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Congestion-Dependent Pricing and
Forward Contracts for Complementary Segments

of a Communication Network
Miklós Reiter and Richard Steinberg, Member, IEEE

Abstract—Congestion-dependent pricing is a form of traffic
management that ensures the efficient allocation of bandwidth
between users and applications. As the unpredictability of con-
gestion prices creates revenue uncertainty for network providers
and cost uncertainty for users, it has been suggested that forward
contracts could be used to manage these risks. We develop a novel
game-theoretic model of a multi-provider communication net-
work with two complementary segments, and investigate whether
forward contracts would be adopted by service providers. Service
on the upstream segment is provided by a single Internet Service
Provider (ISP) and priced dynamically to maximize profit,
while several smaller ISPs sell connectivity on the downstream
network segment, with the advance possibility of entering into
forward contracts with their users for some of their capacity.
We show that the equilibrium forward contracting volumes are
necessarily asymmetric, with one downstream provider entering
into fewer forward contracts than the other competitors, thus
ensuring a high subsequent downstream price level. In practice,
network providers will choose the extent of forward contracting
strategically based not only on their risk tolerance, but also on the
market structure in the interprovider network and their peers’
actions.

Index Terms—Internet, contracts, traffic control (communi-
cation), communication systems, communication system traffic,
game theory, economics.

I. INTRODUCTION

The pricing for Internet service is currently based on access
bandwidth and usage. However, with the growing diversity of
applications using the Internet, there is considerable interest
in designing a future Internet architecture that would allow
users to indicate the value they place on network service
by purchasing end-to-end Quality of Service (QoS) from the
service provider.

Congestion-dependent pricing for communication networks
has been proposed [2]–[7] as a method of traffic manage-
ment that can efficiently allocate bandwidth among users—
e.g. households, small businesses, large service providers—
who place different value on their applications. Congestion-
dependent pricing ensures that users have an incentive to
control congestion. The highly influential paper of Gibbens
and Kelly [2] proposed a mechanism to implement usage-
based charging. In that scheme, prices are set on the basis
of aggregate traffic and communicated periodically to users,
who can then decide for themselves how to best satisfy their
requirements at the given price.

This paper is an extended version of a paper, “Forward Contracts for
Complementary Segments of a Communication Network” that was presented
at IEEE INFOCOM, San Diego, CA, March 15–19, 2010.

Financial contracts could be used to provide more pre-
dictable prices to both service providers and users in a network
with congestion pricing. Semret and Lazar and their co-
authors published a series of papers on bandwidth pricing
and contracts. These include Semret and Lazar [8], which
proposes a market for circuit switched calls, wherein calls are
admitted or rejected at or soon after their arrival time and, if
admitted, receive a fixed allocation of capacity and have the
option of securing the resource at a guaranteed maximum price
for a guaranteed minimum duration. The reservation fee is
determined using the Black-Scholes option pricing approach.
Semret, Liao, Campbell and Lazar [9] consider a game-
theoretic model of capacity provisioning in a differentiated
services Internet, where the players consist of one capacity
seller per network, one broker per service per network, and
a set of network users. The purchase of forward contracts
by the network users is proposed by Anderson et al. as a
“Contract and Balancing Mechanism” [10], which is shown to
give users an incentive to control congestion, while avoiding
the network provider’s perverse incentive to cause congestion.
On the other hand, Yuksel et al. [11] propose a “contract-
switched” Internet, featuring a dynamic inter-provider pricing
system to provide end-to-end QoS, in conjunction with longer-
term financial contracts used for risk management.

In this paper, we ask whether long-term forward contracts
would be offered to users in a future Internet with a dynamic
inter-provider pricing system. Our analysis differs from the
above papers by considering the fraction of a provider’s capac-
ity to be funded by long-term contracts as a strategic variable.
While our analysis is motivated by contracts between Internet
Service Providers and end-users, our model is sufficiently
general to be applicable to contracting by large corporate
customers, as considered in [10].

To study the dynamic interactions between multiple network
providers in a tractable setting, we develop a two-stage model
of bandwidth sold on two complementary1 segments of a
multi-provider communication network by means of dynamic
pricing (a spot market). Specifically, the upstream segment is
provided by a single large Internet Service Provider, denoted
UISP, and the downstream segment is provided by several
smaller ISPs, denoted ISP1, ISP2, . . . , ISPn. The upstream
ISP connects the downstream ISPs to the Internet backbone. A
schematic diagram of the business relationships is displayed in

1Two services are said to be complementary if they are used together
because they have little or no value when used separately.
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Figure 1. Network diagram

Figure 1. Foros, Kind, and Sørgard [12] point out that the ques-
tion of whether backbone providers have incentives to abuse
their potential market power has received much attention, both
theoretically and in antirust cases. They analyze the interplay
between firms and regulatory authorities in different countries
by considering a scenario with a single backbone provider.

In the first stage of our model, the downstream ISPs choose
the capacity to sell using forward contracts. In the second
stage, all ISPs set prices to maximize their respective revenue.
Customers must purchase the same amount of bandwidth
upstream and downstream in order to use the network services.

This paper is organized as follows. Section II presents an
overview of our two-stage model. In section III we describe
a novel extension of the Bertrand-Edgeworth pricing game
to model the second-stage interaction between the upstream
ISP and the capacity-constrained downstream ISPs competing
in prices with each other. We show in section IV that,
for sufficiently low market potential, downstream prices are
competed down to marginal cost, while for sufficiently high
market potential, there may be multiple pure-strategy Nash
equilibrium outcomes, with different divisions of the total in-
dustry profit between the upstream and downstream providers.
We assume the large upstream ISP has all the bargaining power
and can choose which equilibrium will arise. In the region of
intermediate market potential, we find an equilibrium point
using mixed strategies for the downstream ISPs (section V).
With uncertain future demand for network service, providers
have an incentive to enter into forward contracts in the first
stage. However, the extent of forward contracting changes the
dynamic price outcome in the second stage. In section VI
we use the pricing analysis to investigate the downstream
ISPs’ incentives for using forward contracts to fund their
bandwidth. We find that a downstream ISP choosing a low
contracting volume is able to raise the general downstream
price level, allowing its competitors to contract more. A pure-
strategy Nash equilibrium of contracting volumes, if it exists,
must have a unique lowest volume of contracting. We further
prove that an increase in this lowest volume has a nega-

tive marginal externality2 on other downstream ISPs’ utility,
whereas an increase in any other contracting volume creates
positive marginal externalities. In section VII, we present
conclusions. In order to aid readability, we have relegated the
more technical aspects of the proofs of the first two theorems
to three lemmas, which are proved in the appendix.

II. MODEL OVERVIEW

We consider the following two-stage contracting and pricing
game played by UISP and ISP1, . . . , ISPn. In the first stage,
the ISPi simultaneously choose to sell capacities 0≤ fi ≤ k
by means of forward contracts, where k is each ISPi’s total
capacity. This bandwidth is sold at a price which is fixed in
the first stage.

In the second stage, the providers UISP and ISP1, . . . , ISPn
simultaneously set prices pU and p1, . . . , pn, to maximize
profits πU and π1, . . . , πn from their uncontracted capacity.
The second-stage profits are functions of the prices and the
forward contracts fi chosen in the first stage.

The price sensitivity of bandwidth demand is not known
at the time of contracting, but dynamic pricing allows the
ISPs to choose their second-stage prices based on the realized
price sensitivity. We therefore model the price sensitivity β
as a random variable which is revealed between the two
stages of the game. This means that a risk-averse ISPi has
an incentive to enter into forward contracts to hedge against
demand uncertainty and maximize its total expected utility

Πi(f1, . . . , fn) = EβU (Ii + Epπi), (1)

where Eβ denotes expectation over the random price sensi-
tivity β, U is ISPi’s increasing and strictly concave utility
function, Ii is ISPi’s income derived from forward contracting,
Ep denotes expectation over the second-stage mixed strategy
prices, and πi is ISPi’s second stage profit. Although the
income Ii from forward contracting is fixed during the first
stage and so does not depend on the prices realized during
the second stage, we will assume that it does depend on
the expected second-stage prices EβEppi, as this is the fair-
market level at which risk-neutral users are willing to enter
into forward contracts.

Before we can fully define and analyze the first-stage
contracting game in section VI, we first need to develop the
second-stage pricing model.

III. PRICING MODEL

We model the second-stage behavior of the downstream
ISPs as “Bertrand-Edgeworth” price competition with capacity
constraints, first studied by Edgeworth who showed that the
duopoly case might not have an equilibrium in prices [13].
The formulation of the problem with the “rationing rule”
considered here is due to Levitan and Shubik [14]. They
found that prices are competed down to the perfectly com-
petitive level equal to marginal cost when demand is low;

2An externality of an economic transaction is an impact on a party that is
not directly involved in the transaction. The marginal externality of an ISP’s
contracting strategy is the impact of a unit increase in that ISP’s contracting
volume.
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and there is a pure-strategy Nash equilibrium, a pair of prices
such that neither firm can increase its profit by unilaterally
changing its price when demand is high. For the interme-
diate region of demand, they derived a Nash equilibrium in
mixed (random) strategies. Vives [15] established the mixed-
strategy equilibrium for the case of symmetric oligopoly with
more than two competitors and proved convergence to the
perfectly competitive price as the number of firms increases.
For any fixed choice of upstream price pU , our downstream
pricing model differs by taking into account forward contracts
previously sold by the ISPi for diverse fractions of their
bandwidth. An important analytic contribution of this paper
is the characterization of the mixed-strategy equilibrium for
this more complicated asymmetric model. This result is used
to find an equilibrium for the full second-stage pricing game
where UISP and the ISPi choose prices simultaneously.

We assume that UISP is a large provider connecting the ISPi
to the Internet backbone and has all the bargaining power.
Thus, where the second-stage pricing game has multiple
equilibria, the equilibrium with largest pU arises. In the special
case of n = 1, ISP1 is another monopolist and our game
describes a bilateral monopoly.

On the other hand, where the pricing game has no pure-
strategy Nash equilibrium and prices fluctuate, a realistic
analysis needs to take into account the timescales over which
providers are likely to adjust their prices. This in turn de-
pends on the technologies used for price updates. While the
downstream providers can directly broadcast their prices to
local users connected to their networks every few seconds,
this approach does not scale to a large multi-provider network
such as the Internet. The monopolistic transit provider is more
likely to make use of a general pricing system. Proposals for
implementing inter-provider pricing by extending the Border
Gateway Protocol (BGP) [16] have been made by [17], [18].
Such a system would propagate price changes over the BGP
convergence timescale of several minutes. For this reason, we
assume that the downstream ISPs’ prices are updated on a
shorter timescale than the upstream ISP’s price, and we model
the downstream ISPs’ behavior by mixed strategies and the
upstream ISP’s behavior by a pure strategy.

The bandwidth demand DU on the upstream ISP’s network
is the sum of the bandwidth demands Di served by each ISPi
on the complementary network segment, i.e.,

DU =

n∑
i=1

Di. (2)

We assume the costs of building the firms’ infrastructure are
sunk, and zero marginal costs are incurred during operation
of the network. According to Odlyzko [19], “marginal costs
are zero up to the point where congestion occurs and forces
addition of new capacity.” Of course, ISPs also incur non-
bandwidth marginal costs, such as the costs of billing and
customer support. However, any constant marginal costs can
be normalized to zero by redefining the prices, provided the
marginal costs incurred by the competing downstream ISPs
are equal. Let the upstream ISP’s payoff be

πU = pUDU . (3)

Suppose each ISPi has previously sold capacity fi by means
of forward contracts, so his (second-stage) payoff is3

πi = pi(Di−fi). (4)

In order to obtain closed-form expressions for the equilib-
rium, we work with a linear demand function [14], which has
been used in the network pricing literature, e.g., [20],

dmarket(p) = α− βp, (5)

where the total price p ≡ pU + pm and pm is the price
charged by the marginal ISPi with a positive market share,
that is, the highest price charged by any ISPi with a positive
market share. The downstream ISPs’ incentives for choosing
their contracting volumes fi under demand uncertainty are to
be discussed in section VI. For the first-stage pricing model,
we suppose simply that the market potential4 α and the
price sensitivity β are given non-negative constants, and the
contracting volumes are given constants with 0 < fi < k for
some k.

Assume the upstream ISP is not subject to any capacity
constraint, other than the total capacity nk resulting from the
capacity of the complementary network segment. To determine
the market share of each ISP, we use the rationing rule
maximizing consumer surplus chosen by [14], [21], which can
intuitively be seen as a “water-filling” model: demand fills the
downstream ISPs’ capacities in increasing order of price, up
to the point where the total demand at the next ISPi’s price
would be insufficient to leave any market share to that ISPi.
Demand is split equally between several ISPs with the same
price where there is not enough demand to fill their networks
completely. An implicit economic assumption in the “water-
filling” model is that there is no income effect5 on bandwidth
consumption.

More formally, “water-filling” specifies the bandwidth Di

provided by ISPi and the total bandwidth provided by the
upstream (and downstream) network DU by the following four
conditions. The bandwidth provided by ISPi must satisfy the
capacity constraint

0 ≤ Di ≤ k, (6)

the capacity of ISPi must be exhausted if market demand at
price pi exceeds the total bandwidth used in the network

dmarket(pU+pi) > DU ⇒ Di=k, (7)

the bandwidth provided by ISPi must be zero if market
demand at price pi is less than the total bandwidth used in
the network

dmarket(pU+pi) < DU ⇒ Di=0, (8)

and, finally, demand splits equally between ISPs choosing the
same price

pi=pj ⇒ Di=Dj . (9)

3A choice of price pi such that Di < fi can be interpreted as ISPi

purchasing bandwidth from the customers.
4The market potential is the maximum achievable demand, which is given

by the limit of the demand function as the price goes to zero.
5The income effect occurs when a decrease in the price for a good, other

things remaining the same, will leave the consumer with more income left
over, some of which will be spent on buying more of the good.
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In the rest of this paper, we shall assume without loss
of generality that the ISPi are ordered by their contracting
volumes as

0 < f1 ≤ f2 ≤ · · · ≤ fn < k.

IV. PURE-STRATEGY EQUILIBRIUM ANALYSIS

The equilibrium outcome of the pricing game depends on
the available bandwidth capacity compared to the market po-
tential. More precisely, the following definition partitions the
range of market potential α into three regions by comparing
it with the number n of ISPis, the capacity k of each ISPi,
and the contracting volume f1 of firm 1.

Definition 1 (high, low, intermediate market potential). Let
0 ≤ f1 < k. Consider the thresholds

αl(f1) = 2(n−1)k + 2f1, (10)
αh(f1) = (2n+1)k − f1. (11)

We say that market potential is f1-high if

α ≥ αh(f1); (12)

that market potential is f1-low if

α ≤ αl(f1); (13)

and that market potential is f1-intermediate if

αl(f1) < α < αh(f1). (14)

As we will now show, in the region of f1-high market po-
tential network capacity is exhausted. Thus, the total upstream
and downstream price p1 + pU is the congestion price, the
lowest price at which demand can be satisfied. In the region
of f1-low market potential, competition forces the downstream
market price p1 down to marginal cost, which is normalized
to zero. In the region of f1-intermediate market potential,
oscillatory price behavior follows, as will be explored in the
next section. The following theorem characterizes the pure-
strategy Nash equilibria in the three regions.

Theorem 1. Pure-strategy equilibria are characterized as
follows:

(i) If market potential is f1-high in the pricing game, then
there is a range of pure-strategy equilibria given by

p1 = p2 = · · · = pn (15)
β(p1 + pU ) = α− kn (16)

k−βp1 ≤ fi ∀i (17)
βpU ≥ kn, (18)

moreover, any f1-high pure-strategy equilibrium is of
this form.

(ii) If market potential is f1-low, then there is a unique pure-
strategy equilibrium such that every ISPi sets a zero
price (pi=0) and UISP sets pU = α

2β .
(iii) If market potential is f1-intermediate and n = 1, then

there is a unique pure-strategy equilibrium given by

p1 =
α− 2f1

3β
, pU =

α+ f1
3β

. (19)

If market potential is f1-intermediate and n ≥ 2, then
there is no pure-strategy equilibrium.

Some observations may be in order. To begin, note that the
general form of the result only differs between the bilateral
monopoly (n=1) and the true downstream oligopoly case (n≥
2) when market potential is f1-intermediate and competition
results in the non-existence of any pure-strategy equilibrium
in the oligopoly case. However, the boundaries between the
regions depend on the number n of downstream firms. In the
bilateral monopoly case, for example, the equilibrium with
p1 = 0 arises only if f1 ≥ α

2 . In the absence of competition
to force the downstream price to zero, this will only happen
when market potential is so low that, given the contracting
volume f1, provider ISP1 cannot obtain a positive profit by
setting p1>0.

On the other hand, when n ≥ 2, the theorem says that a
pure-strategy equilibrium where the ISPi set positive prices
pi>0 is necessarily of the form given by (15)–(18). It is easy
to check that this system is inconsistent when market potential
is not f1-high, so an equilibrium of this form can only exist
for f1-high market potential.

Observe that none of the results stated in Theorem 1 depend
on the contracting volumes f2, . . . , fn, but only on the lowest
contracting volume f1. In general, any contracting weakens
a downstream provider’s incentive to set a high price in the
pricing game, and the provider with the lowest contracting
volume, ISP1, will have the strongest incentive to do so. When
UISP holds all the bargaining power and market potential is
f1-high, the equilibrium with the highest pU arises, and the
equilibrium price levels are determined by ISP1 and UISP, the
other downstream ISPs being able to follow ISP1’s price p1.

When the downstream ISPs have some of the bargaining
power, the prices they set increase with market potential. The
competition between the downstream ISPs is more significant
in this case, and the game is closer to the classical Bertrand-
Edgeworth price competition with capacity constraints.

Proof of Theorem 1: If market potential is f1-high, this
allows the choice of p1, pU satisfying the outlined conditions.
We verify that these choices of prices do indeed constitute a
pure-strategy Nash equilibrium. Here, UISP serves a market
of maximal size nk, and he can do no better by cutting his
price. The effect on UISP’s profit of a rise in pU is

∂πU
∂pU

∣∣∣∣
+

= α− β(pU+p1)− βpU ≤ nk − βpU ≤ 0,

at the chosen point as well as for any higher value of pU .
Therefore, UISP has no incentive to change his strategy.

Since firm ISP1’s market share α − β(pU+p1) − (n−1)k
is equal to k at our chosen point, and f1 ≤ k, it follows that
ISP1 cannot gain by cutting his price. Moreover ISP1 cannot
increase his profit by raising his price either, since

∂π1
∂p1

∣∣∣∣
+

= α− β(pU + p1)− (n−1)k − βp1 − f1 ≤ 0, (20)

where the inequality follows from (17). We have shown that
the chosen point is indeed a pure-strategy Nash equilibrium.

If market potential is f1-low, consider the set of strategies
pi = 0 ∀i, βpU = α

2 . The price pU is clearly UISP’s best
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response to the zero strategy chosen by the ISPi: it is the
monopolistic price. Observe that the total market served is
DU = α

2 ≤ (n−1)k + f1. Therefore, if ISPi were to choose
any other price pi > 0, his profit would be negative. We
have established that this set of strategies is indeed a Nash
equilibrium.

Conversely, consider any pure-strategy equilibrium given by
the tuple of prices (pU ; p1, p2, . . . , pn). We will start by
showing that the equilibrium satisfies (15)–(18) for n ≥ 2
provided some piDi > 0. Let i be such that piDi > 0 with
pi maximal. Suppose there was some j such that pj > pi.
Then we would have Dj = 0 by the definition of i, so ISPj
would have an incentive to set pj equal to pi. Suppose now
that there was some j such that pj < pi. It follows from
assumptions (7)–(8) that Dj = k and ISPj would be able to
increase his price to any pj < pi while retaining a market
share of k. Since fj < k, he would increase his profit by
doing so. Therefore, we have shown that all prices are equal
in our equilibrium (15).

Suppose we had D1<k. Then, if n≥2, ISP1 would have an
incentive to increase his market share by cutting his price by
any small amount. Hence we must have D1 =k at equilibrium
and the total market served is nk (16).

Our previous argument shows that (17) and (18) must hold
at equilibrium, so the ISP1 and UISP respectively have no
incentive to increase their price. We have therefore shown
that every non-trivial pure-strategy equilibrium is of the given
form.

To show the unique characterization for the equilib-
rium, consider any pure-strategy Nash equilibrium in prices
(pU ; p1, p2, . . . , pn). We use the following two results,
which are direct consequences of the definitions of the down-
stream ISPs’ demand and payoff functions (4)–(9) and of
the thresholds for high and low market potential given in
Definition 1.

• Suppose market potential is not f1-low. Then there exists
1≤ i≤n such that ISPi has piDi>0 in equilibrium.

• Suppose market potential is not f1-high. If n ≥ 2 then
every ISPi has pi=0 in equilibrium.

If market potential is f1-high, the first result shows that
some piDi > 0 in equilibrium. For n≥2, we have shown that
any such equilibrium must be of the form given by (15)–(18).
For n=1, the same argument shows (17)–(18), and it is easy
to see that, if no provider has an incentive to cut his price,
then we have (16).

If market potential is f1-low, n ≥ 2, the second result shows
that every ISPi has piDi = 0. If market potential is f1-low
and n = 1, it is easy to see that the unique pure-strategy
equilibrium is given by p1 = 0, pU = α

2β .

If market potential is f1-intermediate and n ≥ 2, the
two results are contradictory, so there is no pure-strategy
equilibrium. Finally, if market potential is f1-intermediate
and n = 1, it is easy to see that the unique pure-strategy
equilibrium is given by (19). This completes the proof of the
theorem.

V. MIXED-STRATEGY EQUILIBRIUM ANALYSIS

From Theorem 1, we know that for f1-intermediate market
potential there is no pure-strategy Nash equilibrium when
the downstream market is a true oligopoly (n ≥ 2). Since
the downstream ISPs set their prices on a shorter timescale
than the upstream ISP, we assume they use mixed strategies,
interpreted as distributions of fluctuating prices following [14].
The pricing game can be shown to have an equilibrium point.

Theorem 2. Suppose n ≥ 2 and market potential is f1-
intermediate in the pricing game. Then there exists a unique
equilibrium point (pU ; p1, . . . , pn) where the price pU is a
pure strategy for UISP and the prices pi are mixed strategies
for each ISPi, respectively, such that pU is locally optimal
and each pi is optimal given the other ISPs’ strategies.

Local optimality of the upstream equilibrium price pU
means that UISP has no incentive to make small-scale de-
viations. The question of global optimality of pU is of little
importance, since the other ISPs can in any case not be
expected to maintain their strategies if UISP makes large-scale
deviations.6 However, an interesting question that remains
is whether allowing UISP to play a mixed strategy leads
to a different equilibrium point. We will consider this in
Theorem 3.

Proof of Theorem 2: The proof of this theorem makes
use of a generalization of the solution of the Bertrand-
Edgeworth oligopoly in [14], [15], taking forward contracting
into account.

Preliminaries: Reduced Pricing Game: We start by con-
sidering the reduced pricing game arising between the ISPi if
UISP has precommitted to a fixed price pU . In analogy with
Definition 1, the following regions turn out to be useful.

Definition 2. Let 0 ≤ f1 ≤ k. We say that market potential
is (f1, pU )-high if

βpU ≤ α− k(n+ 1) + f1; (21)

that market potential is (f1, pU )-low if

βpU ≥ α− k(n−1)− f1; (22)

and that market potential is (f1, pU )-intermediate if

α− k(n+ 1) + f1 < βpU < α− k(n−1)− f1. (23)

The form of the equilibrium depends on the level of market
potential. The following lemma (proved in the appendix)
shows that the reduced pricing game between the ISPi has
a unique pure-strategy equilibrium if market potential is
(f1, pU )-high or low, and a unique mixed-strategy equilibrium
if market potential is (f1, pU )-intermediate. For high market
potential, every ISPi sets the same positive price, while for low
market potential, every ISPi sets price zero. For intermediate
market potential, each ISPi sets a random price chosen from
an interval whose upper bound is a decreasing function in its
contracting volume fi. ISP1’s strategy may include setting the
price to the upper bound with a positive probability.

6This argument for the stability of local equilibria is made in [22].



6

Lemma 1. The reduced pricing game has the following Nash
equilibria.

(i) If market potential is (f1, pU )-high, then there is a
unique pure-strategy equilibrium, in which each ISPi
chooses almost surely (i.e., with probability one)

pi =
α− βpU − kn

β
. (24)

(ii) If market potential is (f1, pU )-low, then there is a unique
pure-strategy equilibrium, in which each ISPi chooses
almost surely

pi = 0. (25)

(iii) If market potential is (f1, pU )-intermediate, then the
reduced pricing game has the following unique mixed-
strategy equilibrium. Let

p11 ≡
α− βpU − k(n−1)− f1

2β
(26)

p0 ≡
β(p11)2

k−f1
(27)

h(p) =
p− p0

p(kn− α+ β(p+ pU ))
(28)

Hj(p) = (k−fj)h(p). (29)

Define pi+1
1 ∈ [0, p11] to be the unique value satisfying

h(pi+1
1 ) ≡ (k−fi+1)i−1∏i

j=1(k−fj)
for 2 ≤ (i+1) ≤ n (30)

pn+1
1 ≡ p0. (31)

For each 1 ≤ j ≤ n, define the function Gj(p) on
[p0, p

j
1] piecewise for p ∈ [pi+1

1 , pi1], i ≥ j, i ≥ 2
as

Gj(p) ≡


(∏

k≤i, k 6=j Hk(p)

(Hj(p))i−2

) 1
i−1

if p > p0,

0 if p = p0.
(32)

Then the reduced pricing game has a unique mixed-
strategy Nash equilibrium, in which each ISPj plays a
random pj ∈ [p0 p

j
1) according to the cumulative density

function Gj , and ISP1 chooses the value p1 = p11 with
positive probability 1− k−f2

k−f1 .
The mixed strategies pi (as random variables) almost
surely satisfy

max

{
0,

α− kn
β

− pU
}
< pi <

α− k(n−1)

β
− pU ,

(33)
and ISPi’s expected payoff over every mixed strategy pj
is

Epπi = p0(k−fi). (34)

Moreover, Epmax ≡ Emaxi{pi} is everywhere a continuous
function of pU . It is continuously differentiable in the region
of (f1, pU )-intermediate market potential, but it is not differ-
entiable at the boundary points βpU = α−k(n+ 1) +f1 and
βpU = α− k(n−1)− f1 towards (f1, pU )-low and (f1, pU )-
high market potential.

Existence: This lemma allows us to complete the proof
of Theorem 2 by showing the existence of the equilibrium
point. Let pU be such that

max {k(n−1), α−k(n+1)+f1} ≤ βpU ≤ min
{
kn,

α

2

}
.

It follows that

βpU ≤
α

2
= α− α

2
< α− k(n−1)− f1,

since α > 2(n−1)k + 2f1.
Let {pi}i be the mixed-strategy equilibrium of Lemma 1.

Then the mixed strategy pi maximizes ISPi’s profit. To prove
our theorem, we just need to show that UISP’s expected profit
is at a local maximum at some pU in this range.

First, suppose that βpU > α− k(n+ 1) + f1. Then UISP’s
expected profit is

EπU = pU (α− β(pU + Epmax)),

which is locally maximized by pU if and only if

pU =
α− βEpmax

2β
. (35)

At the upper bound of the allowed range for pU , if pU =
min

{
kn, α2

}
, then

Epmax ≥
α

β
− 2pU .

At the lower bound of the allowed range, if βpU = k(n−
1) > α− k(n+ 1) + f1, then

Epmax ≤
α− k(n−1)

β
− pU =

α

β
− 2pU .

Since Epmax is continuous in pU , the Intermediate
Value Theorem shows that there exists a value p∗U ∈[
k(n−1), min

{
kn, α2

}]
such that (35) holds.

On the other hand, at the lower bound βpU = α −
k(n+ 1) + f1 ≥ k(n− 1) the mixed-strategy equilibrium
of pi turns out to be the pure-strategy equilibrium given by
pi = Epmax = α−βpU−kn

β < α
β − 2pU since βpU < kn.

Here, by the Intermediate Value Theorem, there exists a
value p∗U ∈

(
α− k(n+1) + f1, min

{
kn, α

2

}]
such that (35)

holds. Since βp∗U > α−k(n+1)+f1, the total demand served
by UISP retains its functional form in some neighborhood of
p∗U , and p∗U does indeed locally maximize UISP’s profit.

Uniqueness: To prove that there is only one equilibrium
point with the given properties, we first need a technical
lemma, proved in the appendix, on the variation with the
constant price pU of the expected maximum price chosen by
an ISPi.

Lemma 2. Suppose market potential is f1-intermediate.
Let the expected maximum downstream price be Epmax =
Epmax (pU , (fi)

n
i=1) as specified in Lemma 1. Let p∗U be

the pure strategy followed by UISP at the equilibrium point
constructed above. Then, at p∗U , the function Epmax satisfies

∂Epmax
∂pU

∣∣∣∣
pU=p∗U

> −2. (36)
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Consider any equilibrium point (pU ; p1, . . . , pn), where
pU is a locally optimal pure strategy and each pi is an
optimal mixed strategy. It follows from the non-existence of
a pure-strategy equilibrium, proved in Theorem 1, that market
potential is (f1, pU )-intermediate.

Consider the function

f(pU ) = α− 2βpU − βEpmax(pU ).

At any equilibrium point satisfying our assumptions, we have
f(pU ) = 0. We have already shown the existence of such
a point pU = p

(1)
U . It follows from Lemma 1 that f is

continuously differentiable. By Lemma 2 f ′(p
(1)
U ) = −2β −

β ∂Epmax

∂pU
< 0.

Suppose, for a contradiction, that there exists p(2)U 6= p
(1)
U

with the same properties. Without loss of generality p
(1)
U <

p
(2)
U . It follows from the sign of the derivative of f that we

can find 0 < ε1, ε2 <
1
2 (p

(2)
U −p

(1)
U ) such that f(p

(1)
U +ε1) < 0

and f(p
(2)
U − ε2) > 0. Since f is a continuous function, the

Intermediate Value Theorem gives p(3)U ∈ (p
(1)
U +ε1, p

(2)
U −ε2)

such that f(p
(3)
U ) = 0.

Inductively, we obtain an infinite sequence
p
(1)
U , p

(2)
U , p

(3)
U , . . . of distinct points in [p

(1)
U , p

(2)
U ] such that

f(p
(1)
U ) = f(p

(2)
U ) = · · · = 0. By the Bolzano-Weierstrass

Theorem, this sequence must have an accumulation point pU .
Clearly then f(pU ) = 0 and f ′(pU ) = 0, which contradicts
Lemma 2. We have therefore established uniqueness of
UISP’s equilibrium price p(1)U . By Lemma 1, the equilibrium
point is unique.

One remaining question is whether allowing the upstream
ISP to play any mixed strategy gives rise to a different
equilibrium. It turns out that this is not the case for mixed-
strategy Nash equilibria where bandwidth demand can be
served completely and is sufficient to fill all but one down-
stream ISPs’ networks almost surely.

Theorem 3. Let market potential be f1-intermediate. Suppose
there exists a mixed-strategy Nash equilibrium in the pricing
game such that almost surely

k(n−1) ≤ α− β(pU+pi) ≤ kn. (37)

Then pU is a pure strategy and the equilibrium is the equilib-
rium point given in Theorem 2.

Proof of Theorem 3: Let

pU = sup{p : P{pU <p} = 0},
pU = inf{p : P{pU >p} = 0}.

Inequality (37) must still hold almost surely if UISP plays
any pure strategy pU ∈ [pU , pU ]. For any such pure strategy,
UISP’s expected profit is

EπU (pU ) = pU (α− βpU − βEpmax).

This is a quadratic function with a unique maximum on the
domain pU ∈ [pU , pU ]. Therefore, UISP plays a pure strategy.

Given the forward contracts entered into by the downstream
providers, we have thus completely characterized the ISPs’

pricing behavior. In general, the size of the market potential
relative to the available capacity determines whether the game
has a pure or mixed-strategy equilibrium.

When market potential is low, there is a pure-strategy Nash
equilibrium with downstream prices equal to zero or marginal
cost. The downstream ISPs compete the price down in this
case, or, for a single downstream firm operating as part of
a bilateral monopoly, the capacity sold by forward contracts
absorbs all demand.

When market potential is high, there is a range of pure-
strategy Nash equilibria with different divisions of the same
total network price between the upstream and downstream
industries. Bandwidth demand attains the level of available
capacity. At this point the total price is equal to the value of
a marginal unit of capacity. This price is commonly referred
to as the congestion price. The balance of bargaining power
between the firms determines which equilibrium arises. When
the upstream ISP has all the bargaining power, the fraction
of the total income obtained by the downstream industry is a
decreasing function of the lowest contracting volume f1, but
is independent of all other contracting volumes.

For intermediate market potential, there is a pure-strategy
Nash equilibrium only in the case of a bilateral monopoly
(and capacity is not exhausted in this case). For a downstream
oligopoly (n ≥ 2), there exists an equilibrium point consisting
of optimal mixed strategies for each downstream ISP and a
locally optimal pure strategy for the upstream ISP.

Despite the different pricing outcome in the two non-trivial
cases of intermediate and high market potential, the next
section shows that the incentives for forward contracting can
be analyzed in a uniform way over both regions.

VI. FORWARD CONTRACTING

Having analyzed the second-stage pricing subgame in sec-
tions III through V, by backward induction we can turn
our attention to the first stage choice of forward contract-
ing in the game described in section II. In particular, we
will analyze the network providers’ choice of contracting
under uncertain bandwidth demand. We will establish that
the equilibrium contracting volumes are always asymmetric,
with one provider choosing the unique lowest contracting
volume, before deriving the form of the externalities within
the oligopoly that are due to the choice of contracting volumes
in equilibrium. The results of the previous sections show
that the lowest contracting volume is an important factor
in determining second-stage prices. In the case of the pure-
strategy equilibrium outcome, the lowest contracting volume
is the only contracting volume that determines the second-
stage outcome. As the smallest contracting volume increases,
downstream prices decline, hurting all downstream providers.
However, the firm with the smallest contracting volume is
clearly subject to more price risk than the other providers.

We now relax the assumption that 0 < fi < k to allow
capacities 0≤ fi≤ k sold by forward contracting. When some
fi= 0 or fi=k, we assume the outcome of the second-stage
pricing game is the continuous extension of the pure-strategy
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equilibrium of Theorem 1 or the equilibrium of Theorem 2,
as appropriate.7

We formally define the first-stage income from forward
contracts sold at the expected second-stage price as

Ii = fiEβEppi. (38)

Recall from Definition 1 that the market potential α is 0-
high if α≥(2n+1)k and 0-low if α≤2(n−1)k. In the case of
0-high market potential, it is easy to show that a pure-strategy
Nash equilibrium of contracting volumes exists and all but one
contracting volumes are maximal f2 = f3 = · · · = fn = k in
equilibrium. In the more general case where we only know that
market potential is not 0-low (so the downstream ISPs may
not compete prices down to zero in the second stage), we do
not know whether there is a pure-strategy Nash equilibrium
in the first-stage choice of contracting volumes. However, any
such equilibrium must satisfy the following result.

Theorem 4. Suppose market potential is not 0-low and the
ISPs’ second-stage moves are the ones predicted by Theo-
rems 1 and 2, assuming the greatest pU when there are mul-
tiple equilibria. Suppose there is a pure-strategy equilibrium
of positive first-stage contracting volumes, so without loss of
generality

0 < f1 ≤ fi for every i. (39)

Then the lowest contracting volume is unique, i.e.,

f1 < fi for every i > 1. (40)

Thus when market potential is not 0-low, any contracting
equilibrium where the downstream ISPs obtain positive pay-
offs must be asymmetric. A risk-averse provider would seek to
set a high contracting volume as insurance against price risk,
hoping that some other provider will choose a low contracting
volume and thereby raise the downstream second-stage price
level.

How would the lowest contracting ISPi be chosen in
practice? Although no provider would want to be the one
choosing the lowest contracting volume, such a provider may
arise naturally in practice, for example, due to asymmetries
in information, risk aversion, or timing. Nevertheless, the lack
of symmetric equilibrium may be a source of uncertainty for
network providers considering investment into bandwidth.

Proof of Theorem 4: Clearly market potential is not f1-
low, since ISP1 can achieve a positive profit by choosing a

7It is easy to show that this extension is well-defined and constitutes
an equilibrium. However, when fi = k the equilibrium may no longer be
uniquely characterized as above. In this case ISPi is indifferent between two
prices if even the higher one guarantees full network utilization. This leads
to the emergence of equilibria where ISPi can raise his price without any
loss of second-stage income, violating the law of one price. To exclude such
unrealistic equilibria, our construction explicitly restricts attention to equilibria
that are the limit of equilibria arising when every fj <k.

When fi =0, additional equilibria exist where prices are set so high that
zero demand is served by the network DU = 0. Such equilibria, where the
ISPs effectively refuse to interconnect are unrealistic if another equilibrium
exists where all ISPs have positive profits, as is the case in the regions of high
and intermediate market potential. These equilibria disappear if at least one
ISPi has fi > 0, as ISPi then has an incentive to set pi =0. In the region
of low market potential, fi=0 again leads to additional equilibria, where the
downstream ISPs have zero profit.

sufficiently low contracting volume f1> 0, subject to market
potential not being 0-low.

Suppose first that market potential is f1-high. The second-
stage subgame has a pure-strategy equilibrium, which is in-
dependent of fj , for j > 1. Since ISPj , j > 1, is strictly risk-
averse, he has an incentive to choose fj>f1.

Suppose that market potential is f1-intermediate instead.
Suppose, for a contradiction, that f2 =f1. We will show that,
if ISP1 has no incentive to choose a lower contracting volume,
then he must have an incentive to choose a higher one. For
each β, ISP1’s profit varies with f1 =f2 according to

d

df1

∣∣∣∣
±

(Epπ1 + I1) = (p0(β)(k−f1) + f1EβEp1)

= −p0 + (k−f1)

(
∂p0
∂f1

∣∣∣∣
±

+
∂p0
∂pU

dEp∗U
df1

∣∣∣∣
±

)

+ EβEp1 + f1Eβ

(
∂Ep1
∂f1

∣∣∣∣
±

+
∂Ep1
∂pU

dEp∗U
df1

∣∣∣∣
±

)
,

where

dEp∗U
df1

∣∣∣∣
±

= − ∂Epmax
∂f1

∣∣∣∣
±

(
2 +

∂Epmax
∂pU

)−1
.

It is easy to check that

∂Ep1
∂f1

∣∣∣∣
−
≤ ∂Ep1

∂f1

∣∣∣∣
+

and
∂Epmax
∂f1

∣∣∣∣
−
≤ ∂Epmax

∂f1

∣∣∣∣
+

.

Trivially
∂p0
∂f1

∣∣∣∣
−
< 0 =

∂p0
∂f1

∣∣∣∣
+

.

Since ∂Ep1
∂pU

< 0 and ∂p0
∂pU

< 0, clearly

d

df1

∣∣∣∣
−

(Epπ1 + I1) <
d

df1

∣∣∣∣
+

(Epπ1 + I1),

so
∂

∂f1

∣∣∣∣
+

EβU (Epπ1 + I1) >
∂

∂f1

∣∣∣∣
−
EβU (Epπ1 + I1).

The right-hand side must be non-negative since ISP1 has no
incentive to decrease his contracting volume. Hence the left-
hand side is positive, and ISP1 can increase his expected
utility by raising his contracting volume slightly. This is a
contradiction, so f2 6= f1 as required.

We now quantify the impact of one downstream provider’s
choice of contracting volume on its competitors’ utility.

Theorem 5. Suppose

0 ≤ f1 < f2 ≤ · · · ≤ fn < k, (41)

and the ISPs’ second-stage moves are the ones predicted by
Theorems 1 and 2, assuming the greatest pU when there are
multiple equilibria.

If market potential is f1-intermediate, an increase of f1 by
ISP1 results in a negative marginal externality on the other
downstream ISPs’ payoffs; and an increase of fj by ISPj , for
any j > 1, results in a positive marginal externality on the
other downstream ISPs’ payoffs.
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If market potential is f1-high, an increase of f1 by ISP1

results in a negative marginal externality on the other down-
stream ISPs’ payoffs; and an increase of fj by ISPj , for
any j > 1, results in zero marginal externality on the other
downstream ISPs’ payoffs.

Choosing a low contracting volume f1 is like providing a
“public good”8 to the oligopoly, by raising the general price
level, but doing so is privately costly to ISP1, as it implies
a low level of insurance against demand uncertainty. In the
case of f1-intermediate market potential, the choices of the
contracting volumes f2, . . . , fn result in externalities with
the opposite sign, so greater contracting volumes benefit other
ISPs. The presence of externalities means that downstream
providers have an incentive to coordinate their actions by
collusion. In this case, there is a particular incentive for a
provider to make side-payments to a competitor in return for
this provider agreeing to refrain from entering into forward
contracts.

Proof of Theorem 5: If market potential is f1-high, every
ISPi charges price p1 = k−f1

β in the second stage. The theorem
is trivial in this case.

If market potential is f1-intermediate, let p∗0 = p0(p∗U ) and
Epp∗i = (Eppi)(p∗U ). Then:

dp∗0
dfi

=
∂p0
∂fi
− ∂p0
∂pU

∂Epmax
∂fi

(
2 +

∂Epmax
∂pU

)−1
,

dEp∗j
dfi

=
∂Epj
∂fi

− ∂Epj
∂pU

∂Epmax
∂fi

(
2 +

∂Epmax
∂pU

)−1
.

When fi>f1, ∂p0
∂fi

=0, ∂p0
∂pU

<0 and dp∗U
dfi

>0. Hence dp∗0
dfi

>0.

On the other hand, ∂p0∂f1
<0 and dp∗U

dfi
>0, so dp∗0

df1
<0.

Similarly, when 1<i 6=j, ∂Epj∂fi
≥0 and ∂Epj

∂pU
<0, so we have

dEp∗j
dfi

>0. On the other hand, if j>1, ∂Epj∂f1
≤0, so

dEp∗j
df1

<0.
Since ISPj’s profit is the stochastic quantity Ij+Epπj where

Ij = fjEβEpp∗j and Epπj = p∗0(k−fj), the result follows
immediately.

VII. CONCLUSIONS

This article started with the observation that a dynamic
pricing system for the Internet would ensure a more efficient
allocation of resources. However, without forward contracting,
providers would be exposed to substantial price risk due to
the uncertainty in market demand. Could forward contract-
ing remove this price risk? In the absence of any strategic
interaction, e.g. in a communication network operated by a
single provider, the answer is yes. When strategic interaction
is considered in a multi-provider network, the situation is more
complex. Forward contracting weakens a provider’s strategic
incentive to charge high prices. Thus, in the presence of an
upstream monopoly, the optimal forward contracting strategy
is a trade-off between reducing price risk and seeking to ensure
high prices in the future. When the contracting provider is part

8A public good is a good that is non-excludable and non-rivalrous, i.e., it
is not possible to exclude someone from using the good, and one individual’s
usage does not prevent another from using it.

of an oligopoly, the optimal contracting strategy will also be
dependent on its competitors’ strategies.

In this paper, we have analyzed the incentives for forward
contracting by ISPs competing to supply bandwidth on a
downstream network segment, when a single ISP with signif-
icant market power supplies bandwidth on a complementary
upstream network segment. In order to determine the incen-
tives for contracting, we have first studied the subsequent pric-
ing equilibrium which arises in different contracting scenarios.
Depending on the level of market potential compared with
the available bandwidth capacity, the pricing outcome can be
characterized as an equilibrium in pure or mixed strategies.

We can draw some conclusions on the choice of for-
ward contracts over two stages assuming the market’s price-
sensitivity is random and the downstream firms are risk-averse.
Note that in addition to the benefits, there are also risks associ-
ated with forward contracting. Provided that market potential
is not so low that downstream prices are competed down to
zero, we prove that any pure-strategy Nash equilibrium of
positive contracting volumes must be asymmetric and have a
unique lowest contracting volume. This gives rise to a version
of the game of “Chicken”: as the provider who chooses this
lowest contracting volume is exposed to the risk of more
price uncertainty than the other competitors, no selfish risk-
averse provider would want to be the one choosing the lowest
equilibrium contracting volume. In practice, this instability
may discourage investment into bandwidth. The reason is
that forward contracts have a negative impact on a provider’s
strategic incentives during the pricing stage. A natural low-
contracting provider may arise in the presence of asymmetries,
for example, in risk aversion or timing.

We further prove that the choice of contracting volumes
causes externalities, both negative and positive. An increase
in the lowest contracting volume has a negative marginal
externality on other downstream ISPs. An increase in any
other contracting volume has no externality for high market
potential, but a positive marginal externality for intermediate
market potential. In this sense, we can think of the downstream
ISP with the least forward contracting as providing a public
good to the oligopoly. A consequence is an incentive for
providers to collude on contracting choice, as discussed below.

In summary, for risk averse ISPs operating under this market
structure employing forward contracts, this paper provides
some initial practical guidelines. First, if an ISP believes
that every competitor will choose a high volume of forward
contracting, then he would be well-advised to choose a low
contracting volume. Second, a provider with a high contracting
volume might want to act in such a way that a low-contracting
provider would choose a lower contracting volume than would
be privately optimal. It could achieve this through side-
payments or other strategic behavior. Third, given that forward
contracts have a negative impact on a provider’s strategic
incentives during the pricing stage, network providers might
want to vertically integrate with the upstream provider in
order to eliminate this effect. Of course, this paper is an
initial investigation into this topic, and our model is somewhat
restrictive. One interesting direction for future research would
be to consider interactions between ISPs linked by other
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network shapes.
Finally, our framework could have other networking appli-

cations; for example, similar risk-return trade-offs might exist
in last-hop wireless spectrum markets, see [23].

APPENDIX

Proof of Lemma 1:
(i) Assume market potential is (f1, pU )-high. At the given

prices, assumptions (5)–(7) imply that capacity is ex-
hausted, so no ISPi has an incentive to lower his price.
From (21) and (24), it follows that βpi ≥ k−f1 ≥ k−fi,
and it was shown in (20) that, together with the fact
that capacity is exhausted, this implies that ISPi has no
incentive to raise his price. Therefore this point is indeed
a pure-strategy equilibrium.
To establish uniqueness, consider any pure-strategy equi-
librium. Note that every ISPi must have a positive profit
and, in particular, a positive market share Di > 0 in
equilibrium, since ISPi can achieve a positive profit
by choosing the price given in (24) regardless of its
competitors’ strategies. It follows that any two ISPi and
ISPj must choose the same price pi=pj , since otherwise
the ISP with the lower price would have an incentive to
raise its price.
Next, assumptions (7)–(9) imply that, unless the price pi
equals the value given in (24), either each downstream
ISP’s market share is less than its capacity k or the total
demand cannot be served by the downstream ISPs. In
both cases, a downstream ISP would have an incentive
to change its price, which shows that (24) must hold in
equilibrium. This establishes uniqueness.

(ii) Assume market potential is (f1, pU )-low. If every
downstream network chooses a price of zero, then
from (5), (22) the total demand satisfies dmarket ≤
k(n−1) + f1. Assumptions (7)–(8) imply that ISPi’s
second-stage profit when choosing pi > 0 is negative.
Therefore, this point is a pure-strategy equilibrium.
For uniqueness, consider any pure-strategy equilibrium.
We will show that if pi> 0 then πi< 0 so ISPi has an
incentive to set pi=0. Let ISPi be the network choosing
the highest price. First, if Di=0 then πi<0 is trivial.
Second, in the case where Di > 0, suppose there are
m downstream ISPs choosing price pi. From assump-
tions (7)–(9), the market share obtained by each is
Di = (α− βpU − βpi − k(n−m))/m < k, where the
inequality follows from (22) and the fact that f1 < k.
If m> 1 then every provider choosing price pi has an
incentive to just undercut the other providers choosing
price pi, contradicting the equilibrium assumption. On
the other hand, if m=1, then assumptions (7)–(9), (22)
imply that πi<0. We have therefore shown uniqueness.

(iii) Assume market potential is (f1, pU )-intermediate. The
following results are direct consequences of the defini-
tions stated in the lemma.
• We have

0 < p0 < p11 <
k−f1
β

. (42)

• For p0 ≤ p ≤ p11, we have

k(n−1) < dmarket(p+ pU ) < kn. (43)

• The functions h(p) and H1(p) are continuous and
strictly increasing on [p0, p

1
1], with H1(p0) = 0,

H1(p11) = 1.
• We have

p0 = pn+1
1 ≤ pn1 ≤ · · · ≤ p21 = p11, (44)

where, for 1 < i < n, pi1 = pi+1
1 if and only if

fi = fi+1. Also pi1 > p0 since fi < k.
• For any j, Gj is a continuous and strictly increasing

function on [p0, p
j
1]. For j > 1, Gj(p

j
1) = 1.

G1(p11) = k−f2
k−f1 .

• Finally, for p0 ≤ p ≤ pi1, the cumulative density
function of maxj 6=i{pj} satisfies

G−i(p) ≡
∏

j 6=i, pj1>p

Gj(p) = Hi(p). (45)

Given this, we can show that the strategies defined in
the lemma form a Nash equilibrium. Note that by in-
equality (43) and assumptions (7)–(8), if maxj 6=i{pj} >
pi, then ISPi’s market share Di = k, whereas if
maxj 6=i{pj} < pi, then ISPi’s market share is the
residual demand after the other (n− 1) downstream
networks’ capacities are exhausted, Di = dmarket(pi +
pU )− k(n−1). Thus ISPi’s market share depends only
on pi and maxj 6=i{pj}.
Since the probability distributions have no point mass at
any p0 < p < p11, and at least one ISPj with j 6= i has
pj > p0 almost surely, the event that maxj 6=i{pj} = p
has zero probability for any p < p11.
Thus ISPi’s profit, when choosing some p0 ≤ p < pi1, is
Eπi(p) = (1−G−i(p))p(k−fi) +G−i(p)p(dmarket(p+
pU )− k(n−1)− fi) = p0(k−fi) = Eπi(p0).
Moreover, for ISP1, Eπ1(p11) = p0(k−f1) = Eπ1(p0).
To establish the equilibrium, we just need to prove that,
conditional on the other ISPs’ strategies, no ISPi can
increase his profit by choosing a price p outside the
support of Gi, [p0, p

i
1].

First, since each ISPi can set price p0 for a market share
of k, setting a lower price p < p0 leads to lower profits:
Eπi(p) = p(k−fi) < p0(k−fi) = πi(p0).
Second, if ISPi sets price pi1 < p ≤ p11, then by (44),
pj+1
1 ≤ p ≤ pj1 for some j. Let p(−j)max ≡ maxj 6=i{pj}

and let G(−j)
max be the cumulative density function of

p
(−j)
max. Observe that, under the equilibrium strategies, for
pj+1
1 ≤ p ≤ pj1, we have

G(−j)
max(p) =

j∏
l=1

Gl(p) =

(
h(p)

j∏
l=1

(k−fl)

) 1
j−1

h(p)

≥

(
h(pj+1

1 )

j∏
l=1

(k−fl)

) 1
j−1

h(p) ≥ Hi(p), (46)

where the first inequality follows from the monotonicity
of h and the second inequality follows from i ≤ j + 1.
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Thus ISPi’s profit is Eπi(p) = (1−G(−j)
max(p))p(k−fi)+

G
(−j)
max(p)p(dmarket(p+ pU )− k(n−1)− fi) ≤ Eπi(p0),

where the inequality follows from (43) and (46). This
shows that ISPi has no incentive to set a price pi1 < p ≤
p11.
It now only remains to consider a third case where ISPi
sets price p > p11. His profit function takes the form
Eπi(p) = p(dmarket(p + pU ) − k(n−1) − fi), which
is a quadratic function attaining its maximum in (0, p11].
However, from (26)–(27), (42) and fi ≥ f1, we have
Eπi(p11) = (k−f1)p0− (fi−f1)p11 ≤ Eπi(p0), showing
that ISPi has no incentive to deviate by setting p > p11.
This establishes that ISPi has no incentive to deviate
from his equilibrium strategy, and therefore the given
mixed strategies form a Nash equilibrium.
Conversely, to prove uniqueness, consider any mixed-
strategy Nash equilibrium given by cumulative density
functions Gj(p) = P{pj < p}. Consider the well-
defined low- and high-price thresholds for each ISPj

pj0 = sup{p : Gj(p) = 0},

pj1 = inf{p : Gj(p) = 1}.

Note that
• Every ISPj obtains a positive expected profit Eπj

in equilibrium. Indeed, we have already shown that
ISP1’s profit is positive when choosing p11 regardless
of his competitors’ strategies. But ISP1 must then
have a positive low-price threshold p10 and any
competitor ISPj can obtain a positive profit by
slightly undercutting this price.

• In equilibrium, there is sufficient capacity for the
total demand at each low-price threshold:

α− β(pj0 + pU ) ≤ kn;

and each ISPj’s market share is positive even at his
high-price threshold:

α− β(pj1 + pU ) > k(n−1).

It is easy to check that the first inequality is required
for ISPj to have no incentive to play a mixed strat-
egy with a higher pj0, and that the second inequality
is required for the ISPj with the highest price pj1 to
have no incentive to play a mixed strategy with a
lower pj1.

It follows that every ISPj has the low-price threshold
p0 defined in (27), i.e. pj0 = p0 ∀j; every ISPj has the
expected profit given in (34), i.e. Eπj = p0(k−fj); and
ISP1 has the high-price threshold p11 defined in (26), and
no high-price threshold exceeds it: p11 = p11 ≥ p

j
1 ∀j.

Define cumulative density functions for maxi6=j{pi} as
before:

G−j(p) =
∏
i6=j

Gi(p).

From the equilibrium requirement that ISPj should
have no incentive to change his mixed strategy, it is

straightforward to verify the following. There exists an
open interval U ⊃ [p0, p

1
1] such that whenever p ∈ U ,

we have
G−j(p) ≥ Hj(p); (47)

and, whenever G−j(p) > Hj(p), we have

∃ ε > 0 : Gj(p− ε) = Gj(p+ ε). (48)

By the definition of pj1, Gj cannot be locally constant
at pj1, so

G−j(p
j
1) = Hj(p

j
1). (49)

Further, the following is easily shown:
• Each Gj is continuous on (p0, p

1
1]. (So the mixed

strategies have no point mass, except possibly at p0
and p11.) Moreover, for j 6= 1, Gj has no point mass
at p11, so

Gj(p
j
1) = 1. (50)

• If fi < fj , then pj1 ≤ pi1. Whenever fi = fi+1,
we can re-order ISPi, ISPi+1, so that pi+1

1 ≤ pi1.
Letting pn+1

1 ≡ p0, without loss of generality

pn+1
1 ≡ p0 ≤ pn1 ≤ p

n−1
1 ≤ · · · ≤ p11 = p11. (51)

Then (49)–(51) imply, for 2 ≤ i ≤ n:

G−i(pi1) =

i−1∏
j=1

Gj(pi1) = Hi(pi1). (52)

• We have p21 = p11 = p21.
We are ready to prove that the mixed strategies employed
are indeed those of our constructed equilibrium.
We now prove by induction that, for each 2 ≤ i ≤ n:
(a) pi1 = pi1,
(b) Gj(p) = G̃ij(p) piecewise for p ∈ [pi+1

1 , pi1], i ≥ j,

G̃ij(p) ≡


(
∏

l≤i, l 6=j Hl(p))
1

i−1

(Hj(p))
i−2
i−1

if p > p0,

0 if p = p0.

For the case i = 2, we already know p21 = p21 = p11,
so (a) holds. For part (b), we have already shown
that Gj(p11) = 1 = G̃2

j (p
1
1) for j 6= 1. For the case

j= 1, equation (52) implies that G−2(p21) = G1(p11) =

H2(p11) = k−f2
k−f1 = G̃1

1(p11), so (b) holds.
Now assume the inductive hypothesis holds for some
i − 1 < n. We first show (a). Using part (b) of the
inductive hypothesis for i−1 allows us to rearrange (52)
as

h(pi1) =
(k−fi)i−2∏i−1
j=1(k−fj)

.

The unique solution of this equation is pi1 = pi1, by the
definition (30) of pi1, so (a) holds.
We now show (b). In the case pi+1

1 = pi1, we have

Gj(p) = Gj(p
i
1) = G̃i−1j (pi1) = G̃ij(p

i
1) by the
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inductive hypothesis and the definition (30) of pi1, so (b)
holds.
Consider the case pi+1

1 < pi1. For every pi+1
1 ≤ p ≤ pi1,

if p > p0, then

Gj(p) =

(∏
l≤i, l 6=j G−l(p)

) 1
i−1

(G−j(p))
i−2
i−1

. (53)

To establish (b), it is sufficient to show that G−l(p) =

Hl(p) for every l ≤ i, p ∈ (pi+1
1 , pi1): then Gj(p) =

G̃ij(p) for p ∈ [pi+1
1 , pi1] by (53) (using continuity at the

interval bounds).
Suppose, for a contradiction, that there exists some
l ≤ i, p ∈ (pi+1

1 , pi1) such that G−l(p) 6= Hl(p).
Then G−l(p) > Hl(p) by property (47). We start by
showing that, for this value p, we have Gj(p) > G̃ij(p)
for every j ≤ i. We show this separately for j such
that G−j(p) = Hj(p) and j such that G−j(p) > Hj(p).
First, for every j such that G−j(p) = Hj(p), we have
Gj(p) > G̃ij(p) by (53). Second, for every l satisfying
G−l(p) > Hl(p), define

pl = sup{q : G−l(q
′) > Hl(q

′) ∀p ≤ q′ ≤ q}. (54)

By the inductive hypothesis for i−1, property (48) does
not hold at pi1, so the supremum exists and pl ≤ pi1.

G−l(pl) = Hl(pl) (55)

follows by continuity if pl < pi1, and by the inductive
hypothesis for i − 1 if pl = pi1. Using expression (53)
for Gl(pl), equation (55), and inequality (47) for G−k,
k 6= l, gives

Gl(pl) ≥ G̃il(pl). (56)

Note that by the choice of l and (55), we must have
p < pl. From (54), for p ≤ q′ < pl, we have G−l(q′) >
Hl(q

′), so property (48) implies that Gl is constant on
(p, pl). Continuity at p and left-continuity at pl imply
Gl(p) = Gl(pl). From (56) and the fact that G̃il is strictly
increasing: Gl(p) = Gl(pl) ≥ G̃il(pl) > G̃il(p). Thus we
have shown that Gj(p) > G̃ij(p) for every j ≤ i.
It follows directly that, for every j ≤ i,

G−j(p) =
∏

l≤i, l 6=j

Gl(p) > Hj(p).

Next, note that the set S ≡ {p′ ∈ [pi+1
1 , p] : Gl(p

′′) >

G̃il(p
′′) ∀p′ ≤ p′′ ≤ p, l ≤ i} is open in [pi+1

1 , p], since
each Gl is locally constant at every point inside it, and
each G̃il is increasing. Again, using the monotonicity
of G̃il , it is easy to check that S = {p′ ∈ [pi+1

1 , p] :
Gl(p

′) = Gl(p) ∀l ≤ i}, which is closed by continuity
of Gl. But since S is non-empty, open and closed, it
must be the entire interval [pi+1

1 , p].
To obtain the desired contradiction, we consider the
cases i = n and i ≤ n separately. First, in the case
i = n, we have p0 = pi+1

1 ∈ S, so Gl(p0) > G̃il(p0)
for every l ≤ i. This implies that property (48) holds

at p0, which contradicts the definition of p0. Second,
in the case i < n, each Gl, l ≤ i, is constant on S,
so G−(i+1) is constant on S. Thus G−(i+1)(p

i+1
1 ) =

G−(i+1)(p) ≥ Hi+1(p) > Hi+1(pi+1
1 ), where the

inequalities follow from (47) and the fact that Hi+1 is
strictly increasing. This contradicts (52). In both cases,
we have a contradiction, so we have shown part (b) of
the inductive hypothesis. This completes the inductive
argument.
Since Gj(p) = 0 for p ≤ p0, 1 ≤ j ≤ n, we have
proved that the cumulative density functions specifying
the mixed strategies employed by the ISPj in any
equilibrium coincide with those in the equilibrium we
have explicitly constructed. Hence the mixed-strategy
equilibrium of our game is unique.

Continuous differentiability of Epmax as a function of
pU is trivial inside the regions of (f1, pU )-high and -low
market potential. For (f1, pU )-intermediate market potential,
it is obvious that p11 and p0 are continuously differentiable
functions of pU . The existence of a continuous derivative of
pi1 follows from pi1 = p11 when fi = f1, and from h′(pi1) > 0
by the implicit function theorem when fi 6= f1. We can write

Epmax =

∫ ∞
0

(1− P{pmax < p}) dp

= p0 +

n∑
i=2

∫ pi1

pi+1
1

1−

(
i∏
l=1

Hl(p)

) 1
i−1

 dp. (57)

We now check that Epmax is continuously differentiable
with respect to pU . The limits of each integral are continuously
differentiable with respect to pU . Moreover, each integrand
is continuously differentiable with respect to pU and with
respect to p, where the derivative with respect to pU can be
bounded above by an integrable function independently of pU ,
for values of pU in some sufficiently small interval. These
conditions are sufficient for continuous differentiability of each
integral with respect to pU . Therefore Epmax is a continuously
differentiable function of pU for (f1, pU )-intermediate market
potential. Continuity and lack of differentiability are easy to
verify at the boundary points, completing the proof of the
lemma.

Proof of Lemma 2: As we have seen in the proof
of Lemma 1, the function Epmax satisfies the assumptions
required for the existence of a continuous derivative which
can be found by differentiating the expression in (57) after
substituting the definition of Hl given in (29):

∂Epmax
∂pU

= −1

2

(
1− k−f2

k−f1

)
−Q, (58)

where

Q ≡
n∑
j=2

∫ pj1

pj+1
1

j

j−1

(
h(p)

j∏
l=1

(k−fl)

) 1
j−1

∂h(p)

∂pU
dp. (59)

The proof that ∂Epmax

∂pU
is always greater than −2 is done in

two parts: for δ ≡ α−2(n−1)k−2f1 smaller than 12
5 (k−f1),
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and for δ greater than 20
9 (k−f1). (Note that these regions

overlap.)
Consider the first case, δ < 12

5 (k−f1). The function h is
increasing, and p ≤ pj1 in each integral in (59), so using (30):(

h(p)

j∏
l=1

(k−fl)

) 1
j−1

≤ k−fj ≤ k−f1, (60)

Using j≥2 and (60) in (59):

Q ≤ 2(k−f1)

n∑
j=2

∫ pj1

pj+1
1

∂h(p)

∂pU
dp

= 2(k−f1)

∫ p11

p0

β
(

1− p0
p11

)
(p11 − p)

p
(
p11
p0
β(p11 − p0)− β(p11 − p)

)2 dp ≡ Q.
Letting γ ≡ p0

p11
, with the change of variable t ≡ p−p0

p11−p0
, yields

Q = 2γ
(γ − 1)(log γ − log(1−γ)) + (2γ−1)

(2γ−1)2
. (61)

Although the evaluated integral is undefined for γ = 1
2 , an

application of L’Hôpital’s Rule shows that it can be extended
to this point, giving a continuous function of γ on (0, 1). Note
that Q is an increasing function of γ.

By the definitions in Lemma 1, Epmax ≤ p11. From (35),
pU = α−βEpmax

2β ≥ α−βp11
2β . Substituting this inequality into

the definition of p11 gives p11 ≤ δ
3β . This together with (27)

gives γ = p0
p11

=
βp11
k−f1 ≤

δ
3(k−f1) ≤

4
5 . Since Q is increasing

everywhere on 0<γ<1 and Q( 4
5 )< 3

2 , it follows that Q(γ)<
3
2 for any 0 < γ ≤ 4

5 . Substituting f1 ≤ f2 and Q ≤ Q < 3
2

into (58) establishes the lemma for δ < 12
5 (k−f1).

Consider now the second case, δ > 20
9 (k−f1). The following

bound is straightforward to verify:

∂h(p)

∂pU
≤ ∂h(p)

∂p
+
h(p)

p
. (62)

Substituting this inequality into (59) gives

Q ≤ Q1 +Q2, (63)

where

Q1 ≡
n∑
j=2

∫ pj1

pj+1
1

j

j−1

(
h(p)

j∏
l=1

(k−fl)

) 1
j−1

∂h(p)

∂p
dp,

Q2 ≡
n∑
j=2

∫ pj1

pj+1
1

j

j−1

(
h(p)

j∏
l=1

(k−fl)

) 1
j−1

h(p)

p
dp.

Integrating:

Q1 =

n∑
j=2

(k−fj)j − (k−fj+1)j∏j
l=1(k−fl)

=
k−f2
k−f1

. (64)

Using j≥2 with p ≥ p0 and Epmax ≥ p0:

Q2 ≤
2

p0
(p11 − Epmax) ≤ 2

(
k−f1
βp11

− 1

)
. (65)

From Epmax ≥ p0 and (35) we have pU ≤ α−βp0
2β , whence

p11 ≥
α+ βp0 − 2k(n−1)− 2f1

4β
.

Using the definition of p0, we can re-state this as

(p11)2 − 4(k−f1)

β
p11 +

δ(k−f1)

β2
≤ 0.

Thus p11 is at least as large as the smaller root of the quadratic:

p11 ≥
2(k−f1)

β

(
1−

√
1− δ(α)

4(k−f1)

)
>

2(k−f1)

3β
, (66)

where the second inequality follows from the assumption that
δ(α) > 20

9 (k−f1).
We now substitute (66) into (65), obtaining Q2 < 1.

Combining (58), (63), (64) and Q2<1, we get

∂Epmax
∂pU

> −1

2

(
1− k−f2

k−f1

)
− k−f2
k−f1

− 1 ≥ −2,

which establishes the lemma for δ > 20
9 (k−f1).
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