique probability
distributions, and that formal frameworks that account for aversion to ambiguity are normatively
legitimate, so that they provide a more accurate representation of our state of knowledge and our
preferences. The paper investigates how such preferences, as represented by a smooth ambiguity
model, affect optimal abatement policy in some simple static cases, and explores the conditions
under which ambiguity aversion has a significant effect on the welfare evaluation of exogenously
specified dynamic abatement policies.

Several lessons were learned from our static models. We showed that ambiguity aversion has
a simple effect on the ambiguity-adjusted second-order probabilities on models at the level of
the first-order conditions, with increases in ambiguity placing more weight on models with low
expected utilities. The ambiguity-adjusted model probabilities are however endogenously deter-
mined, implying that it is not a simple matter to reason from changes in model probabilities to
changes in optimal abatement. We derived conditions on the dependence of model expected utili-
ties on abatement that are sufficient for an increase in ambiguity aversion to increase the optimal

18In the 22nd century, the ratios of inter- and intra-model spreads in consumption growth to mean consumption
growth increase by 1-2 orders of magnitude for the damage function (23) relative to their values for the DICE
damage function.
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level of abatement. We illustrated the use and limitations of these sufficient conditions through
two specific examples. In the former, we presented a model which used a simple representation of
climate damages, and used our comparative statics result to define conditions under which optimal
abatement increases when the decision maker’s ambiguity preferences undergo an arbitrary con-
cave transformation. In the latter, we presented an example with a more general representation
of climate damages which does not admit treatment with our general comparative statics result.
Nevertheless, by specifying a particular representation of ambiguity aversion, it was possible to
compute optimal abatement, and the endogenous second-order probabilities, explicitly. In this
example we showed that if the expected benefits of abatement outweigh its costs, then optimal
abatement is increasing in the coefficient of relative ambiguity aversion. When this benefit-cost
condition is satisfied the ambiguity adjusted second-order probabilities also exhibit a simple de-
pendence on ambiguity aversion, with their mean monotonically decreasing in the coefficient of
relative ambiguity aversion.

While the static models provide an insight into how ambiguity averse preferences differ from
standard risk aversion, and yield suggestive comparative statics results, their relevance to assessing
realistic climate policies is limited, as they do not account for the fundamentally dynamic nature
of such policies. We thus extended our analysis to the evaluation of dynamic abatement policies by
using the inter-temporal version of the smooth ambiguity model. We defined two welfare measures
based on extremal assumptions about the resolution of ambiguity – a recursive measure in which
ambiguity is perfectly persistent, and a reduced form measure in which ambiguity resolves after
a single time step – and used these to place bounds on the ambiguity averse welfare evaluation.
Using the well-known DICE integrated assessment model, we computed these welfare measures
for the case in which only the climate sensitivity parameter is assumed to be ambiguous. Beliefs
about the climate sensitivity were represented by 20 estimated distributions from the scientific
literature, and each distribution was assigned an equal second-order probability.

Using the above specification we showed that the fractional change in the stationary equivalent
of abatement relative to ‘Business as usual’ is increasing in the coefficient of relative ambiguity
aversion. We also investigated the interaction between risk and ambiguity preferences in deter-
mining the welfare differences between abatement and business as usual. When the coefficient of
relative risk aversion (η) is 1, welfare differences are insensitive to ambiguity aversion. However,
for values of η greater or less than 1 the sensitivity of welfare differences to ambiguity aversion
depends significantly on the damage function. We took for our base case a ‘low’ damage function
from Nordhaus (2008) and found differences in the stationary equivalent to be relatively insensitive
to ambiguity aversion, due to the dominance of preferences for inter-temporal substitution. By
contrast, with a ‘high’ damage function that might be considered to give more plausible output
losses at high global mean temperatures (Weitzman, 2010), SE differences are very sensitive to
ambiguity aversion, in particular for larger values of η. In this case, the risk and ambiguity effects
dominate the inter-temporal substitution effect. What underpins both cases is the inter-model
spread in mean consumption growth rates over our set of distributions for the climate sensitivity.
In the base case it is small for all time. With ‘high’ damages it is substantially larger, and increases
with time. Given that many commentators find values of η greater than 1 to be appropriate in the
context of evaluating climate-change policies (e.g. Dasgupta, 2008; Nordhaus, 2008; Stern, 2008),
we conclude that ambiguity aversion is plausibly a major driver of the economic case for abating
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greenhouse gas emissions.
The results presented in this paper are subject to several limitations and qualifications. We

have focussed on ambiguity over the climate sensitivity, however there are many other parameters
in climate-economy models about which we may have ambiguous beliefs. The parameters of
the damage function are likely candidates, as are parameters determining the cost of abatement.
Therefore we should be cautious in extrapolating our findings. However, if it is supposed that
there is less ambiguity about the costs of abatement than there is about the benefits (e.g. Dietz
& Stern, 2008), then our qualitative finding that the value of abatement increases in ambiguity
aversion may well still hold. This is because our supposition implies that an increase in abatement
is more likely to reduce the spread in expected utilities across models than it is to increase it.

A further qualification surrounds our calculations in the dynamic analysis, which assumed
equal second-order probabilities on each of the empirical distributions for the climate sensitivity.
The smooth ambiguity model’s preference representation does not provide guidance as to how
these probabilities should be chosen, any more than Savage’s results suggest a ‘correct’ prior.
A possible justification for our assumption would be to appeal to a second-order principle of
insufficient reason. There are however many well-known difficulties with this principle19, and
we do not believe that it provides a satisfactory method for choosing second-order probabilities.
Rather, these probabilities should be treated as primitive components of our beliefs, and are thus
subject to rigorous elicitation. Our choice of equal probabilities reflects our inability to discern
differences in the quality of the various empirical estimates of the climate sensitivity distribution
– no doubt experts on these estimates would advocate alternative specifications.

At a more fundamental level, the dependence of the smooth ambiguity model’s preference
representation on second-order probabilities does leave us a little uneasy. Suppose that our beliefs
about the veracity of the models in our set are not sufficiently well structured for us to be able to
define unique second-order probabilities. Are we then committed to an infinite regress of nested
preferences? While the separation between tastes and beliefs that the smooth ambiguity model
achieves is a desirable property, it may not be justified in situations of deep uncertainty. The very
general representation obtained in Schmeidler (1989) provides an alternative, but suffers from
problems of its own20. In addition, we have assumed that our model’s state-space accurately
describes the evolution of the climate-economy system, i.e. that there are no ‘surprises’. This
seems a strong assumption, given known inadequacies in our understanding of the climate system,
not to mention economic aberrations. Decision theories that account for these deficiencies in our
understanding have been proposed (e.g. Gilboa & Schmeidler, 1995), although it is as yet unclear
whether they can be usefully applied in the climate change context.

Despite these limitations, we have shown that under certain conditions ambiguity aversion
can have a significant effect on both optimal abatement, and the welfare evaluation of exogenous
policies. This suggests the importance of this line of research for designing climate solutions that

19Perhaps most famously, it is not ‘reparameterization invariant’, a point made by Keynes (1921). This is not
to say that non-informative priors that are reparameterization invariant, i.e. Jeffreys priors, would provide a
satisfactory alternative.

20These include the fact that the representation theorem depends on an explicit ‘uncertainty aversion’ axiom. One
would hope that such a behavioural constraint would be an optional special case of the representation (much as risk
aversion is in expected utility theory), rather than a primitive requirement. In addition, Epstein (1999) has argued
that this representation is neither necessary nor sufficient to explain ambiguity averse decisions in Ellsberg-type
experiments.

22



are true reflections of our preferences and state of knowledge.
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A Proof of Proposition 2

Start with our general objective function:

V (a) =
∑

m

pmφ(EUm(a)) (24)

where EUm(a) is the expected utility in model m when abatement is a, and m indexes the set of
models M. To prove the result, begin by considering an ordered set of functions fλ indexed by
λ ∈ R such that when λ2 > λ1 we have that fλ2 = r ◦ fλ1 for some concave function r, and define
fλ0 to be the identity function.

The first order condition for the problem (2) when ambiguity preferences are given by fλ ◦ φ

is:
V ′

λ(a) :=
∑

m

pmf ′λ(φ(EUm))φ′(EUm)
dEUm(a)

da
= 0, (25)

Note that ambiguity preferences fλ ◦ φ are always more ambiguity averse than φ when λ >λ 0,
by definition. Let a0 be the solution of V ′

λ0
(a0) = 0, i.e. the solution to the optimization problem

when ambiguity preferences are given by φ. Now notice that d2EUm
da2 < 0 implies that d2V

da2 < 021.
The concavity of V (a) implies that, if we can find conditions under which V ′

λ(a0) > 0 for any
λ > λ0, then the solution of V ′

λ(aλ) = 0 must satisfy aλ > a0. Thus our strategy will be to show
that the premises of the proposition imply that V ′

λ0
(a0) = 0 ⇒ V ′

λ(a0) ≥ 0 when λ >λ 0.
We will make use of two lemmas to establish the result. The first is described in detail in

Gollier (2001, p. 102):

Lemma 1. Let g(x) be a function that crosses the x-axis singly from below (i.e. ∃x0 such that,
∀x, (x− x0)g(x) ≥ 0). Consider a positive function h(x, θ). Then the following condition holds:

Exg(x)h(x, θ1) = 0 ⇒ ∀θ2 > θ1, Exg(x)h(x, θ2) ≥ 0, (26)

if and only if the function h(x, θ) is log-supermodular22, where Ex is the expectation operator over
x, which is an arbitrarily distributed random variable. The same result obtains if the function
g(x) crosses singly from above, and the function h(x, θ) is log-submodular.

We now prove a second lemma.

21To see this, differentiate (2) twice to find V ′′(a) =
P

m pm

»
φ′′(EUm)

“
dEUm

da

”2
+ φ′(EUm) d2EUm

da2

–
. Thus

since φ′′ < 0 and φ′ > 0, d2EUm
da2 < 0 implies that V ′′(a) < 0.

22If h(x, θ) is differentiable in x, h is log-supermodular (log-submodular) if and only if ∂h/∂x
h is non-decreasing

(non-increasing) in θ. See Gollier (2001, chap. 7) for a general definition.
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Lemma 2. Define Ka(m, λ) = f ′λ(φ(EUm(a)))φ′(EUm(a)). Ka(m, λ) is log-supermodular (log-
submodular) when the sequence (EUm(a))m∈M is decreasing (increasing) in m, for any value of
a.

Proof. The result it easiest to obtain in the case where m indexes a continuous set of models, and
Ka(m, λ) is differentiable in m. In this case, we have that (suppressing the a dependence of EUm):

∂Ka(m, λ)/∂m

Ka(m, λ)
=

(
−f ′′λ (φ(EUm))

f ′λ(φ(EUm))

)
φ′(EUm)

[
−∂EUm

∂m

]
+

φ′′(EUm)
φ′(EUm)

∂EUm

∂m
. (27)

The only term in this expression that depends on λ is the term in round brackets, which is just
the coefficient of absolute ambiguity aversion for the function fλ. So this term is increasing in
the index λ, by definition23. Thus if ∂EUm

∂m < 0, the expression (27) shows that ∂Ka(m,λ)/∂m
Ka(m,λ) is

non-decreasing in λ. Similarly, when ∂EUm
∂m > 0, (27) shows that ∂Ka(m,λ)/∂m

Ka(m,λ) is non-increasing in
λ. Similar, if slightly more involved, computations establish the result in the case of a discrete set
of models.

We now combine these two lemmas. Consider the case in which
(

dEUm
da

)
m∈M is increasing in

m, and (EUm)m∈M is decreasing in m. Define

g(m; a0) :=
dEUm

da

∣∣∣∣
a=a0

. (28)

Evaluating the first order condition (25) at λ = λ0, we have that

∑

m

pmφ′(EUm(a0))
dEUm

da

∣∣∣∣
a=a0

= 0. (29)

Since
(

dEUm
da

)
m∈M is increasing in m, (29) makes it clear that g(m; a0) crosses the horizontal axis

singly from below. This is so since φ′ > 0 means that in order for (29) to be satisfied, we require
some of the terms in the sequence

(
dEUm

da

∣∣
a=a0

)

m∈M
to be negative, and some to be positive.

Since the sequence is increasing, g(m; a0) must exhibit the single-crossing property.
Now since {EUm} is decreasing in m by assumption, by Lemma 2 we have that Ka0(m, λ) is

a log-supermodular function. By the definition of g(m; a0) and λ0,

∑

m

pmg(m; a0)Ka0(m, λ0) = V ′
λ0

(a0) = 0. (30)

Now by Lemma 1, the fact that g(m; a0) exhibits the single crossing property, and the fact that
Ka0(m, λ) is log-supermodular, we know that for any λ >λ 0,

∑

m

pmg(m; a0)Ka0(m, λ) = V ′
λ(a0) ≥ 0, (31)

establishing the result.
23Note that for concave functions f1, f2, the coefficient of absolute risk aversion (CARA) for f2 is uniformly

larger than the CARA for f1 iff f2 = r ◦ f1 for some concave r.
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To complete the proof, notice that when (EUm)m∈M is increasing and
(

dEUm
da

∣∣
a=a0

)

m∈M
decreasing in m, we can apply the same reasoning and use Lemma 2 in the case of a function g

that crosses singly from above, and a function h that is log-submodular.
Finally, this method of proof is easily extended to the case where the sequences (EUm)m∈M

and
(

dEUm
da

∣∣
a=a0

)

m∈M
are comonotonic, in which case ambiguity aversion has the opposite affect

on optimal abatement. To do this, one simply defines g(m; a0) := − dEUm
da

∣∣
a=a0

in the step (28).
Under the assumption that both sequences are decreasing in m for all a, all the following steps of the
proof go through unchanged, and we are left with the conclusion that−V ′

λ0
(a0) = 0 ⇒ −V ′

λ(a0) ≥ 0
when λ >λ 0. Thus by the concavity of V (a), an increase in λ decreases the optimal value of a in
this case.

B Calculations for Example 2

V (a) =
∫

p(θ)φ
(∫

U(c0 + (1− b1a)x− b2a)πθ(x)dx

)
dθ.

where we assume that

p(θ) ∼ N (µ, σ0)

πθ(x) ∼ N (θ,σ)

U(c) = − 1
A

exp(−Ac)

φ(U) = −(−U)1+ξ/(1 + ξ).

Using the fact that ∫
eλxπ(x)dx = eλ(θ+ 1

2 λσ2)

for any constant λ, and any π(x) ∼ N (θ,σ), one can compute all the integrals in the expression
for V (a) to find that

V (a) ∝ − exp
(
−A(1 + ξ)

[
c0 − b2a + (1− b1a)µ− 1

2
A(1− b1a)2(σ2 + (1 + ξ)σ2

0)
])

.

V (a) is maximized when the term is square brackets above is maximized. The solution is

a∗ =
1
b1

+
b1µ + b2

Ab1(σ2 + (1 + ξ)σ2
0)

.

Now the ambiguity adjusted distribution of the means θ is:

p̂(θ) =
p(θ)φ′

(∫
U(c0 + (1− b1a∗)x− b2a∗)πθ(x)dx

)
∫

p(θ)φ′
(∫

U(c0 + (1− b1a∗)x− b2a∗)πθ(x)dx
)
dθ

Consider the numerator. φ′(U) = (−U)ξ, so this is just

A−ξp(θ) exp
(
−Aξ

[
c0 − b2a

∗ + (1− b1a
∗)θ − 1

2
Aσ2(1− b1a

∗)2
])

.
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All the terms that do not depend on θ are going to get divided out, so the important part of the
numerator is

p(θ) exp (−Aξ(1− b1a
∗)θ) .

Because p(θ) is a normal distribution, we can multiply the exponential into the normal PDF. Once
again, we can neglect everything that does not depend on θ, as it will get divided out:

p(θ) exp (−Aξ(1− b1a
∗)θ) ∝ exp

(
− (θ − µ)2

2σ2
0

)
exp (−Aξ(1− b1a

∗)θ)

∝ exp
(
− 1

2σ2
0

[θ2 − 2θ(µ−Aσ2
0ξ(1− b1a

∗))]
)

∝ exp

(
−

[
θ − (µ− σ2

0ξA(1− b1a∗))
]2

2σ2
0

)

In the last step we have just completed the square. This expression looks like another normal
PDF, only with an adjusted mean. Since we know that p̂(θ) will be properly normalized, we can
conclude that

p̂(θ) ∼ N (µ− σ2
0ξA(1− b1a

∗), σ2
0).

C Ranking recursive and reduced form welfare measures

In order to gain an intuition for why the ranking of recursive and reduced form welfare measures
has a complex dependence on η, consider a 3-period model, and assume that beliefs are described
by only two different probability models. Let U(0) be the known utility at time 0, EUi(t) be the
expected utility in model i ∈ {1, 2} at time t ∈ {1, 2}, and p be the second-order probability on
distribution 1. The two welfare measures are given by:

Vreduced = U(0) + βφ−1 (pφ(EU1(1) + βEU1(2)) + (1− p)φ(EU2(1) + βEU2(2)))

Vrecursive = U(0) + βφ−1 (pφ(EU1(1) + βX) + (1− p)φ(EU2(1) + βX))

where
X := φ−1 (pφ(EU1(2)) + (1− p)φ(EU2(2))) .

From these expressions, Vrecursive > Vreduced iff

Eiφ(EUi(1) + βX) > Eiφ(EUi(1) + βEUi(2)),

i.e., we are asking whether adding a certainty equivalent X of the risk EUi(2) to the risk EUi(1) is
preferred to adding the risk EUi(2) itself. There is no general answer to this question – it depends
on the values of the EUi(t), and the specific functional form of φ. Moreover, since the EUi(t)
are all implicitly complicated functions of η, and are likely non-monotonic, and discontinuous at
η = 1, we can expect to get ranking reversals as η changes and affects the values of the EUi(t)
non-uniformly.
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