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Abstract

Current projections of long-term trends in Atlartiarricane activity due to climate change
are deeply uncertain, both in magnitude and sitjis @reates challenges for adaptation
planning in exposed coastal communities. We presé@mework to support the
interpretation of current long-term tropical cyatoprojections, which accommodates the
nature of the uncertainty and aims to facilitateust decision making using the information
that is available today. The framework is populat@t projections taken from the recent
literature to develop a set of scenarios of longitburricane hazard. Hazard scenarios are
then used to generate risk scenarios for Floridayues coupled climate-catastrophe modeling
approach. The scenarios represent a broad rargausible futures; from wind-related
hurricane losses in Florida halving by the encheft¢entury to more than a four-fold increase
due to climate change alone. We suggest thahitipossible, based on current evidence, to
meaningfully quantify the relative confidence otkacenario. The analyses also suggest that
natural variability is likely to be the dominaniwar of the level and volatility of wind-related
risk over the coming decade; however, under thbdsigscenario, the superposition of this
natural variability and anthropogenic climate chawoguld mean notably increased levels of
risk within the decade. Finally, we present a segitanalyses to better understand the
relative adequacy of the different models that upitethe scenarios and draw conclusions for
the design of future climate science and modelkpmeements to be most informative for

adaptation.

1. Introduction
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Damages related to tropical cyclones on the USnéidaand Gulf coasts have spiraled
upwards over the past few decades as populatimhassets have become increasingly
concentrated in exposed coastal regions (e.g.dP&ill Landsea 1998). There is insufficient
evidence to confirm whether or not anthropogeriimaie change (hereatfter, referred to as
climate change) has contributed to the increapash damages (e.g. Neumayer and Bartel,
2010). But there are indications that climate cleamgy exacerbate hurricane risk in the
future. There is an urgent need to consider futureicane risk in long-term planning and
policy decisions, for example, over how and whexe properties and infrastructure are
developed, as decisions made today that are apg®po current climate could lock-in
substantial future exposure and vulnerability thanged climate. The challenge for decision
makers is that the future characteristics of tralptyclone hazards are uncertain, particularly

at a regional level.

Knutsonet al. 2010 reviewed current evidence and concludedgibaglly, climate change is
likely to lead to either a reduced, or essentialighanged, tropical cyclone frequency,
alongside an increase in average maximum wind spdégtre is lower consensus over
projections for individual ocean basins. For thaAtic Basin, of the twelve studies reviewed
by Knutsonet al. 2010, around one third predict an increase inufeegy and two-thirds a
decrease. Studies concerning the intensity of¢edgiyclones are more challenged by the
resolution of current global climate models, sdethfjeneral circulation models (GCMs),
which is not yet sufficient to simulate the mogeimse storms (Emanuel 2008). The majority
of the studies reviewed by Knutsehal. project, on average, an increase in storm inteisity
the Atlantic Basin, although a minority of indivilluGCMs used in these studies do project
reductions (where different studies use alternagios, including the frequency of the most
intense storms, the potential intensity or maxinwimd speeds). Many other characteristics
relevant to risk estimation are even more uncertamexample, changes in the distribution
of tropical storm tracks, genesis locations, spegdes and landfall locations. Knutseinal.
reported that few studies have explored the affgfctéimate change on these characteristics

and there is little consensus in projections.

While it is important to continue to refine projiects, some types of adaptation decisions can
not be delayed until there is greater certaintpng-term hurricane prediction; for example,
greater certainty in projections could take moenth decade to achieve (e.g. Zickfietdal.
2010) and meanwhile infrastructure and developrmkamning decisions made today will
affect risk levels for many decades to come. Thigap seeks to provide an informative set of
scenarios of wind-driven hurricane risk based agr{eviewed science and modeling

available today. This paper is only a first stepdals an informative set of scenarios; firstly,



it does not address all uncertainties, only thessted to the future frequency and intensity of
tropical storms in the Atlantic Basin, and seconthe scenario set will be refined over time
as new information becomes available. The followimng sections describe the framework
and methodologies used for generating the scen&extions 4and 5 analyze the hazard and

risk scenarios.

Scenarios of future states have long been usdeimanagement of natural hazards, as well
as decision-making more broadly. Van der Heijdé)©8) suggests that such scenarios can
serve as &est-bed for policies and plansds well as guiding future research to refine
projections. Section 6 will briefly discuss thesfiof these applications, how the scenarios can
be used to inform adaptation planning; though rfasis in the discussion will be placed on
the second application, using the scenarios toidenkow future climate science and

modeling experiments could be best designed tods imformative for adaptation.

2. The Framework

A scenario is a description of a possible futuatestin this case, a possible future tropical
cyclone climate. Appropriate model selection isc@bin generating a set of scenarios to
inform decision making. Groves and Lempert (2008) wan der Heijden (2005) suggest that
a set of scenarios should aim to explore all thetmeignificant driving forces affecting future
risks and decisions and be representative of tingeraf possible future outcomes. Several
other authors have also noted the importance tfdimy extreme scenarios in decision
analysis (Parson 2008; Growetsal. 2007a; Hallegatte 2009; Morgan 2003) and this avas
important lesson learnt from the Thames Estuary)2it0ject in the UK, which used a
scenario-based approach to design a new tidal foooigction system for London for the®21

century (Loweet al. 2009).

For these reasons, the framework aims to seleceisitaol represent the widest possible range
of plausible future states for the key determinanftsiture wind-related risk. A condition
imposed on this range, after Lempert et al. 209#)at the scenarios are scientifically
plausible and rigorous; which we define as beirgedaon modeling and approaches that are

grounded in scientific theory and published inpleer-reviewed literature.

Van der Heijden (2005) suggests that a framewarkiéeeloping scenarios can be derived
from identifying key events or stages of uncertathiat will drive the scenario progression.
Scenarios can then be developed that systematagilpre the range of consequences of
these events or stages. We suggest there arenthjeestages of uncertainty in projections of

long-term tropical cyclone activity in the Atlant8asin (after Jones 2000). The first (1) is the



emissions scenario uncertainty; this is discusse&krction 3. The second (Il) is uncertainty in
the response of the large-scale (global to ocesimizgale) climate and ocean environment to
manmade emissions. In current projections, thigamty stems from missing processes and
the parameterization of processes in global climaidels (McAvanewt al. 2001, Randakt

al. 2007). The third stage (lll) is the uncertaintythie link between the ocean basin-scale
environment and basin tropical cyclone activity. W&inguish the second and third stages
because these are generally treated by differedelspcomputational constraints mean that
the resolution of global models (even of the higfnesolution models available) is

insufficient to simulate all the processes involuedropical cyclone development and for this
reasordownscalingnodels are used to project changes in regiongidabcyclone
characteristics for a given large-scale environménése downscaling models add an

additional layer of uncertainty (Emanuel 2008, Marat al. 2010).
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Figure 1: Schematic diagram illustrating the franww for scenario generation. The grey wavy lines
signify that it is not possible to exclude scensaitside of the ranges indicated by the scenarios.

reality, the evolution of the metric is unlikelylie a smooth progression as suggested by this atiagr

The scenarios available in the recent scientifegditure generally fall into two types that
roughly reflect the van der Heijden (2005) framekvdrhe first type utilizes a range of
projections of the large-scale environment soufomad multiple GCMs (i.e. the stage Il
uncertainty), but only a single representatiorheflink to basin tropical cyclone activity
(stage 1l1), typically using dynamical downscalinghodel; that is, a higher-resolution
regional model that simulates the tropical cyclolm@atology conditioned on a particular
GCM projection. These scenarios are denoted “DycanModel” scenarios. The second type
also uses a range of GCM projections, but explarfe®ader range of the uncertainty in the

link to basin tropical cyclone activity (stage jitypically using simpler downscaling



approaches. For example, Vecehal. 2008 presents a set of simple models which utilize
statistical downscalingechniques (based on only one or two predictargpled with a range
of GCM projections. These scenarios are denoteatisital Model” scenarios. Few studies

explore more than one emissions scenario.

In this study, we utilize both of these types arsarios. The Dynamical Model scenarios
represent the ‘state-of-the-art’ in current longvtgrediction. These are complemented by
the Statistical Model scenarios, which have theaathge of representing a broader range of
the uncertainty. While the models underlying thatiStical Model scenarios are simpler than
those used by the Dynamical Model scenarios tiseegidence that they provide adequate
predictions of basin-scale tropical cyclone frequyeand intensity over the near- and long-
term (Emanuel, 2005, Hoyes al. 2006). They also have the advantage of beingttiirec
driven by large-scale climate variables (such a#nbscale sea surface temperatures) in which
one can have greater confidence than in the getes@riables used by the dynamical

downscaling approaches.

For decision support, it is important to recogritzat the upper and lower bounds on future
risk suggested by the range of scenarios genehnatedare not the true limits to the space of
all plausible future states. For example, while$iatistical Models could be interpreted as
capturing the bounds of plausible changes in hamgcactivity given a specific large-scale
climate projection (the stage Il uncertainty), tB€Ms on which these projections are based
represent only a lower-bound on the true rang¢hef §tage 1) uncertainty (e.g. Oreslktsl.
2010; Stainforttet al. 2007a,b; Morgan 2003). For example, Knettal. 2010 describes that
current GCMs share many common structures antatis, which means they are not
independent and provide only a limited samplinghefuncertainties in the models. The level
of confidence in the range of future states suggelsy the scenario set decreases with both
prediction lead time (e.g. Cox and Stephenson, 288Wwkins and Sutton, 2009) and the
deviation of predicted variable from its currentdebecause the GCMs as well as the

downscaling models are tuned towards the pressntidaate.

In this study, the breadth of the scenario sebmstained by the condition that modeling and
approaches are grounded in scientific theory amdighed in the peer-reviewed literature.
Our constraint is supported by Lempettal. 2003, which suggests that an ensemble of
scenarios should aim tprovide the greatest possible diversity of pldalsifutures consistent
with available information”.Transparency about the nature of the uncertaiigiessential

for decision support as this can enable a decisi@ker to select an appropriate interpretation

of the scenarios; for example, where the scenatisdess well constrained, she may opt for



a more robust strategy. Parson 2008 and IPCC @§dest that the types of information that
are important to provide are the sources of unicgytin scenario generation and the drivers

that could mean that in reality the future statedtside of the range suggested by the set.

Finally, the scenarios aim to represent only themonent of annual changes in risk driven by
climate change. Another important driver of risklamcertainty, particularly over short
timescales, is natural variability. The annual agerfrequency and intensity of tropical
cyclones in the Atlantic Basin is highly (naturdixariable on annual, multi-annual and
decadal timescales, driven by chaotic weather gsa=eand natural cycles (Goldenbetrgl.
2001). In this study, projections are presenteshgsar average time slices. This averaging
removes annual variability in hazard and risk ls\u®it does not remove decadal variability.
The amplitude of decadal variability simulated i€Kas tends to be smaller than is observed
(e.g. Gilletet al.2008) and this means that decadal variability khba considered in

addition to the climate change trends presentédisiresearch. The implications of this are

discussed in Section 4.

The amplitude of natural variability on a decadafrtulti-decadal time scale, which

historically has been associated with significdnifts in the level of damages experienced by
coastal communities around the Atlantic, provideseful benchmark against which to assess
the scale of climate change. In this study, thgeaof natural variability is represented as the
difference between the observed activity leveleent active and inactive periods (defined
as 1995-2010 and 1972-1994, respectively) basethtanfrom the HURDAT database
(Landseaet al.2004).

2.1 Identifying “Decision-Relevant” Metrics

The design of a scenario set can not be independéstapplication. To guide scenario
design, this study takes the illustrative casenoéealuation of residential property
development policies in Florida to protect agawisid-related hurricane damage; a case of a
long-lived decision with high sunk-costs. Giventttesidential properties are most vulnerable
to intense hurricanes (e.g. ARA 2008), the decisidinbe highly sensitive to changes in the
frequency of intense (above Category 3 on the ISaifinpson scale) hurricanes affecting
Florida and, to a lesser extent, the frequencyl efaaned storms (Category 0 to 3) over the
next century. For this reason, we develop scenéiahese two metrics (labeled CAT45 and
NAMEST, respectively), which could be consideredxpes for thentensityandfrequencyof
storms, respectively. Given the nature of the uaggies in long-term hurricane projections,
these aggregated metrics are considered a morstrefanting point for adaptation planning

than a more detailed metric, such as time-dependadtspeed frequency distributions.



Other tropical cyclone metrics, such as storm aimthe distribution of landfalls, are
relevant for this adaptation problem, but the lefatonfidence in projections for these
metrics is currently very low (Knutsat al. 2010). For this reason, we assume that these
metrics retain their climatological distributior@@iven that it is known that these factors can
affect losses at a local scale, it would be berafio test the sensitivity of any adaptation
appraisal to the assumptions made using approsedseof plausible scenarios. This is

beyond the scope of the present study.

3. Methodology for Generating Basin-Level Hazard Senarios

In this section, hazard scenarios are generatataattic basin-scale. In all cases the
projections available in the peer-reviewed literattequire some reprocessing, or in some
cases regeneration, to develop a set of scenatlbg@nsistent baselines, emissions
scenarios, timescales and metrics, such that tleegamparable and compatible within the

framework.

Each scenario is represented as relative to theredids 1990 (1981 — 1999) baseline. Itis to
be noted that the 1990 baseline level of hurricaiity (both intensity and frequency) is
significantly lower than the level observed over ffast fifteen years, which has been

generally regarded as an ‘active’ period in hun&activity(supplementary materials?C

Projections are produced for three 5-year timesslimentered around the years 2020, 2040
and 2090. The chosen time-slices reflect the inftion needs for long-term adaptation
planning (i.e. adapting residential propertiesjvalf as requirements for shorter-term
applications, such as insurance and disaster meépess. Each scenario is based on the SRES
A1B emissions scenario (Nakicenovic and Swart, 200 find that one emissions scenario

is adequate in this case as the sensitivity ofipt@dvariables (such as tropical Atlantic sea
surface temperature, SST) to the emissions scemacertainty is lowsupplementary

materials B).

3.1 Dynamical Model Scenarios

Projections are taken from two recent studies, Embet al. 2008 and Bendest al.2010
(hereafter, E2008 and B2010, respectively). Theme welected as they are the first to
provide long-term projections for the Atlantic Bashat explicitly simulate adjustments in the

frequencies of Category 4 and 5 storms; each stpdifes a different dynamical downscaling

2 Supplementary materials are available on reqoestet corresponding author.



approach (i.e. high resolution models one-way meist® a GCM) to simulate hurricane
activity using projections of the large-scale clismaimulated by GCMs. Together the two
studies use individual projections from nine diéier GCMs (with two GCMs used in both
studies: MRI CGCM2.3.2a and MPI ECHAMS5). B2010 gisoduces an Ensemble
projection of the large-scale climate from eight€&®Ms from the World Climate Research

Program Coupled Model Intercomparison Project 3 ().

The B2010 projections for 2081-2100 are lineartgiipolated to provide the 5-year-average
time-slice data for 2020, 2040 and 2090. The assompf a linear change may lead to a
slight overestimation of near-term changes, howéhisris small (for exampleg1% in 2020
for all but one model and <3% in all cases whenmaned with an interpolation using a
constant growth rate) and there is no evidenceppat any alternative assumption. The
projections from E2008 were reprocessed to giveele45 and NAMEST metricKerry

Emanuel, pers. comjrand similarly interpolated to produce the timeesidata.

3.2 Statistical Model Scenarios

Following approaches defined in the peer-revievitedgdture (Vecchi and Soden 2007a,
Vecchiet al. 2008, Saunders and Lee, 2008), the ‘Statisticaléli are based on a linear
regression technique that aims to capture thesstati relationship between the metrics
(CAT45 and NAMEST) and one or more large-scale afaripredictors’ (on a 5-year average
basis over the hurricane season). This relatioristigen used to produce a future projection
of hurricane activity based on GCM projectionsha predictor variables. Different statistical
models represent different (combinations of) lasgele predictors and are designed such that

they are grounded in scientific theory on the dswef tropical cyclone activity.

In this study, the statistical relationships betw#e predictors and hurricane activity are
derived from reanalysis data (ERA40, Uppetial. 2005) and the HURDAT database. The
approach, model parameters and regression reseltaitlined in thesupplementary
materials A Four sets of predictors are used, reflectingdhagb®wn in the peer-reviewed
literature to have a strong correlation with Atlariturricane activity and/or an empirical or
theoretical causal relationship:
1. MDR-SST: the SST in the Atlantic Main Developmemigidon (MDR) (Saunders and
Lee, 2008; Vecchet al. 2008);
2. REL-SST: the relative SST of the MDR to the tropioean SST (Vecclét al.
2008);
3. WNDSHR: the local vertical windshear in the MDR (8ders and Lee, 2008);
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4. MDR-SST + WNDSHR: a bi-variate model including bMiDR SST and MDR
windshear (Saunders and Lee, 2008).
The correlation coefficient{wvalue) for the statistical models ranges from @34@.69, with
the models including MDR-SST giving the highestretation for NAMEST (0.66 and 0.69)
and the two models including WNDSHR giving the laghcorrelation for CAT45 (0.65 and
0.68). These coefficients do not however implyvel®f relative confidence of the scenario;
while linear correlation values give an insighbimthether a predictand is linearly related to a

set of predictors, it does not necessarily itselidate a causal relationship.

A commonly-used large-scale predictor that is mig$rom this set is the “Maximum
Potential Intensity” (MPI) (Emanuel 1987). MPI istnncluded in this study due to the fact
that available time series of past MPI are judgeblet unreliable and too short to adequately

train a regression modedupplementary materials)A

Future scenarios are derived by applying the regresnodels to projections of the relevant
predictors taken from a GCM (i.e. statistical dogalmg). An ensemble of projections is
derived from the 21 GCMs of CMIP3 for each predicteading to 21 individual Statistical
Model projections for each of the four Models awd tetrics §upplementary materials) A
This set of GCMs is larger than those represenyettido Dynamical Model scenarios. In this
paper, we present as scenarios only the ensemilie amgl +1 standard deviation projections

across the set of 21 projections.

The set of scenarios developed in this study @ &dt24 scenarios; 12 Dynamical Model
scenarios and 12 Statistical Model scenarios) ishntarger than is suggested to be optimal
for scenario-based planning approaches (e.g. ardusuygested by van der Heijden, 2005).
In this study, we maintain the large number of aces so that they can also be informative
for planning for climate experiments; that is, witke larger set, the key drivers of uncertainty

remain clear and one can identify where uncergsntan be narrowed to greatest benefit.

4. Analysis of Hazard Scenarios

Figure 2 summarizes the temporal evolution of theahd scenarios for the two target metrics,
CATA45 (y-axis) and NAMEST (x-axis). Each scenasiotted relative to the baseline level.
The scenarios radiate out from their shared basghiue (represented by 1.0/1.0 on Figure
2). The differences in the evolution of the scarmegainst the two dimensions are quite
stark. The majority of scenarios show either litihenge or a reduction in the total number of
named storms in the Atlantic Basin. The findings more mixed for the number of intense

storms; nine out of the twelve Dynamical Model stés show an increase in the number of
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intense storms and only one of the Statistical NE@edDR-SST). Overall, the scenario set
appears to cover the range of projections fronbtbader set of studies reviewed by Knutson
et al. 2010 (though it is difficult to make direct comigans given the variety of metrics used
in previous studies).
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Figure 2: Projected changes in hurricane activiates for all scenarios plotted against the two &rg
metrics, NAMEST on x-axis and CAT45 on y-axis, shelative to the 1990 baseline level. All
projections start at the baseline (at 1,1) and egdb the 2090 estimate, with the squares or tiiesg
marking the 2020 and 2040 projections. The setafld scenarios include the Dynamical Model
scenarios (from E2008 in shades of green and B20%Bades of red) and the Statistical Model
scenarios (in shades of blue). Scenarios represgittie mean +1 standard deviation predictions from
the statistical models are indicated by the dottee (crosses mark the projections in 2020 and 2040
note that these are not visible on the Model MDR B&ause they are aligned with the mean
projection. The two black triangles show the lewklgng the recent ‘active period’ (1995-2010) and
the levels during the earlier ‘inactive period’ (22-1994). A larger version of this figure, showthg

complete space of projections, is included in tgptementary materials D.

The MDR-SST and WNDSHR/REL-SST scenarios produemsi diametrically opposite
changes in both metrics and have similar charatiesi(in terms of the direction of changes
in CAT45 and NAMEST) to historical active and ingetperiods, respectively (Figure 2).
This difference in projections of these two setstafistical models is not unexpected as in
reality these drivers of tropical cyclone activitypderate one another (Vecchi and Soden,
2007b). The Dynamical Model scenarios appear dsraling between these two extremes,
with some scenarios taking on more MDR-SST likeratizristics (e.g. GFDL-CM2.1 from

12



B2010 and GFDL, CCSM3, CNRM, MIROC and MRI from B3) and others more towards
WNDSHR/REL SST (e.g. UKMO-HADCM3 from B2010 and and ECHAM from
E2008). The combined Statistical Model scenario,V8MR&MDR-SST, in contrast to the
other scenarios and historical variability, progegtrapid decline in the number of intense
hurricanes but increase in the number of namedhst@ee supplementary material A for a

discussioi

Figure 3 gives the absolute values of the scendnageneral, scenarios based on B2gi@
larger changes in the number of intense stormstti@se based on E2008. Scenarios based
on E2008 also tend to predict small increasesarirdguency of all named storms, while
those based on B2010 tend to predict small rechstieven for the same GCMs (n.b. the
following GCMs are the same in both studies: MRICN®R.3.2a = MRI and MPI ECHAMb5

= ECHAM in Figure 3; however, we retain the originaming from B2010 and E2008 to
facilitate comparison to those studies). This saggthat it is the downscaling approaches of
the two studies that drive the differences in mtjms. One explanation for the differences
could be related to the use of an upper-ocean #iestmucture from a present-day

climatology in E2008.

Analysis of the scenario set suggests that nararébility could remain the dominant driver
of risk for at least a decade, and much longeoinescases. For example, Figure 3
demonstrates that only the most extreme Dynamicaléiscenario (UKMO-HadCM3) and
the four most extreme Statistical Model scenaiiies & total of five out of 24 scenarios)
move outside of the range of observed natural itiain the number of named storms in
the Basin in 2020 and by 2090 just over half osa#inarios have moved outside of this
range. For the CAT45 metric, six of the Statistidaldel scenarios move outside of the range
of natural variability by 2020 but none of the Dymaal Model scenarios. By 2090, still only
the three most extreme Dynamical Model scenari®’dO-HadCM3, GFDL.CM2.1 and
MRI-CGCM) move outside of the range of natural ahifity. This is consistent with the
findings of B2010, which concluded that due to ratuariability it will be impossible to
detect a robust signal of changes in the most $etéurricanes in meteorological
observations until the second-half of the twentgtfcentury (and longer for an observable
signal in loss records, Cromptenal.2011). This does not mean that climate change will
have no effect on risk levels in the coming decatigural variability will be superimposed
onto any anthropogenic trend of increasing or desing mean risk levels. It is not known
whether this superposition will be linear and hdimate change will impact natural
variability itself. It is clear that we can not éxde the possibility of experiencing risk levels

outside of the historical range of natural varigifor example, under the MDR_SST

13



scenario, a linear superposition would imply thaive periods could become more active

than seen before within the decade.
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Figure 3: The hazard scenarios: projections of #verage annual number of all named storms in the
Basin (NAMEST, top) and projections of the averageual number all Category 4 and 5 storms in the
Basin (CAT45, bottom). The blue bars are the SiesiisModel scenarios for 2020 and the green and
orange bars are the Dynamical Model scenarios f22@from E2008 and B2010, respectively. Three
scenarios are shown for each Statistical Modelsthare projections based on the ensemble mean of
the 21 individual GCMs and the +1 standard deviatidhe dark shaded bars are the equivalent

projections for 2090. The red lines show benchnpaikts: the solid line is the 1990 baseline levad a
the two dashed lines are the average rates overebent active (defined as 1995-2010) and inactive
(defined as 1972-1994) periods. Identical GCMs ketwE2008 and B2010 are indicated with boxes.

4.1 Model adequacy and relative confidence

Given the broad range of projections implied bysbenarios it is useful to consider whether
one or more of these scenarios could be excludeglyen a lower degree of confidence, on
the basis of arguments about model adequacy. Thameone metric of model adequacy

(Knutti et al. 2010). The fact that Dynamical Model scenarioschyee together relative to
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the Statistical Models can not be interpreted aasure of confidence, as in many cases the
models on which that Dynamical Model scenariosbased will share similar assumptions
(Knutti et al. 2010).

Each of the models drawn upon in this study has kbewn to represent present-day
variability in tropical cyclone activity in the Athtic Basin, to varying degrees (E2008;
B2010; Vecchet al 2008, Saunders and Lee, 2008). While the alafity model to

represent the past is also not a guarantee of alea@bility to represent the future; it is a
useful starting point. Given that future trends tluelimate change will be mainly driven by
changes in the large-scale climate environmenthanaiseful metric might be the ability of
the GCM to adequately represent the present-dagiorships between the large-scale
climate drivers. Figure 4 shows the predicted MDRdshear and SST anomalies from each
of the GCMs of the CMIP3 ensemble, averaged ove20#0 and 2090 5-year time slices.
All models predict an increase in MDR SSTs (to wvagydegrees), but there is little consensus
in either the scale or direction of changes in MBiRdshear gupplementary materials A,
Figure S.1) The GCMs used in the B2010 and E2008 studiebightighted. Comparing
predictions from these models to those in Figurgo®&e relationships emerge (the model set
is too small to draw strong conclusions). We sugties differences in predictions of future
windshear are an important cause of the diversityapical cyclone projections shown in
Figure 3. Those GCMs that predict the largest mes in windshear alongside increases in
MDR SSTs (CSIRO MK3.0 and UKMO-HadCM3) tend to l¢agredictions of a decreasing
number of named storms and category 4-5 stormssel'hmdels that predict either little
change in windshear or a large decrease (such B&-GM2.0) tend to predict increases in
the number of category 4-5 storms and little chglogén one case a large increase) in the
total number of named storms (where the sign otltage depends on the downscaling

approach).
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Figure 4: The relationship between 5-year averagedahear and sea surface temperature (SST) in the
Atlantic main development region (MDR) for CMIP3emble, for 2040 (orange) and 2090 (red). The
GCMs used in B2010 and E2008 are highlighted aE#@idd in the legend; all other models are
indicated by a cross.

Given the apparent importance of long-term progextiof windshear, an important indicator
of model adequacy could be the ability of modelsefresent the relationship between
windshear and MDR-SST in the past. In agreemeitit prigvious studies (e.g. Gillet et al.
2008), we find that the relationship between thesebles is far weaker in all of the GCMs
than is suggested by the ERA-40 reanalysis dafaplementary materials)EThe absolute
values of these two variables over the baselinegeare also inconsistent with the reanalyzes
of past data and demonstrate substantial modedi&k group of GCMs appears to perform
particularly well or poorly in these respects. Tdiference from the observations might lead

one to question the adequacy of these models éaigiion.

It should be noted that there is uncertainty ingppropriate baseline value from which
anomalies are calculated that could imply a systierbas in each of the scenarios. Some
authors (e.g. Elsner 2006; Gillett al. 2008; Holland and Webster, 2007; Mann and Emanuel,
2006; Trenberth and Shea 2006; Saatel. 2006; Smitret al. 2010) suggest that climate
change has already impacted hurricane activithisfwere the case, it could mean that the
1981-1999 period was actually an inactive periather than a neutral period; a simple
thought experiment (i.e. making the simplistic asgtion that climate change were
represented by the simple linear trend on obsdrepital cyclone data since 1950,
supplementary materials)@uggests negative biases on the absolute valiles scenarios

of up to around 1.5 for all named storms (+15%hef1990 baseline) and 0.3 for category 4-5

storms (+21% of the 1990 baseline) in the 5-yearage time slices. This uncertainty leads
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to an additional uncertainty in estimates of thpeeted losses derived from the hazard
scenarios. Better understanding the role of natieks in past Atlantic tropical cyclone
activity (and therefore, the role of climate changeuld help to resolve this uncertainty in
the baseline, lead to improved estimates of cuardtfuture risk, and could allow the

exclusion of some of the scenarios if they weranfbto be inconsistent with observed trends.

5. Risk Scenarios for Wind-Related Property Damage Florida

A simplified risk model is applied to estimate theplications of the scenario set for wind-
related residential property losses in Florida. fiblke metrics derived in this paper are the
average annual loss (AAL), the standard deviatidnss and the exceedence probability
curve (Grossi and Kunreuther, 2005). The coremsklel is based on proprietary probability-
loss data provided by Risk Management Solutionsdnd represents the long-term average
(defined as 1950 — 2005) level of risk for a lapgetfolio of current residential properties in
Florida. The model is a simplification of a fulltaatrophe model: losses are aggregated to
state level; and secondary uncertainties fromekample, the uncertain vulnerability of
properties, are not captured. The climate changeasios are each applied deterministically
by adjusting the frequencies of individual evenithiw the risk model based on the two
metrics. Exposure and vulnerability is held constarer time. The detailed methodologies

are described isupplementary materials F.

Figure 5 shows the estimated AAL relative to thedliae (1981-1990) level for each of the
climate change scenarios in 2020 and 2090, wherbakeline AAL for this portfolio is
estimated to be around $3.6 billion USD. In all bngé of the Dynamical Model scenarios the
AAL remains roughly constant (to within 3 per centincreases up to twenty percentin
2020. By 2090, the divergence increases, withribst significant increases predicted by the
scenarios based on GFDL-CM2.1, GFDL and MRI-CGCluke ©nly Dynamical Model
scenario with a significant decrease in AAL in ba@20 and 2090 is the scenario based on
UKMO-HADCM3, which suggests more than a halving®@fL by 2090. The most

significant increases in AAL are suggested by the sets of Statistical Model scenarios that
incorporate MDR-SST; the pure MDR-SST scenario satggmore than a four-fold increase
in AAL by 2090. The WNDSHR and REL-SST models sigggereduction in AAL similar in
magnitude to UKMO-HADCMS. As discussed in Sectignhése predictions of negative
changes appear to be contingent on experiencingisant increases in windshear in the

tropical Atlantic due to climate change.

Comparing Figure 5 with Figure 2 leads to the cosidn that changes in the intensity and

frequency of tropical cyclones are both importagtedninants of future AAL. For example,
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Projected Average Annual Loss
(relative to 1990 levels, where 1990

:1)

for the Statistical Model scenarios based on thdDSNR&MDR-SST model, strong
increases in the number of named storms appeaftsti the strong reduction in the number
of Category 4 and 5 storms, leading to an increasé\L in most cases, whereas for the
Dynamical Model scenarios based on B2010, strooigases in the Category 4 and 5 storms

(if large enough) can offset a moderate reducticthé number of named storms to give an

increase in risk.

WNDSHR (+0)
WNDSHR
WNDSHR (-0)
REL-SST (+0)
REL-SST
REL-SST (-0)
MDR-SST (+0)
MDR-SST
MDR-SST (-0)
MRI

MIROC

GFDL

ECHAM
CSIRO

CNRM
ccsm3
UKMO-HADCM3
MRI-CGCM
MPI-ECHAMS
GFDL-CM2.1
ENSEMBLE

WNDSHR & MDR-SST

WNDSHR & MDR-SST (+0)
WNDSHR & MDR-SST (-a)

Figure 5: The projected AAL, expressed as a ratlative to the 1990 baseline, for each of the
scenarios in 2020 (colored bars) and 2090 (blactsharhe blue bars for 2020 are the Statistical
Model scenarios and the green and orange barsladXtynamical Model scenarios from E2008 and

B2010, respectively.

Increases in average risk tend to be accompani@ttbgases in the volatility of risk (and

vice versa), as represented by the standard daviatiloss for each scenarsupplementary
materials . Figure 6 gives exceedance probability curvegézh scenario in 2020. This
suggests that even in 2020 there could be significaanges in the probabilities of multi-
billion USD losses, even though changes in the A#¢ more moderate. Such a large loss
would be caused by a Category 4 or 5 hurricankirsfyia densely populated area, but because
the probability of such an event is low it has latreely small effect on the AAL. A

narrowing of uncertainties in projections of theemsity of tropical cyclones would be

valuable for disaster preparedness and insurarstersy in Florida, which need to prepare for

such events.
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6. Discussion

The analysis presented in Section 4 suggeststtisatot possible to draw conclusions about
the relative confidence of the Dynamical and StiaatModel scenarios as both are
conditioned on the same set of GCM projectionsthack is no evidence that one group of
GCMs or downscaling approaches is more adequatettieaother. This leads us to the
conclusion that the nature of the uncertainty mglkterm risks from Atlantic tropical cyclones
could be regarded a@gep uncertaintyLiempertet al. 2003), orambiguity where there is
incomplete or conflicting information about the pability of different states (Gilboa 2009).
Several past studies have argued that given tlhieenat the uncertainties in climate change,
long-term adaptation problems will often be a cafsgecision making under deep uncertainty
(Dessaket al.2009; Lemperet al.2003; Grovegt al.2008a; Morgaret al. 1999; Oreskest

al. 2010; Stainfortket al. 2007a,b).

There is a deep literature on the implicationsmbiguity for decision making that is directly
relevant to the interpretation of climate projestidor adaptation and the design of scenarios
to support decision making. Millnet al. 2010 summarizes the literature and applies the key
arguments for the case of assessing responsamtieichange. A central conclusion
described by Millneet al.is the traditional approach for decision makingemuncertainty,
expected value analyder in its more generalized formubjectiveexpected utility (SEU)
theory,Savage 1954) is not appropriate to apply underitond of ambiguity. SEU theory
takes as an input a unigsebjectiveprobability distribution(SPD) over all possible future

states. For a case where there are multiple sosnairfuture states and no probability
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information, SEU theory allows one to elicit expleetiefs about the likelihood of different
scenarios to generate a unique SPD. Several autheesargued that in a case like this, where
there is ambiguity over the likelihood of differesttenarios (i.e. a secondary uncertainty in
the SPD), it is not rational to ignore ambiguityassign a single probability estimate for
each future scenario (Gilb@ al.2009, Lemperet al. 2003 and Morgan 2003). Further,
Ellsberg (1961) and Slovic and Tversky (1974) desti@ate that in cases where there is
ambiguity, SEU theory is not a good model of achedlavior as decision makers tend to put
more weight on options that have a lower degresndfiguity (i.e. they arambiguity

aversd. The outcome of this debate has been a serigsephtive decision making
approaches, such as robust decision making (Lerapalt2003; van der Heijden, 2005), that
do not rely on a unique SPD and take account ohthieiguity over future scenarios. The key
input to these methods is an understanding ofehge of plausible future scenarios. These
types of approaches tend to empha$iperegrets’ options and flexible adaptation strategies,
which perform well under a wide range of possibitife scenarios and have been applied to

adaptation planning (Lowet al.2009, Grovet al 2008a and Dessai and Hulme, 2007).

From this series of arguments, we argue firstly thdest inform decision making, a priority
for climate scientists and modelers is to: (i) ifjathe range of possible future states of
hurricane activity (as a function of time), the ldswvers and nature of the potential impacts,
and (ii) narrow the range of plausible future statdere possible by reducing sources of
uncertainty. Secondly, efforts to quantify uniquRDS of long-term hurricane activity based
on models available today, will be of little valttedecision makers (or potentially negative
value is misused, Hall 2007) given the substantisidual (i.e. unquantifiable, secondary)
uncertainties in current projections and the fhat tnethods are available to inform decisions

without unique SPDs.

This research has suggested a number of lessotigefdesign of future climate modeling
experiments and climate analyses to meet thesesnieastly, the importance of better
understanding the role of natural cycles (and foezeclimate change) in driving variability
in tropical cyclone activity and the climate of thgantic. We have shown how a better
understanding of the role of natural cycles anthate change in past and present tropical
cyclone activity is important for clarifying curreand future risk levels and may allow us to
eliminate some future scenarios. Linked with tthig, analyses also points toward the
importance of observations and of careful studglisfervational records in order to pinpoint

early signals of changes in tropical cyclone charéstics.

For future climate modeling, we draw three condusi
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Firstly, there is a need for more study of the adeg of models. There are many
fundamental questions that need to be addresseekdonple, does the fact that current
GCMs are unable to fully represent historical caations of MDR SSTs and windshear
shown in Section 4 suggest an inadequacy for fetexpfuture conditions for tropical
cyclone formation and evolution? Is it sufficient i model to represent current tropical
cyclone climatology and multi-annual variabilityen if there are suggestions that they are
right for the wrong reasons? From such questiams,noight be able to define a set of
necessary, not sufficient, tests for model adeqi@ca given application. Such analyses may
in time enable one to exclude certain scenari@stimate relative confidence and therefore,

refine adaptation decisions.

Secondly, we have demonstrated that scientificyaealand improved modeling to give
greater certainty about the sign of future chamg&®pospheric large-scale vertical
windshear over the Atlantic would narrow the ran§ancertainty in future (wind-driven)
hurricane risk for Florida; our results suggest tha sign of future wind shear changes
appears to be a key determinant of the sign oféuthanges in risk. But clarifying the sign of
future wind shear changes is not an easy taskitaefwindshear is dependent on many other
large-scale changes, such as the latitudinal teatyrergradients of the atmosphere, and

changes to natural cycles like ENSO.

Thirdly, the need to explore the full range of umaiaty in future states. In the main, climate
modelers have attempted to generate projectionsgpeesent a ‘best guess’ conditioned on a
particular model structure. Recently, some stuldas set out to more fully explore the range
of uncertainties in future climate projections, éxample: Murphyet al. 2009 sets out to
generate scenarios (with probability estimateshefUK climate to 2090 using a ‘perturbed
physics ensemble’, which explores parameter uriogyten the HadSM3 GCM; and Groves

et al 2008b and Dessai and Hulme, 2007 each use neuttiptlels (GCMs and/or
downscaling approaches with differing assumptidagroduce sets of scenarios of extreme
rainfall over California and water supplies in thast of England, respectively. We argue that
while these studies represent a significant stepaa in exploring uncertainty, they still do
not explore the full range of uncertainties becaheg are conditioned on one (or a handful
of non-independent, Knuttit al.2010) GCMs. This means that uncertainties assatiaith
model structure are not explored. We suggest thiaform adaptation, climate experiments
include analyses that leave the confines of cul@iv structures and attempt to explore the
range of possible outcomes, for example, usinglsitmodels or considering theoretical

limits.
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There are some limitations of the current scersgtdhat require further study. Firstly, this
study has only explored scenarios of the frequamtlyintensity of tropical cyclones in the
Atlantic Basin. There are additional uncertaintiesther characteristics of tropical cyclones
(for example, their landfall frequencies and lomas) that could be important to take account
of if it were shown that the choices between adagptaptions were also dependent on these
assumptions. Secondly, this study has only explaied-driven risks from tropical cyclones.
In reality, adaptation planners will also needdasider other risks associated with tropical

cyclones, such as storm surge risks and rainfaledrdamage.

7. Summary

This paper has put forward a set of scenariosr@-term tropical cyclone frequency and
intensity for the Atlantic Basin with the aim offanming adaptation planning. These are used
to generate risk scenarios using a coupled capdsgrolimate modeling approach. The
scenarios suggest that wind-related hurricane $assElorida could half or increase more
than a four-fold by the end of the century duelitma&te change alone. We conclude that
natural variability is likely to be the dominaniwar of the level and volatility of wind-related
risk over the coming decade; however, the supeiposif climate change and natural
variability means that under some scenarios wenoaexclude the possibility of

experiencing new extremes in risk within the decadk also present a series of analyses to
better understand the relative adequacy of thergifft models that underpin the scenarios and
conclude that it is impossible based on curremrsm to quantify their relative likelihood.
This leads to the conclusion that planning adamtath long-term tropical cyclone risk in the
Atlantic will likely be a case of decision makingder deep uncertainty. Finally, we draw
specific conclusions for the needs from the scieammEmodelling going forwards to better
inform adaptation, including: a better understagdihthe drivers of current variability and
the role of climate change today; improved monitgtio detect early signals of change;
analyses to deliver greater certainty future wirdshn the Atlantic Basin; and a greater
focus on exploring the full range of uncertainire$ong-term projections, moving outside of

the confines of current GCM structures.
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