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ABSTRACT 

 

The lack of student persistence in the Science, Technology, Engineering and 

Mathematics (STEM) fields has been widely researched in recent years. Due to the high attrition 

rates in STEM fields and the shortage of STEM workers in the United States, research on STEM 

attrition has focused on identifying factors that cause STEM attrition and ways to increase STEM 

persistence. While these studies are helpful to understand STEM attrition, researchers have 

ignored what happens to the students who fail to persist in the STEM fields. Instead of focusing 

on the causes of STEM attrition, this study focused on the STEM to non-STEM major change by 

examining how STEM course enrollment and STEM course performance relates to various forms 

of academic achievement (first year retention, graduation, time to degree, cumulative GPA). The 

analytical sample for this study was drawn from the 2004/2009 Beginning Postsecondary 

Students Longitudinal Study (BPS:04/09) and the associated 2009 Postsecondary Education 

Transcript Study (PETS:09) datasets with the final sample used for analysis representing students 

who initially enrolled in a STEM bachelor’s degree program and changed to a non-STEM field 

or left the institution entirely. As such, the results were reflective of this group of students, and 

not all students in college in general. Results of the study revealed three general findings about 

the relationship between STEM course enrollment and STEM course academic performance and 

academic achievement. First, STEM credits attempted is negatively associated with first year 

retention. Each unit increase in STEM credits attempted reduced the odds of persistence past the 

first year. Secondly, performance in college level math, introductory laboratory science and 

STEM courses plays an important role in determining students’ level of academic achievement 

in non-STEM fields. Lastly, females reach higher levels of academic achievement after leaving 

the STEM fields when compared to males. 
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CHAPTER I 
 

INTRODUCTION 
 

Problem Statement 
 

The national push to increase the number of graduates with STEM (science, technology, 

engineering and mathematics) degrees in the last two decades has led to a rise in the number of 

students that plan to major in these disciplines (Higher Education Research Institute, 2010; Chen, 

2013).  In 1986, the percentage of students that noted pursuing a STEM degree upon entry was 

less than 25%; by 2012 the number of students that planned to complete a STEM degree upon 

entry had risen to 39% (Higher Education Research Institute, 2010; National Science Board, 

2014).  Fueled by the prospect of employment, along with lucrative pay, more students aim to 

earn STEM degrees in college.  Additionally, earning potential, combined with the increasing 

cost of higher education, has led students to place more value on STEM degrees compared to 

social science and humanities degrees (Russell & Atwater, 2005).  Although the federal 

government has prioritized STEM education, it is ultimately up to higher education institutions 

to produce graduates in these fields. 

Although more students are entering higher education as STEM majors, attrition rates 

within the majors are a concern for institutions and policy makers.  Approximately one half of 

students that enter STEM fields do not earn a STEM degree (Chen, 2013). Of the students that 

leave, around 20 percent leave STEM fields by changing their majors and around 28 

percentleave college completely (Chen, 2013).  Compared to students that initially enroll in 

business, education, and social science majors, students that enter college in a STEM major are 
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around five percent less likely to leave college completely, but they are less likely to stay in their 

initial STEM major. (Arcidiacono, 2004). 

Major attrition and institutional attrition are problems that are not uniquely connected to 

STEM fields.  Bettinger (2010) in American Universities in a Global Market found only 43% of 

students who entered higher education with the desire to earn a STEM degree stayed in a STEM 

field.  In a similar comparison, Chen’s (2013) study found that of students that intended to major 

in the social/behavioral sciences, only 28% left their major. Other studies have found that major 

attrition rates for students in non-STEM fields were similar or higher than those in STEM fields 

(Chen, 2013).  One explanation for comparable major attrition rates between STEM majors and 

non-STEM majors is that the STEM fields often draw high-achieving students (Bettinger, 2010).  

Although other fields may have similar attrition rates, STEM attrition is especially troublesome 

given STEM students cite poor academic performance as the reason for leaving at a higher rate 

than students that leave non-STEM majors (Adelman, 2006; Chen, 2013; Ost, 2010; Watkins & 

Mazur, 2013).  Secondly, unlike most non-STEM majors, which allow students to take courses in 

a wide variety of disciplines, the majority of STEM leavers’ coursework cannot be applied to a 

non-STEM major, which often results in an increase in time to degree (Sklar, 2015).  

 For an incoming student, a course load that allows ample time to adjust to their new 

environment and the higher expectations in the classroom is preferred.  Research has identified 

that a curriculum that helps to build academic skills in the first year is linked to persistence after 

the first year (Hunter & Linder, 2005; Pascarella & Terenzini, 2005). According to Anderson and 

Kim (2006), most colleges ask students to declare their major by the spring term of their 

sophomore year.  However, in order to stay on track with requirements, STEM students have to 

jump right into demanding math and science courses in the first year (Le, Robbins & Westrick, 
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2014; Zhang, Thorndyke, Ohland & Anderson, 2004).  At most institutions, non-STEM field 

students can delay major coursework and focus on general education requirements (Bettinger, 

2010).    

As previously mentioned, the first-year curriculum for students pursuing STEM majors 

requires completion of specific introductory science and math sequences that develop skills that 

are needed throughout the degree program.  The typical sequence of science courses, which was 

adopted in 1905 and still is the norm today, asks students to complete a year of introductory 

chemistry and calculus, with biology and physics in the second year (Barr, Matsui, Wanat & 

Gonzalez, 2010; Zhang, Thorndyke, Ohland, & Anderson, 2004). The content covered in 

introductory chemistry and calculus is needed to understand the more advanced coursework that 

follows (Gainen, 1995; Zhang et al., 2004).  Because of the sequential curriculum of STEM 

majors, students often cannot choose when they take these introductory science and math 

courses. If a student does decide to wait to take introductory level STEM courses or is forced to 

take remedial courses, he/she faces an academic program that often takes longer than four years 

to complete (Bettinger, 2010).   

The rigor of the first-year STEM curriculum often causes academic struggles and 

discontent for students.  Noel-Levitz (2006) found that 45% of incoming freshman had 

significant difficulties with mathematics.  Further, Seymour and Hewitt (1997) found that 

students in STEM majors noted frustration with having to take on too heavy a course load in 

their first year.  Students often complain that science classes are too fast-paced and have an 

extremely competitive atmosphere (Tobias, 1990; Tobias & Lin, 1991).  Along with any 

institutional academic progress requirements, many institutions require STEM students to meet 

additional GPA requirements in specific introductory courses, which further increases the 
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competitiveness of first-year STEM courses.  Many of these courses are considered 

“gatekeeping” courses that are specifically meant to weed out students that may not have the 

ability to persist in the major (Eagan, Garcia, Hurtado, & Gasiewski, 2012; Tai, Sadler, & Loehr, 

2005). Numerous studies have identified first-year chemistry, calculus and other gatekeeping 

courses as a factor for students to move away from a STEM major (Barr et al., 2008; Mervis, 

2010; Thurmond & Cregler, 1999; Dienstag, 2008; Shaw & Barburi, 2010; Tai et al., 2005). 

According to Moreno & Muller (1999, p. 31), “gatekeeping [courses] expose students to a 

competitive environment in which formulas, symbols, and familiar language are used in new 

contexts.”  Forcing students to take “gate-keeping” courses in their first year can hurt the 

institution’s chance of retaining students, as rigorous course loads, coupled with a competitive 

class atmosphere, often result in poor academic performance.    

Alongside creating academic struggles, forcing students into a structured STEM 

curriculum in their first year of college can deny students the opportunity to explore different 

disciplines.  James Powell, former president of Oberlin and Reed Colleges, cites that students 

that come in as a declared major “might indeed by a  legitimate source of concern (and possible 

attrition) because they may have made a decision that is (a) premature – reflecting lack of careful 

planning and forethought; (b) unrealistic – resulting from lack of self-knowledge or (c) 

uninformed – resting on insufficient knowledge about the relationship between academic majors 

and future careers” (Powell, quoted in Pope, 1990, p. 80).  Students also may be pressured into 

majors by extrinsic factors such as parental pressure or future monetary rewards (Cuseo, 2005). 
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Students who enroll in higher education with a declared major may not have adequately assessed 

their academic skills or interests.   

 
Current Research 

 
Given the priority on STEM education in America, a large body of research exists that 

aims to understand the factors predicting STEM student retention.  From these studies, a small 

body of research examining what happens to students after leaving STEM fields has emerged.  

After identifying students that enrolled with the intention of earning a STEM degree, researchers 

are able to track these students throughout their time in higher education and identify those who 

did not graduate with a STEM degree.  The outcome most widely examined in these studies is 

graduation rate (Chen, 2015; Chen, 2013; Higher Education Research Institute, 2010; Huang, 

Taddese & Walter, 2000).  These studies also disaggregate graduation rates of STEM leavers by 

race.  With regards to race, White and Asian American students had the highest graduation rates 

of STEM leavers, followed by Latinos, African Americans and Native Americans.  Studies have 

also found that women are more likely to earn a degree after leaving STEM than men (Chen, 

2013; Higher Education Institute Research Institute, 2010).   

Chen’s (2013) study is by far the most in-depth study of STEM leavers and draws from 

the National Center for Educational Statistics’ (NCES) Beginning Postsecondary Longitudinal 

Study (BPS:04/09) and the Postsecondary Education Transcript Study (PETS:09).  The study 

tracks students that first enrolled in 2003 to 2009.  The BPS provides the researchers with the 

ability to identify and track students that planned to pursue a STEM degree upon enrolling.  The 

use of PETS:09 further enhances the study by providing the transcripts of students that were part 

of the BPS:04/09. Chen’s (2013) study is the first to utilize national transcript data when 
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examining STEM attrition. These data sets allow the study to examine both demographic as well 

as pre- and post-secondary academic variables. 

Using bivariate analysis, the study identified the influence of a multitude of variables 

(demographic, pre-college preparation, family background, STEM course taking, and 

performance) on STEM attrition and institutional graduation rates.  This analysis aids 

understanding of how different variables may impact students’ chances of earning a degree after 

leaving a STEM field.  The variables that significantly influenced graduation rates of STEM 

leavers include parents’ education level, income level, high school GPA, highest level of math 

taken in high school, admission selectivity, and whether or not a student was a Pell Grant 

recipient (Chen, 2013).  

The majority of studies examining the graduation rates of STEM leavers simply calculate 

graduation rates, without completing any in-depth quantitative analysis.  In the last section of her 

study, Chen (2013) conducted a multivariate analysis to provide more clarity of the bivariate 

analysis completed earlier in the study.  The study utilizes a multinomial probit model (MNP) to 

“predict the probability of one event (such as switching majors) over several mutually exclusive 

alternatives” (Chen, 2013, p. 35). This specific model provides an understanding of the factors 

that are associated with the outcome of leaving STEM by switching majors or leaving STEM and 

never obtaining a degree, especially with regards to academic performance at the post-secondary 

level.   

Using PETS:09 allowed Chen (2013) to explore how STEM leavers’ coursework relates 

to academic achievement.  For students that left a STEM field and eventually graduated in a non-

STEM field, the amount of STEM courses taken in the first year, the type of math course taken 

in the first year, and performance in STEM courses were the most important variables related to 
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the outcome of leaving STEM by switching majors.  The fewer STEM courses a student took 

increased the probability that a student would leave by switching their major.  Also, if a student 

took a lower level of math in the first year (e.g., pre-calculus), they were more likely to leave by 

changing their major.  Lastly, students that had higher grades in non-STEM courses compared to 

STEM courses were more likely to leave STEM fields by changing their major (Chen, 2013).  

Equally as important was that none of the demographic variables found to be significant in the 

bivariate analysis were significant for the outcome of leaving STEM by entering a non-STEM 

field.  The MNP analysis found that leaving STEM fields negatively impacted overall GPA. The 

variables that increased the probability of a student leaving STEM by leaving college were 

gender, low-income background, attending an institution with minimal admission standards, and 

poor performance in STEM coursework (Chen, 2013).  

Although not as definitive, qualitative studies have provided some insight into which 

fields STEM leavers end up in. Studies often strive to understand how students’ beliefs lead to 

STEM attrition and what draws them to other fields.  Seymour and Hewitt (1997) interviewed 

students that left STEM fields to pursue other majors.  Through interviews, the study found that 

the atmosphere in non-science classes compared to science courses drew the students into other 

fields.   

 
Deficiencies 

 
The previous research on how leaving a STEM field relates to educational outcomes 

provides a foundation for future research to better understand the impact of the first-year STEM 

curriculum on overall academic outcomes for STEM leavers.  Other than graduation rates, 

previous research has yet to fully examine other important academic outcomes. Time to degree 
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and yearly retention rates warrant examination in order to understand the full effect of the first-

year STEM curriculum on overall academic achievement.   

Also, the research on students that leave STEM is overwhelmingly descriptive. Although 

Chen (2013) conducted a multivariate analysis, the analysis strived to better understand the 

results of her bivariate analysis by determining the strength of association among independent 

variables.  Sklar (2015) provides multivariate analysis, but the study’s focus is how the timing of 

the change of major impacts time to degree and graduation.   

Chen (2013) provides a starting point as far as how first-year STEM coursework impacts 

graduation rates and cumulative GPA, but the study does not provide a multivariate analysis of 

how enrollment and performance in first-year STEM courses relate to academic achievement. 

Chen (2015) states that future research should examine transcript data to identify the 

“gatekeeping” courses that may hinder students’ academic achievement program.   

Although research identifies that students struggle with the first-year STEM curriculum, 

the current body of research fails to provide an analysis of students’ enrollment and performance 

in first-year STEM courses and how it relates to academic achievement after leaving the STEM 

fields.  The limited studies that examine the relationship between first-year STEM course 

enrollment and performance attempt to determine how specific courses relate to academic 

achievement in the STEM fields and do not explore the relationship between STEM coursework 

and academic achievement in non-STEM fields.  

 
Significance of the Study 

 
This study expands on previous research in a variety of ways.  First, this study will look 

at academic outcomes that have yet to be studied.  Along with graduation rates, time to degree, 

and GPA, this study will also examine first-year retention rates for students that enroll with the 
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intent to earn a STEM degree, but who ultimately do not earn a STEM degree.  These variables 

will provide a better understanding of how students’ academic program is affected by enrolling 

in first-year STEM courses.   

Time to degree warrants examination because the STEM curriculum can limit students’ 

major options and also prevent students from progressing in other majors (Steele, 1994).  

Examining time to degree will help to understand how enrolling in a large number of science and 

math courses impacts a student’s ability to graduate in four years.  Academic advisors can use 

this information to help students create pathways to graduating in four years even after leaving 

STEM fields. 

Although graduation rates do shed light on the retention rates of students that leave 

STEM fields, first-year retention rates provide insight into when students are most at-risk of 

leaving STEM by leaving college entirely.  Given what is known about the importance of 

academic performance in the first year and the fact that many student leave STEM fields due to 

poor academic performance, studying first-year retention rates is an outcome that gives new 

insight about how first-year coursework may impact students’ academic program.   

As Chen (2015) explains, more research is needed to determine how specific STEM 

courses impact a students’ academic program.  Using PETS:09 will allow this study to examine 

academic performance in specific introductory STEM courses.  Through quantitative analysis, 

this study will determine how enrollment and performance in introductory STEM courses impact 

different educational outcomes. The finding of this analysis can help institutional administrators 

and academic advisors identify students that may be at-risk due to enrollment and performance in 

specific courses. 
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Research Questions 
 

1. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does the number of STEM credits attempted relate to:  

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

2. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in college-level math relate to:  

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

3. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in introductory-level laboratory science 

relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 
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4. After controlling for ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in STEM courses relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 
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CHAPTER II 

LITERATURE REVIEW 

Introduction 

The national push to have more students earn STEM degrees in the United States and the 

fact that approximately 50 % of STEM entrants leave STEM fields (Chen, 2013; Chen, 2009) 

have led to the production of a large body of educational research that strives to understand how 

various factors relate to a student’s chance of earning a STEM degree.  By applying retention 

theory to the study of STEM persistence, researchers have focused on how variables shown to 

relate to retention (academic, demographic, social, and non-cognitive) also impact STEM degree 

completion.  Unlike this study, the main objective of STEM attrition research is to understand 

the reason students leave the STEM fields.  Therefore, while extremely vast, STEM attrition 

research provides minimal insight into how enrollment and performance in first-year STEM 

courses relate to students’ academic achievement outside of the STEM fields. 

 Research on STEM attrition includes a subsection that examines the first-year STEM 

curriculum.  Specifically, these studies seek to understand how enrollment and performance in 

first-year STEM course relate to STEM attrition. Using the Beginning Postsecondary 

Longitudinal Study 2004/2009 (BPS:04/09) and the Postsecondary Education Transcripts 2009 

(PETS:2009), Chen (2013) has been able to produce the most comprehensive research on the 

first-year STEM curriculum to date.  Chen (2013) is overwhelmingly descriptive, so her research 

does not consider how specific variables relate to different academic outcomes but, rather, the 

course taking patterns and performance of STEM leavers.  By analyzing the first-year STEM 

curriculum, the research provides a starting point for understanding the first-year STEM 

curriculum and how specific courses relate to academic achievement.    
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 Similar to STEM attrition, students’ first year in postsecondary education is another 

highly researched topic in higher education.  Given the power of first-year course performance to 

predict graduation, researchers have worked to identify which first-year courses predict academic 

achievement.  Using student transcript data, researchers have identified enrollment and 

performance in first-year math and English courses as predictors of overall academic 

achievement, regardless of the intended major (Bahr, 2008; Callahan & Belcheir, 2017; Herzog, 

2005).  Still, these studies do not focus on the STEM leaver population and therefore do not 

account for the substantial curricular differences between STEM and non-STEM majors.    

More research on the STEM leaver population is needed as the population may be 

particularly at risk due to the unique challenges the first-year STEM curriculum presents for 

students (Chen, 2013; Ost, 2010; Watkins & Mazur, 2013).  Academic performance in the first 

year is critical for first-year retention, and enrollment in challenging STEM courses in the first 

year may create additional challenges to finding success in a new major.   

While more research focusing on STEM leavers’ coursework is needed, a review of the 

literature will be conducted to identify the variables found to be significant in predicting 

academic achievement.  This literature review will begin with a review of various theories used 

to study college academic achievement.  After reviewing the theories, I will summarize research 

on how pre-college variables relate to post-secondary academic achievement.  I will conclude 

with studies that address how enrollment and performance in first-year STEM courses relate to 

educational outcomes (retention, time to degree, graduation, cumulative GPA).  

Theory 

Historical Background 
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As access to higher education expanded in the 1950s and 1960s, the issue of student 

attrition became a prominent concern for the United States and higher education institutions.  

Prior to the 1970s, researchers attempted to understand student attrition by focusing on students’ 

individual characteristics, and they lacked a theoretical framework for conceptualizing the 

phenomenon (Aljohani, 2016; Panos & Astin, 1968; Spady, 1970).  During the 1970s, 

researchers shifted their focus away from individual student characteristics and began arguing 

that the relationship between students and institutions is the key to understanding student 

attrition (Aljohnai, 2016; Spady, 1970).  This shift in focus served as the foundation for the 

development of the most widely recognized models used to study retention, which are reviewed 

in this section. 

The Institutional Departure Model (Tinto, 1975, 1993) 

Within higher education literature, Vincent Tinto’s (1975, 1993) institutional departure 

model is the most widely used theory for understanding persistence/retention (McCubbin, 2003; 

Metz, 2000; Reason, 2009; Veenstra, Dey, & Herrin, 2009).  Tinto’s theory, which is partly 

based on Durkheim’s (1897) suicide model, argues that attrition is linked to formal and informal 

academic experiences as well as social integration (Demetriou & Schmitz-Sciborski, 2011).  

Students who are academically and socially integrated are more likely to be committed to their 

institution and thus are more likely to graduate (Tinto, 2007).  Tinto’s theory is often referred to 

as an interactionalist theory as it argues that attrition is a result of interactions between the 

student and the environment (Tinto, 1975; Terenzini & Pascarella, 1980).  Tinto (1975) proposed 

that a student brings specific characteristics (i.e., demographic variables) and experiences to 

college.  These background characteristics then interact with environmental variables from the 

institution to determine the level of academic and social integration (Terenzini & Pascarella, 
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1980; Tinto, 1975).   Finally, academic integration influences students’ goal commitment, and 

social integration influences students’ commitment to the institution.  When controlling for other 

variables, the more academically and socially integrated a student is into their institution, the 

greater the student will be committed to completing college and thus be less likely to become a 

victim of attrition (Tinto, 1975).  

Tinto’s model has been tested in various college settings and environments, and the 

majority of research that utilizes Tinto’s model has found that the model explains a large 

percentage of the variance in student attrition (Alijohani, 2016). Using Tinto’s (1975) model, 

Pascarella, Duby, Miller, and Rahser (1981) studied attrition at the University of Illinois and 

found that Tinto’s model accounted for 48% of the variance in first-year attrition. Pascarella, 

Duby, and Iverson (1983) focused on voluntary withdrawal, as opposed to academic dismissal, 

and discovered that Tinto’s model predicted 82% of the variance in first-year voluntary 

withdrawal.   The Office of Institutional Research at Bowling Green State University 

administered a survey that measured many variables from Tinto’s model in all first-year students.  

The variables in the survey explained 41% of the variance in first-year student retention (Gilmer, 

2007).  Using qualitative analysis to test Tinto’s model for first-generation students, Longwell-

Grice and Longwell-Grice’s (2008) study confirmed the importance of academic and social 

integration (measured through student–faculty interactions) for retention.  The amount of 

variance in attrition explained by Tinto’s model differs among studies due to differences in the 

setting of the research and the populations being studied.  Furthermore, the variables used to 

measure academic and social integration lead to differences in the amount of variance explained 

by Tinto’s model.    
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The majority of studies testing Tinto’s model support his theory, but some argue that 

Tinto’s model does not accurately explain student attrition. The most common criticism of 

Tinto’s model is that it is only applicable to the traditional student (McCubbin, 2003; Metz, 

2002).  In one of the first criticisms of Tinto’s model, Bean and Metzner (1985) argued that 

social integration is not an important factor in the decision to leave postsecondary education for 

non-traditional students given that non-traditional students may already be integrated into their 

own networks outside of the institution.  Focusing on Latino students, Torres and Solberg (2001) 

found that social integration factors were not significant and did not predict attrition.  Findings 

such as those in Torres and Solberg (2001) have led others to argue that Tinto’s model is not 

appropriate for the study of underrepresented minorities in higher education (McCubbin, 2003).  

Although some argue that Tinto’s model should not be applied to certain populations, Tinto’s 

model is still viewed as a reliable theory to guide persistence and degree completion research.  

The Student Attrition Model (Bean, 1980, 1982) 

 Bean’s (1980) student attrition model has many similarities with Tinto’s (1975) model; 

however, Bean (1980) argues that Tinto’s application of Durkheim’s (1897) suicide model to 

student attrition was misguided.  Rather, Bean believed theoretical models used to study turnover 

in work organizations were more appropriate for studying student attrition. 

According to Bean (1982), along with social and academic integration, organizational 

variables and outside environmental variables also influence students’ decision to leave an 

institution.  These variables, as well as external factors from the environment, influence students’ 

attitudes toward and satisfaction with the institution, which indirectly relate to a student’s 

decision to leave an institution (Himelhoch, Nichols, Ball, & Black, 1997).  Empirical studies 

testing Bean’s (1982) model reveal that the model predicts 44% to 48% of the variance in student 
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persistence (Bean, 1983; Bean & Metzner, 1985; Cabrera et al., 1992). Furthermore, the student 

attrition model does not lose its predictive power when studying nontraditional student 

populations, such as minority students (Himelhoch et al., 1997), community college students 

(Sandiford & Jackson, 2003) and adult learners (Bean & Metzner, 1985). 

The Student Involvement Theory (Astin, 1984) 

 Astin’s (1984) student involvement theory is known as a behavioral model and argues 

that after controlling for background variables, the amount of students’ involvement in college 

relates to their persistence at an institution.  Astin (1984) defines involvement as “the quantity 

and quality of the physical and psychological energy that students invest in the college 

experience” (p. 307).  Furthermore, Astin (1984) believed involvement was quantitative and 

qualitative.  For example, a student’s involvement could be measured by the number of hours he 

or she spent studying but also by the measuring the depth of the student’s reflection (Astin, 

1984).  Although the student involvement theory was developed to better understand student 

development and learning, many believe that student involvement is directly related to the 

decision to drop out of college.  Studies have confirmed the positive relationship between 

engagement at an institution and retention (Cruce, Shoup, Kinzie, & Gonyea, 2008; Pike, Kuh, & 

Massa-McKinley, 2008).  Using the CIRP freshman data and the follow-up College Student 

Survey (CSS), Astin and Sax (1998) found that GPA and persistence were positively influenced 

by students’ involvement at an institution.   

Those critical of the student involvement theory note the challenge in measuring 

involvement.  For example, students may be involved in multiple groups and activities at an 

institution; however, measuring involvement based on the number of groups a student belongs to 

fails to account for the intensity of the student’s involvement.  Another common criticism of the 
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student involvement theory is that is does not apply to non-traditional students, who may not 

become involved at the institution the same way traditional students are able to. 

Although there are differences among Tinto (1975, 1993), Bean (1980, 1982), and 

Astin’s (1984) theories, each model recognizes the importance of academic and social 

experiences that determine students’ level of integration or the involvement of students at 

institutions.    

Background Variables 

Tinto’s theory of student departure suggests that students’ individual characteristics 

determine how committed a student is to the institution and to graduating.  Research has 

provided empirical evidence supporting Tinto’s claim that background characteristics influence 

college persistence (Xu & Weber, 2018).  Therefore, background variables are almost always 

included along with other variables related to social and academic integration when studying 

academic achievement (Adelman, 2006).  This study will utilize background characteristics in 

the same manner as described above. 

While demographic variables are commonly implored as control variables in researchers’ 

analyses, it is important to note that background characteristics alone fail to predict academic 

achievement in postsecondary education (Adelman, 2006).  Once additional control variables are 

added, demographic variables, such as race/ethnicity and gender, often play a reduced role in 

providing explanation for academic achievement.  Adelman (2006, p. 24) notes that “student 

demographics and family demographics may have, at best, indirect connections with degree 

completion.”  Furthermore, the high levels of multicollinearity that exist between demographic 

variables mask the true predictive power of individual variables.  Alone, demographic variables 
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do an extremely poor job of explaining 4-year degree attainment and must therefore be combined 

with other variables related to the students’ experience. 

Race/Ethnicity 

 Improvements in access to higher education in the United States, coupled with the link 

between degree attainment and social mobility, have made the study of underrepresented 

minorities in higher education a prominent subject in educational research. Research shows that 

underrepresented minorities (URMs) persist at lower levels than White and Asian students (Astin 

& Oseguera, 2005; Ross, Kena, Rathbun, KewalRamani, Kristapovich, Manning, & Zhang, 

2012).  The most recent NCES data show that 65% of all bachelor’s degrees were awarded to 

White students in the 2015–2016 academic year.  Blacks and Hispanics made up 11% and 13%, 

respectively, followed by Asians (8%) and American Indians/two or more races (4%; Musu-

Gillette, de Brey, McFarland, Hussar, Sonnenberg, & Wilkinson-Flicker, 2017).  Using only 

demographic variables, Adelman (2006) found that being an underrepresented minority reduced 

the chances of earning a bachelor’s degree by 17%.  URMs also lag behind White and Asian 

American students in the STEM fields.  Asian American students completed STEM programs at 

44%, followed by White students at 33%.  Latino, Native Americans, and Black students 

completed STEM programs at 22.1%, 18.8%, and 18.4%, respectively (Higher Education 

Research Institute, 2010). Research drawing from other national representative samples confirms 

that Whites and Asians are retained and complete STEM programs at almost twice the rate of 

underrepresented minorities (Center for Data Exchange and Analysis, 2001; Chen, 2009; Shaw 

& Barbuti, 2010). 

Researchers have provided various explanations for the reason URMs lag behind when 

compared to majority students.  Qualitative studies have found that underrepresented minorities 
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report feeling like outsiders, which many times stems from the belief that the campus views them 

as less talented than their White counterparts (Feagin, Vera, & Imani, 1996; Smedley, Myers, & 

Harrell, 1993).  

Race/ethnicity often fails to explain the variance in students’ academic achievement 

when other student behavior variables are controlled for in statistical analysis. Still, research 

demonstrates that race/ethnicity shapes students’ views and perceptions regarding their 

education, which, according to Tinto’s model, determines how well students are able to 

academically and socially integrate (Nora & Cabrera, 1996; Tinto, 2006; Xu & Webber, 2018). 

Gender 

 Along with race/ethnicity, gender is another demographic variable almost universally 

included as a control variable when conducting multivariate analysis in educational research. 

Considering only demographic variables, gender tends to be a significant predictor of degree 

completion (DeAngelo, Franke, Hurtado, Pryor, & Tran, 2011; DiPrete & Buchman, 2006; 

Ewert, 2012; Reason, 2009).   Using NELS 1988, Ewert (2012) examined the effect of gender on 

six-year graduation rates of students who first enrolled in postsecondary education in 1994. 

When considering demographic and high school characteristics, women were 21% more likely to 

graduate than males (Ewert, 2012).  Looking purely at background variables, research has also 

found that females make up a higher percentage of high performing high school students 

(Goldrick-Rab, 2006).   

Like other demographic variables, gender loses its power to predict academic 

achievement when additional factors are included in the analysis.  When academic performance 

variables are included in the regression models, research shows that gender fails to explain 

differences between men and women (Cho, 2007; DiPrete & Buchman, 2006; Ewert, 2012; 
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Reason, 2009).  Using NELS data, Buchman and DiPrete (2006) found similar results. Their 

study found that when college academic performance and campus experiences were considered, 

the percentage of the female coefficient that remained to be explained decreased from 70% to 

5%. Similar studies have found that academic performance in college explains much of the 

gender gap in 4-year retention rates (Cho, 2007; Reason, 2009). 

Given that this study focuses on the STEM leaver population, it is critical for gender to 

be included as a control variable.  Females are less likely to declare a STEM major upon 

enrollment compared to males (Bettinger, 2010; Kulturel-Konak, D’Allegro, & Dickinson, 2011; 

Griffith, 2010).  Data from the Higher Education Research Institute’s American Freshman: 

National Norms survey show that from 1998–2012, male students intended to major in STEM 

fields upon enrollment at a higher rate than women, with differences ranging from 10–15 

percentage points (National Science Board, 2014).  Even after controlling for SAT score and 

high school rank, Kulturel-Konak et al. (2011) found that women at three public institutions in 

Texas were 16% less likely to declare engineering and computers science majors when compared 

to men.    

When women do declare STEM majors, they are more likely to leave these fields. 

National completion data from 2004–2014 reveal that only 29% of entering female STEM 

bachelor students earned STEM degrees, whereas 40% of entering male STEM bachelor students 

during this time period earned STEM degrees (Chen, 2013). Bettinger’s (2010) examination of 

students entering public institutions in Ohio yielded similar results, as women with high 

standardized test scores were 11% more likely to leave STEM programs when compared to the 

same population of men.  

Comparing the college coursework and grades of males and females provides an insight 
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into the reason females complete STEM degrees at lower rates.  For example, when compared to 

males, female STEM majors tend to take courses from a wide range of disciplines, which 

significantly impacts STEM persistence (Mann & DiPrete, 2013).  Additionally, Ost (2010) 

found that female students were more likely to change out of STEM programs than males due to 

having stronger grades in non-STEM fields.  The differences in STEM achievement between 

genders further enforces the need to control for gender in this study. 

Socioeconomic Status (SES) 

Among the various demographic characteristics known to be associated with academic 

achievement in college, socioeconomic status (occupation, family income, parental education) 

carries great significance in determining whether a student persists and graduates in higher 

education.  Coming from a low SES background puts students particularly at risk of becoming 

victims of attrition (Moore, 2014; Tinto, 1993; Titus, 2006; Walpole, 2003).  Students from low 

SES backgrounds also have lower educational aspirations, postsecondary education enrollment, 

persistence, and attainment compared to students from high SES backgrounds (Adelman, 2006; 

Aud, Hussar, Planty, Snyder, Bianco, Fox, Frohlich, Kemp, & Drake, 2010; Carter, 2006; 

Rockwell, 2011; Wirt, Choy, Rooney, Provasnik, Sen, & Tobin, 2004; Walpole, 2003).  The 

NCES’s Education Longitudinal Study (ELS:2002), which followed 15,000 students who began 

the 10th grade in 2002 found that graduation rates among students from the lowest quartile of 

SES were 14%, whereas graduation rates for students in the top quartile of SES backgrounds 

were 60% (Lauff & Ingels, 2015). 

Regression analysis confirms that SES is a significant predictor of academic achievement 

in college. Using national data from the National Center for Education Statistics’ 1996–2001 

Beginning Postsecondary Students study (BPS:96/01), Titus (2006) studied degree completion 



 
 

23 

among students from low SES backgrounds. When controlling for student level and institutional 

variables, SES was a significant predictor of six-year graduation (Titus, 2006).  Students in the 

lowest SES quartile were 25% less likely to graduate (Titus, 2006).  

Coming from a low SES background is also related to lower levels of academic 

achievement in the STEM fields.  Students from low SES backgrounds persist in STEM fields at 

a lower rate than those from high SES backgrounds, with differences in persistence rates 

dropping 5–15% for students from low SES backgrounds (Chen, 2013; Chen, 2009; Shaw & 

Baruti, 2010; Moore, 2014).   After controlling for background and social and academic 

integration variables, STEM students from low SES backgrounds were significantly more likely 

to leave college (0.31 probability of attrition) than non-STEM students from the same SES 

background (0.26 probability of attrition; Moore, 2014).  SES is an established predictor of 

academic achievement in both the STEM and non-STEM fields.  SES has the strongest 

correlation to persistence/degree completion in higher education among demographic variables 

(Lotkowski, Robbins, & Noeth, 2004).  Therefore, some measure of SES should be controlled 

for when studying college persistence/degree completion.  

Financial Aid  

 The increasing price of tuition for undergraduate education in the United States has made 

it increasingly more challenging for students to fund their education.  In order to cover the rising 

cost of tuition, students often rely on financial aid.  In 2017–2018, undergraduate students 

received an average of $14,790 in financial aid (Baum, Ma, Pender, & Libassi, 2018). Research 

suggests the amount of financial aid offered is positively associated with the likelihood a student 

will enroll at a specific institution (Bettinger, 2004; Marx & Turner, 2019).  However, research 

on the role financial aid plays in academic achievement is less conclusive.  
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 Using financial aid as an independent variable, various studies have examined the 

significance of financial aid receipt on different forms of academic achievement.  Bettinger 

(2004) used data from the Ohio Board of Regents to study the relationship between a student’s 

financial aid award and first-year dropout behavior.  Bettinger’s first regression model, which 

only included the level of financial aid, found that the amount of financial aid was significant 

and positively associated with first-year retention.   However, when additional independent 

variables, including socioeconomic status, academic preparedness, and academic performance, 

were added to the regression model, the financial aid level was no longer a significant predictor 

of dropout behavior (Bettinger, 2004).  Herzog (2005) performed logistic regression to predict 

freshman persistence at a 4-year public institution and found that financial aid was not a 

significant predictor of first-year retention.  Like Bettinger (2004), Herzog (2005) notes that 

first-year retention is better explained by academic preparedness and first-year academic 

performance.  Other studies confirm that academic preparedness and first-year academic 

performance are better predictors of first-year retention than financial aid receipt.   

  When examining the relationship between degree completion and financial aid receipt, 

research shows both positive and negative effects.  Building on a previous randomized 

experiment with the Wisconsin Grant Scholars, Anderson, Broton, Goldrick-Rab, and Kelchen 

(2018) examined the impact of need-based financial aid on college completion.  While the study 

found financial aid to have an impact on six-year degree completion for specific cohorts, the 

results confirmed the inconsistent effects of financial aid programs on degree completion.  

Focusing on low-income students, Franke (2014) found that needs-based grants increased a 

student’s chance of earning a degree within six years by approximately between 2.52% and 

2.82% for every $1,000 in additional need-grant aid.  On the contrary, Franke (2014) found that 
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unsubsidized federal loans lowered a student’s chances of graduating.  Nguyen, Kramer, and 

Evans (2018) performed a meta-analysis of the causal evidence of the effect of grant aid on 

postsecondary persistence and degree attainment.  The meta-analysis of 42 studies revealed that 

grant aid increases the probability of persistence and degree completion by two and three 

percentage points, respectively.  Furthermore, the authors’ research found than an additional 

$1,000 in grant aid improved year-to-year persistence by 1.2 percentage points (Nguyen et al., 

2018).   

Looking specifically at STEM degree completion, Castleman, Long, and Mabel (2017) 

used data from the state of Florida to determine how financial aid receipt impacts STEM degree 

completion.  Using regression analysis, the study found that eligibility for needs-based aid 

increased STEM credit completion 20–35%, which, in turn, increased STEM degree completion 

(Castelman et al., 2017).  Although research on the relationship between financial aid is 

inconclusive, any study on persistence and degree completion should control for financial aid 

receipt given that the ability to afford tuition can affect social and academic integration (Reason, 

2003).  

As Tinto’s (1975) model suggests, background variables play an important role in 

determining a student’s level of social and academic integration.  The review of the literature 

demonstrates the ways background variables interact with the environment (college) to 

determine levels of academic and social integration.   

Pre-College Academic Achievement 

SAT/ACT and High School GPA (HSGPA) 

  Students’ academic background carries far more predictive power in determining 

postsecondary graduation (Adelman, 2006).  A student’s academic background encompasses 
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various components.  A large body of research has attempted to identify which components are 

most critical to academic achievement in postsecondary education. 

SAT/ACT scores and high school GPA are the two most commonly used variables to 

predict students’ chances of completing degree programs in postsecondary education.  The 

combination of high school GPA and standardized test scores have been shown to be the most 

reliable pre-college academic achievement predictors for graduation and retention (Geiser & 

Sanelices, 2007; Tross, Harper, Osher, & Kneidiner, 2000; Zwick & Green, 2007). High school 

GPA and standardized test scores predict anywhere from 16–46% of the variance in academic 

success.  The predictive power of high school GPA and standardized test scores is stronger when 

researchers measure academic success through first-year retention (Reason, 2009; Scogin, 2007). 

Tross et al. (2000) found that self-reported high school GPA and SAT/ACT score accounted for 

29% of the variance in first-year retention for 844 first-year students at a 4-year institution in 

southeastern United States.   

There is some debate regarding whether high school GPA or standardized test scores is a 

better predictor of postsecondary success.  One reason for this debate is the high 

multicollinearity between the two variables (Wolfe & Johnson, 1995).  The multicollinearity 

makes it difficult to estimate the power of each individual variable (Mertler & Vannata, 2001).  

Additionally, some argue that the SAT and ACT are biased against underrepresented minorities 

and students from low SES backgrounds (Sackett, Kuncel, Beatty, Rigdon, Shen, & Kiger, 2012; 

Tienken, 2012).    

The rigorous first-year STEM curriculum makes academic achievement in high school 

especially critical for students who enter college intending to complete a STEM degree. STEM 

fields require students to enroll in rigorous courses, such as calculus and chemistry, in their first 
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year.  Thus, students who are not adequately prepared by their high school coursework often 

struggle to succeed in first-year STEM courses, which often results in these students leaving the 

STEM fields.   

Just as the case is with persistence/degree completion in any field, high school GPA is 

positively associated with a students’ chances of persisting and earning a STEM degree 

(Bettinger, 2010; Chen, 2013; Crisp, Nora, & Taggart, 2009; Whalen & Shelley II, 2010).  

Chen’s (2013) national study of STEM attrition found that 71.1% of STEM students who entered 

the STEM fields between 2003–2009 with less than a 2.5 high school GPA left STEM fields by 

dropping out of school or changing major by the spring of 2009.  Standardized test scores also 

relate to a student’s chance of persisting in STEM programs.  Drawing data from the BPS:96/01, 

Chen’s (2009) statistical report found that only 15% of students with standardized test scores in 

the lowest quartile earned an undergraduate degree in the STEM fields.  Conversely, 57.7% of 

students in the highest quartile of test scores successfully completed undergraduate STEM 

programs.  Whalen and Shelley II (2010) measured the six-year graduation/retention rate for 

first-time freshman with the intent to major in STEM at a large Midwestern research institution 

and found the composite ACT score to be a significant predictor of STEM persistence.  For each 

point lower on the ACT, students’ chances of graduating in the STEM fields decreased 

approximately 9.1 percentage points (Whalen & Shelley, 2010).  Similarly, Larson, Pesch, 

Surapaneni, Bonitz, Wu, and Werbel (2014) used the high school and college transcripts of 311 

students at a large Midwestern university to determine whether math self-efficacy in introductory 

science courses was a predictor of STEM graduation when controlling for pre-college academic 

achievement.  When high school GPA and math ACT score were combined, the binary logistic 
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regression model was statistically significant, predicting 80.4% of the variance in STEM 

graduation. 

  Since STEM requires students to utilize math and quantitative skills, research has 

disaggregated standardized test scores by the math and verbal sections.  Using data from three 

national data sets (National Longitudinal Study of the Class of 1972 [NLS-72], 1980 High 

School and Beyond [HS&B], and the National Longitudinal Study of 1998 [NELS-88]), Xie and 

Achen (2009) found that for all three cohorts in the study, a higher math test score increased the 

odds of earning an undergraduate degree in the STEM fields.  Tyson et al. (2007) used the 

Florida Education and Employment Dataset to examine the impact of high school coursework 

and postsecondary graduation rates of the 1996–1997 cohort that graduated from Florida public 

high schools and colleges.  Students who completed a math course in the most advanced 

category earned STEM degrees at a rate of 34.6%.  On the other hand, students whose highest 

high school math achievement was in the five lowest categories, all graduated from STEM 

programs at a rate under 10%.  Research has also identified that completing a math course more 

advanced than algebra II in high school may be an important benchmark in determining whether 

a student earns a STEM degree (Adelman, 1999; Tyson et al., 2007). 

Research suggests that STEM leavers have pre-college academic backgrounds (low 

SAT/ACT scores, low HSGPA, low level of math completion in high school) that would not put 

them at risk for attrition in any field.  Due to the lack of research studying what happens to 

students after leaving STEM, the predictive power of pre-college academic achievement after a 

student has left STEM (with an established academic history in college) is relatively unknown.  

This study will fill this gap in the literature by providing an understanding of how pre-college 
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academic achievement relates to postsecondary academic achievement after controlling for 

enrollment and performance in first-year STEM courses. 

Research on pre-college academic achievement is especially helpful in predicting first-

year academic achievement, but once a student begins in college, pre-college academic variables 

lose their power to predict persistence/degree completion.  The next section will review the 

impact of STEM leavers’ academic histories on educational outcomes.   

Enrollment and Performance in STEM Courses on Overall Academic Achievement 

Enrollment in STEM Courses 

 Students enter college with a set of beliefs about their academic strengths and preferences 

based on their high school coursework as well as societal and familial influences.  Experiences 

and performance in first-year courses either confirm students’ expectations or lead students to 

question their previous beliefs.  It is experiences in first-year courses that often cause students to 

make changes to their academic program (i.e., changing major) and, in some cases, drop out 

(Attewell, Heil, & Resisel, 2012; Crisp et al., 2009; Huang, Taddese, & Walter, 2000).  The 

decision to change academic programs or drop out of school after the first year is a complex 

process that cannot be fully explained by only examining first-year coursework.  Still, since 

attrition rates in STEM fields and at institutions occur most frequently after the first year (Alting 

& Walsner, 2007; Chang et al., 2008; Seymour & Hewitt, 1997), researchers have paid particular 

attention to first-year coursework.   

 The first-year STEM curriculum can differ somewhat based on the institution and 

specific field within STEM, but, as previously noted, STEM curriculum requires students to 

complete “gatekeeping” courses, such as chemistry and calculus, in order to progress (Bettinger, 

2010; Le et al., 2014; Zhang et al., 2004).  Bettinger (2010) points out that as opposed to non-
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STEM fields, the first-year STEM curriculum does not provide first-year students the 

opportunity to transition to their new academic setting or to explore different academic 

disciplines.  Just by examining the enrollment histories of first-year STEM students, researchers 

have been able to confirm the difficulty of the courses but also, more importantly, the impact of 

enrolling in challenging courses during the first year on overall academic achievement. 

 Regardless of whether students plan to pursue a STEM degree, most first-year students 

enroll in STEM courses during their first year (Chen, 2013).  Data from the BPS: 04/09 and the 

PETS:09 reveal that 87% of bachelor’s students enrolled in STEM course(s) during their first 

year of college, and STEM units made up 27% of all units earned during the first-year (Chen, 

2013).  Students planning to pursue STEM degrees enroll in a greater percentage of STEM 

courses in the first year. (Bettinger, 2010; Chen, 2013).  Examining incoming students at public 

4-year institutions in Ohio, Bettinger (2010) found that students who enrolled in a STEM 

program took 52% of their first semester courses in STEM, compared to 28% for non-STEM 

majors.   

STEM leavers earned an average of 11 STEM units (semester) during the first year, 

making up only 40% of all credits earned in the first year (Chen, 2013).  It is important to note 

that STEM leavers also attempt fewer STEM credits, which may be a function of disinterest and 

remediation.  Unlike other studies, Chen (2013, 2015) separated STEM leavers into two 

categories: those who left STEM and earned a degree in another major and those who left and 

never earned a degree.  Interestingly, those who left STEM and never earned a degree actually 

earned .10 more STEM units in the first year as those who left STEM and eventually earned a 

degree in another field (11.5 vs. 11.4; Chen, 2013).  This may suggest those STEM leavers who 

never earn a degree choose to continue in STEM, despite low levels of academic achievement.   
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The importance of first-year STEM coursework to overall academic achievement is 

magnified by multivariate analysis.  Chen (2013) used a multinomial probit model to predict the 

probability of a student graduating in STEM, leaving STEM, and earning a degree in another 

field or leaving postsecondary education without a degree (Chen, 2013).  Chen (2013) found that 

earning lower than 25% of all first-year units in STEM and earning 25–49% of all first-year units 

in STEM significantly predicted a student leaving STEM and eventually earning a degree in 

another field.  While significant, the percentage of STEM units earned in the first year only 

increased students’ chances of leaving STEM and earning a degree in another field by 0.175%. 

When looking specifically at STEM leavers who left postsecondary education without earning a 

degree in any field, the percentage of STEM units earned in the first year lost significance (Chen, 

2013, 2015).  So while STEM units earned in the first year may be important to persisting in 

STEM, they do not impact whether a student graduates.  It is important to note that the 

percentage of first-year units in STEM does not consider actual academic performance, only 

whether or not a student earned units.   

Enrollment in Math Courses 

Math coursework is, in fact, a strong and significant predictor of STEM achievement, but 

it also significantly predicts overall academic achievement (Bettinger, 2010; Herzog, 2005; Ost, 

2010; Seymour & Hewitt, 1997). Given the importance of first-year math for all students, 

researchers have included type of math course taken during the first year of college as an 

independent variable when studying how first-year course enrollment impacts academic 

achievement for STEM leavers.     

On average, those who leave STEM earn fewer math units in the first year than those 

who persist (ASU Freshman STEM Improvement Committee, 2007; Chen, 2013).  Chen (2013) 



 
 

32 

found that 63% of STEM persisters took calculus or a more advanced math course during their 

first year of college.  Contrarily, only 36% who left STEM and earned a degree in another field 

and 28% of those who left STEM and never earned a degree took calculus or a more advanced 

math course during the first year of college.  STEM leavers who never graduated did not enroll 

in math during the first year at a higher rate (40%) than those who left STEM and eventually 

graduated in another field (30%; Chen, 2013). These findings mirror the results from studies that 

look at the impact of first-year math on the academic achievement of students from all 

disciplines. Drawing data from a large public institution in the United States, Herzog (2005) 

found that freshman who failed to complete or take math in the first year were 5 times less likely 

to be retained after the first year when compared to those who successfully completed a math 

course during their first year.  Although math may not be as pertinent to the curriculum in non-

STEM fields, research suggests enrollment in first-year math is positively associated with 

academic achievement, regardless of major.  

Enrollment in Non-Math STEM Courses 

Compared to math courses, other first-year STEM courses, such as chemistry and other 

laboratory courses, receive far less attention from researchers.  Chemistry and physics, like 

calculus, have been identified as “gatekeeping” courses that students often struggle to complete 

(Gainen & Willemsen, 1995; Zhang et al., 2004).  Using national data from High School & 

Beyond (HS&B), Cabrera, Burkum, and La Nasa (2005) found that students in all majors who 

took one science course in their first year of enrollment were 20% more likely to complete a 

bachelor’s degree.  Students who took three science courses in their first-year were 27% more 

likely to complete a bachelor’s degree when compared to those who took two or less (Cabrera et 

al., 2005).  This study did not disaggregate between the type of science course taken.  The 
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students in the study may have taken science courses that were different in rigor and in content.  

STEM persistence research has looked at the impact of enrolling in courses like chemistry, but 

these types of studies are only concerned with STEM persistence and not with overall academic 

achievement.  Aside from the level of math completed, research should also examine how 

enrollment in first-year chemistry impacts overall academic achievement for STEM leavers. 

  Research examining how first-year STEM course enrollment impacts overall academic 

research fails to consider any outcome other than graduation.  Specifically, how first-year course 

enrollment impacts time to degree warrants more attention from researchers, especially given 

that changing majors has been shown to increase time to degree (Karimi, Mateufel, & Peterson, 

2015).  Future studies should work to identify specific courses and their impacts on overall 

academic achievement, not just persistence in STEM. 

Performance in STEM Courses  

 Academic performance is by far the strongest predictor of retention/persistence and 

degree completion.  Students with higher grades are more likely to be retained and graduate than 

those who struggle academically (DeBeard, Spielmans, & Julka, 2004).  Research on STEM 

attrition confirms that the number one reason students leave STEM is poor academic 

performance (Adelman, 2006; Chen, 2013; Ost, 2010; Seymour & Hewitt, 1997; Watkins & 

Mazur, 2013). STEM leavers’ chances of reaching high levels of academic achievement after 

leaving STEM are reduced by their performance in first-year STEM courses (Chen, 2013). 

Descriptive data confirm that STEM leavers withdraw or fail in first year STEM courses 

at a higher rate than STEM persisters (Chen, 2013; Xie et al., 2005).  Data from the BPS:04/09 

show that STEM leavers who went on to earn a degree in another major failed/withdrew from 

4% of first-year STEM courses, and STEM leavers who left college without earning a degree 
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failed/withdrew from 8% of first-year STEM courses (Chen, 2013).  Xie et al.’s (2005) study of 

first-year STEM students in the University of Minnesota’s General College revealed that 52.9% 

of STEM leavers failed at least two first-year STEM courses.  

Due to poor performance in first-year STEM courses, STEM leavers also repeat first-year 

STEM courses more frequently than STEM persisters (Xie et al., 2005; ASU Freshman STEM 

Improvement Committee, 2007).  STEM leavers are not only performing poorly in first-year 

STEM classes but also often duplicate their poor performance when attempting to repeat courses 

in order to continue in STEM.  Xie et al. (2005) found that 22.1% of STEM leavers 

unsuccessfully repeated at least one first-year STEM course, while only 5.4% of STEM 

graduates unsuccessfully repeated at least one first-year STEM course (Xie et al., 2005). Main, 

Mumford, and Ohland (2015) argue that STEM leavers who choose to repeat courses may not 

factor their grades into their decision to continue to repeat STEM courses.  Rather, the decision 

to repeat courses and continue to pursue a STEM degree may be a result of future employment 

prospects and/or beliefs based on social and cultural backgrounds.   

The struggles of STEM leavers in first-year STEM courses are clearest when examining 

GPA in first-year STEM courses.  Chen (2013) found that STEM leavers who dropped out of 

college earned a 2.3 GPA in first-year STEM courses, and those who left STEM and earned a 

degree in another field earned a 2.6 GPA in first-year STEM courses.  Furthermore, both groups 

of STEM leavers earned higher grades in first-year non-STEM courses than in first-year STEM 

courses (Chen, 2013).  Other studies on STEM attrition confirm that the majority of STEM 

leavers earn low grades in first-year STEM courses (Bettinger, 2010; Chen, 2015; Hartman & 

Hartman, 2006; Marra, Rodgers, Shen, & Bogue, 2012; Ohland, Zhang, Thorndyke, & 

Anderson, 2004).  
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Once a student decides to leave the STEM fields, they do so with an established academic 

history, and, on average, STEM leavers tend to have lower GPAs and earn less units (Chen, 

2013).  Low levels of academic achievement in the first year place STEM leavers at a 

disadvantage for achieving success in other fields as academic performance in the first year is a 

significant predictor of academic achievement in postsecondary education (Adelman, 2006; 

Kirby & Sharpe, 2001; Tinto, 1975, 1997). 

Regardless of the field of study, research finds performance in first-year college level 

math to be the strongest predictor of postsecondary academic achievement (Cabrera, Burkum, & 

La Nasa, 2005; Adelman, 2006; Herzog, 2005).  Drawing from a large public institution, Herzog 

(2005) found student performance in first-year math courses to be the second strongest predictor 

of retention behind first-year cumulative GPA.  Students in the study that received a grade B or 

lower in remedial math were 50% more likely to leave after their first year than those who 

earned a B or higher (Herzog, 2005).   

Other than math, research has yet to determine how performance in specific first-year 

STEM courses relate to overall academic achievement for those who leave STEM fields.  STEM 

leavers are likely to take laboratory science courses (chemistry, biology, etc.), and research 

should examine how course performance in laboratory science courses relates to overall 

academic achievement. 

Directions for Further Research 

Research on STEM attrition shows that the majority of students who leave STEM do so 

due to poor academic performance, which hinders students’ chances of achieving academic 

success after departing from the STEM fields (Adelman, 2006; Chen, 2013; Ost, 2010; Seymour 

& Hewitt, 1997; Watkins & Mazur, 2013).  Given the demanding and unit heavy STEM 
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curriculum, research must work to understand how the first-year STEM curriculum relates to 

STEM leavers’ academic achievement levels in other fields.  Researchers must conduct studies 

that focus on the STEM leaver population and how their enrollment, performance, and 

experiences in STEM courses relate to their levels of academic achievement in college.  

Additionally, aside from graduation, little is known about how the first-year STEM curriculum 

relates to other measures of academic achievement.  Research should examine how enrollment 

and performance in first-year STEM courses relate to other metrics of academic achievement, 

such as GPA, time to degree, and yearly retention. 

 Previous studies suggest that enrollment and performance in first-year STEM courses can 

explain variance in academic achievement, both in STEM fields and overall.  Aside from math, 

other first-year STEM courses, such as chemistry, receive little attention from researchers.  An 

examination of how enrollment and performance in certain first-year STEM courses, specifically 

those that have been identified as “gatekeeping” courses, will provide some valuable insights and 

suggestions for curriculum reform and advisements of students who are at risk of leaving STEM 

fields.  

Conclusion 

 Although producing graduates and skilled workers in the STEM fields continues to be a 

pertinent issue for the United States and institutions, researchers and institutions cannot ignore 

the large population of students who end up leaving STEM fields due to the challenging nature 

of the first-year STEM curriculum.  Research on enrollment and performance in first-year STEM 

courses can provide justification for curriculum reform so students do not face additional barriers 

to graduation after deciding to leave the STEM fields.  
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CHAPTER III 

METHODS 

Introduction 

 The purpose of this study is to investigate the relationship between enrollment and 

performance in first-year STEM courses and academic achievement for students who leave the 

STEM fields.  Existing research confirms that a high percentage of students who plan to study in 

STEM fields ultimately leave, but there is a lack of existing research on whether students’ 

enrollment and performance in STEM coursework are associated with future academic 

achievement in non-STEM fields.  Coursework data from the PETS:09 allowed this study to 

control for STEM course enrollment and performance, which provided a new perspective on 

understanding how changes in academic major, specifically from a STEM to a non-STEM major, 

relate to academic achievement.  The results of this study will potentially help administrators 

create major change policies and curriculum that allow students to successfully transition from 

major to major.  The results will also potentially be useful for academic advisors when 

counseling students on major change.  

This chapter will begin by introducing the research questions. I will then discuss the 

theoretical framework, data source, sample, and major variables that will be used in the study.  

Finally, this chapter will outline the data analysis methods and will discuss any limitations of this 

study.  

This study will be guided by the following research questions: 

1. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does the number of STEM credits attempted relate to:  
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• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

2. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in college level math relate to:  

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

3. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in introductory laboratory science relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

4. After controlling for ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in STEM courses relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 
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• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

Theoretical Framework 

 This study will be guided by Tinto’s (1975, 1997) theory of student departure.  As 

previously discussed in Chapter II, Tinto argues that the level at which a student is academically 

and socially integrated on campus determines whether students are retained and ultimately 

achieve academic success.   

Compared to other theories used to study student attrition, Tinto’s model places emphasis 

on classroom experiences as the basis of social and academic integration (Tinto, 1993).  By 

examining students’ experiences in specific courses, research has found that such experiences 

either confirm or alter students’ future coursework and major choices (Attewell, Heil, & Reisel, 

2011; Chen, 2013; Crisp, Nora, & Taggart, 2009; Huang, Taddese, & Walter, 2000; 

Stinebrickner & Stinebrickner, 2011).  After controlling for background variables, researchers 

use classroom experiences to measure academic and social integration to test Tinto’s model of 

attrition for specific academic programs. Tinto’s model does not differentiate among academic 

disciplines, and thus researchers commonly use Tinto’s model as a basis for developing models 

that focus on a specific population and/or academic discipline.  

Tinto’s model is appropriate to guide this study given that this study’s focus is on how 

students’ classroom experiences (enrollment and performance) in first-year STEM courses relate 

to retention, graduation, and other measures of academic achievement.  Tinto’s model suggests 

the experiences of students in first-year STEM courses play an important part in determining 

how well a student integrates into the institution, which ultimately impacts the student’s decision 

to persist at the institution. 
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Measures 

 This section discusses the measures that were chosen based on the proposed theoretical 

framework of the study.  I will first review the dependent variables used to assess academic 

achievement, followed by the academic integration independent variables (course enrollment, 

course performance), the social integration independent variables (study session attendance, 

institution type), and the background variables. 

Source of Data 

 Data used for this study will be drawn from the 2004/2009 Beginning Postsecondary 

Students Longitudinal Study (BPS:04/09) and the associated 2009 Postsecondary Education 

Transcript Study (PETS:09).  The BPS:04/09 and the PETS:09 were administered by the 

National Center for Education Statistics (NCES) and consist of a nationally representative 

sample of students first enrolling in postsecondary education in 2003.  BPS:04/09 sample 

members were identified in the 2003–2004 National Postsecondary Student Aid Study 

(NPSAS:04).  Given that the BPS:12/17 has yet to be released, the BPS:04/09 and the associated 

PETS:09 are the most recent national longitudinal dataset on postsecondary education outcomes 

that include data relating to student demographic characteristics, experiences, and course 

enrollment and performance.  

 Approximately 19,000 sample members were confirmed as first enrolling in 

postsecondary education in 2003.  Interviews were conducted at the end of students’ first year in 

postsecondary education, approximately three years and six years after initial enrollment.  

Researchers collected data on students’ demographic characteristics, academic achievement, and 

more.  The final BPS:04/09 sample contains approximately 16,700 students (Radford, Pearson, 

Ho, Chambers & Ferlazzo, 2012).  
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Sample 

 This study will focus on a subsample of BPS:04/09 students who participated in the 

2003–2004, 2006, and 2009 surveys.  Additionally, the study sample was restricted to first-time, 

bachelor’s degree-seeking students who enrolled at 4-year institutions in the fall of 2003 

(approximately 7,800). Out of the approximately 7,800 bachelor’s degree-seeking students, 

roughly 1,350 declared a STEM major during their first year of enrollment. 

The BPS:04/09 used two-digit codes to categorize students’ major.  The two-digit codes 

that were recoded as a STEM major were: (03) Life Sciences; (04) Physical Sciences; (05) Math; 

(6) Computer/Information Science; (07) Engineering/Engineering Technologies.  These fields 

are used by the NCES to define the STEM fields.  Furthermore, this classification is consistent 

with Chen’s (2013) NCES report on STEM attrition. 

 To answer the research questions, the sample was stratified to include students who meet 

the following criteria: (a) declared a major in the STEM fields upon enrollment in the fall of 

2003 and (b) reported a non-STEM major in the final 2009 follow-up survey.  To obtain this 

dataset, this study will use the BPS: 04/09 to identify variables related to students’ reported 

major during their first year (MAJORS12) and students’ reported major when last enrolled in 

2009 or major for students’ last reported degree through 2009 if the student was no longer 

enrolled in 2009 (LSFLD09).  Additionally, students that transferred and stayed in STEM were 

counted as STEM leavers.  The population of students in bachelor’s degree programs who 

initially declared a STEM major and switched to a non-STEM major, transferred or did not 

graduate totaled 750.   

The associated PETS:09 collected transcript data from 3,030 institutions that BPS 

students attended between July 1, 2003 and June 30, 2009.  Approximately 87% of the eligible 
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institutions provided transcripts for students in the cohort, totaling 16,920 PETS samples.  

Additionally, 92% of the eligible students had at least one transcript accessible.  Data obtained 

from the transcripts provide an in-depth representation of students’ enrollment, course taking, 

and academic performance.   In any longitudinal study, missing values issues are bound to occur.  

Researchers must address the issue of missing values or the validity of the study will be 

questioned.  Specifically, when the internal validity of the study is inaccurate, the results cannot 

be generalized.  Missing data can bias results, reduce generalizability and limit power.  

  After listwise deletion, the population totaled 540 students.  The majority of the missing 

responses came from those variables taken from the PETS:09 sample.  Introductory laboratory 

science GPA (10.24 nonresponse rate) and college level math GPA (10.68% nonresponse rate) 

had the highest number of missing cases.  No variables were found to be strongly correlated with 

introductory laboratory science GPA and college level math GPA. 

Methods 

Quantitative methodology will be used in the study because the study aims to answer 

questions about relationships among measured variables, with the purpose of explaining and 

predicting phenomena (Gay, Mills, & Airasian, 2009).  The study seeks to explain the 

relationship between variables that predict academic achievement.   

Design 

 This study will utilize a non-experimental, exploratory, cross-sectional design (Johnson 

& Christensen, 2008) that uses linear and logistic regression to measure the relationship between 

predictor variables and the dependent variable of academic achievement as defined by 

graduation, first year retention, time to degree, and cumulative GPA.  Multiple regression is most 

appropriate given that the study attempts to model the relationship between two or more 
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explanatory variables and a response variable.  Additionally, the reasonably small set of 

predictor variables in this study makes multiple linear and logistic regression appropriate (Leech, 

Barrett, & Morgan, 2011).   

 Multiple regression allows the researcher to study the relationship between several 

predictor variables and the dependent variable by predicting the likelihood of achieving an 

outcome when considering multiple predictor variables (Field, 2009).  Multiple linear regression 

will allow the researcher to utilize Tinto’s theory of student departure to study the relationship 

between STEM attrition and academic achievement.  This study will utilize four models: one for 

each research question.  The dependent variables (first year retention, cumulative GPA, time to 

degree, and graduation) will remain constant in each model.  The following independent 

variables will be included in all four models: ethnicity, gender, SAT/ACT math score, high 

school GPA, socioeconomic status, financial aid, and academic and social integration.  To 

answer each research question, an additional independent variable will be included in each 

model.  The first model will include the number of STEM courses taken; the second will include 

academic performance in college-level math; the third will include academic performance in 

introductory-level laboratory science; and the last will include STEM GPA. 

Due to the threat that multicollinearity presents in multiple regression, I will first 

complete a descriptive correlation analysis to ensure that there is a linear relationship between 

each predictor variable and the dependent variable and that the error is uncorrelated with the 

predictor variables (Leech, Barrett, & Morgan, 2011, p. 107).  Field (2009) suggests reviewing 

the Pearson Correlation Coefficient, the variance inflation factor (VIF), and the tolerance statistic 

between the predictor variables. 
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After running the descriptive correlation analysis, I will analyze the unstandardized 

coefficient beta weights and the standardized beta weights of each regression model.  I will also 

note the R2 change, F change, and Sig. F change to identify the relationship between the 

regression models and the dependent variable.  The level of significance will be set to p<.05, 

which is the commonly used level of significance in statistical research (Leech, Barrett, & 

Morgan, 2011). 

Multicollinearity 

To address possible issues of multicollinearity, a correlation matrix including all 

predictor variables in research question number one was run.  According to Gray and Bristow 

(2014) a correlation between predictor variables of .6 and .7 or above infers a likelihood of 

multicollinearity.  None of the variables were found to be highly correlated.  The strongest 

correlation was between academic integration index and social integration index (.420); 

however, this does reach the level of concern. 

This study did not include all the focal predictors (STEM credits attempted, college-level 

math GPA, introductory laboratory science GPA and STEM GPA) into one model due to high 

levels of multicollinearity among these variables.  Specifically, college-level math GPA and 

introductory laboratory science GPA are subsets of STEM GPA.  Further, students who perform 

well in college-level math, introductory laboratory science and STEM courses are more likely to 

persist in STEM, which increases the number of STEM credits attempted.  Therefore, the focal 

predictor variables were not included in one model. 

Outcome Variables 

There are four outcome variables of interest in this study: first year retention, graduation, 

time to degree, and cumulative GPA.   
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First Year Retention 

First year retention will be measured by determining whether a student was still enrolled 

at their first institution attended after the 2003–2004 academic year (PROUTF1).  Again, binary 

logistic regression will be used (Leech et al., 2011).  Table 2 summarizes the descriptive 

statistics of the outcome variable: first year retention. 

Table 1  

Descriptive Statistics of First-Year Retention (N=540) 

Variable Number Percentage 

Still Enrolled 430 79.6% 

Not Enrolled 110 20.4% 

 

As noted in Table 2, of the 540 participants in the analytical sample (all having declared a 

STEM major upon initial enrollment), 430 were retained at the institution after the first year, and 

110 were no longer enrolled at the institution after their first year of enrollment. 

Graduation 

Graduation will be measured by whether a student attained a bachelor’s degree at their 

initial institution by the end of the 2008–2009 academic year.  Graduation at the initial institution 

will be measured using the variable ATBAF16Y.  ATBAF16Y is a dichotomous variable, where 

GRAD=1 if a bachelor’s degree was attained, and GRAD=0 if a bachelor’s degree was not 

attained, regardless of whether the student was still enrolled.  Binary logistic regression will be 

used given that graduation is a binary nominal variable (Leech et al., 2011).  Table 1 summarizes 

the descriptive statistics of the outcome variable: graduation. 
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Table 2 

Descriptive Statistics for Graduation (N=540) 

Variable Number Percentage 

Bachelor’s Degree Attained  310 57.5% 

No Bachelor’s Degree 

Attained 

230 42.5% 

 

 Table 1 demonstrates that 310 of the participants attained a bachelor’s degree at their first 

institution by the end of the study in 2009, and 230 participants did not attain a bachelor’s degree 

at their first institution. 

Time to Degree 

Time to degree will be measured by determining whether a student graduated within 4 

years from their initial enrollment.  The variable ATBAM6Y represented the number of months 

that elapsed from first month enrolled to the month the bachelor’s degree was attained and will 

be recoded as a dichotomous variable, where 1=bachelor’s degree earned in 48 months or less, 

and 0=no bachelor’s degree earned or a bachelor’s degree earned in 49 months or more.  The 

typical curriculum is designed so that a student graduates in 4 years, and therefore the 48-month 

marker is appropriate to measure whether leaving STEM programs increases a student’s chances 

of graduating in 4 years.    

Table 3 

Descriptive Statistics for Time to Degree (N=540) 

Variable Number Percentage 
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Bachelor’s Earned in 48 

Months or Less 

110 20.4% 

Bachelor’s Earned in 49 

Months or More or No 

Degree Earned 

430 79.6% 

 

Table 3 indicates that of the 540 participants, 110 earned a bachelor’s degree within 48 

months (4 years) of initial enrollment, and 430 either earned a bachelor’s degree in 49 months or 

more or did not attain a bachelor’s degree. 

Cumulative GPA 

Cumulative GPA will be measured using the variable MTGPA from the PETS:09.  

Cumulative GPA is a continuous variable, so linear regression will be utilized to answer this 

research question based on self-reported, estimated, cumulative GPA when last enrolled through 

2009.  Table 4 demonstrates that the mean cumulative GPA among participants was 2.66, with a 

standard deviation of .84. 

Table 4  

Descriptive Statistics for Cumulative GPA  

Variable Mean SD Min Max 

Cumulative GPA 2.667 .841 0.000 4.000 

 

Academic Integration and Social Integration Independent Variables 

 This study includes the following four measures of academic integration variables: 

academic performance in introductory-level laboratory science courses (MTBPLB), number of 
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STEM courses taken (QESTMUN), academic performance in college-level math (MTGPMTH), 

and students’ level on the BPS:04/09’s academic integration index scale after the 2003–2004 

academic year (ACAINX04).  Social integration will be measured using students’ level on the 

BPS:04/09’s social integration index after the 2003–2004 academic year. 

Academic Performance in Introductory Level Laboratory Science Courses and College-

Level Math 

 To determine how performance in STEM courses relates to academic achievement for 

STEM leavers, this study focuses on academic performance in introductory level laboratory 

science and math courses.  These courses are a foundation of the first year STEM curriculum and 

using the academic performance in introductory-level laboratory science course variable 

(MTGPLB) of the BPS:04/09 will allow this study to focus on how performance in STEM 

courses relates to overall academic achievement for the STEM leaver population.  The academic 

performance in college level math variable (MTGPMTH) of the BPS:04/09 will also be used.  

The BPS:04/09 calculated GPA using normalized credit values, which place course hours or 

units on a common scale to be compared across students and institutions.  

In order to identify introductory laboratory science and college-level math courses, the 

BPS:04/09 used course classifications from the NCES’s 2010 College Course Map (CCM:2010).   

The following courses were considered introductory laboratory science in the BPS 04/09: general 

biology, general biomedical sciences, botany/plant biology, zoology, general and analytic 

chemistry, and general physics.  College level mathematics included general mathematics, 

algebra, geometry, calculus, and others. To answer the last research question, the model will 

include students’ STEM GPA.  The variable used will be MTGPSTM of the BPS:04/09.   

Number of STEM Credits Attempted 
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 STEM credits attempted (QESTMATT) was included in the study in order to measure 

how enrollment in STEM courses relates to academic achievement.  Using STEM credits 

attempted rather than STEM credits completed allowed the study to account for unsuccessful 

attempts (failures and withdraws).  

Academic Integration Index and Social Integration Index  

To test Tinto’s (1973, 1997) theory of institutional attrition, this study included students’ 

score on the BPS:04/09 academic integration index after the 2003–2004 academic year 

(ACAINX04).  All participants in the BPS:04/09 were asked to report various measures related 

to academic integration after the 2003–2004 academic year and during the follow-up survey in 

2006.  The BPS:04/09 academic integration index represents the mean score of the four measures 

used to determine students’ academic engagement.  The four measures that make up the 

academic integration index are: (a) meeting with faculty outside of class time; (b) meeting 

informally/socially with faculty; (c) meeting with advisors; and (d) participating in study groups.  

Students could respond with “never,” “sometimes,” or “often” (coded 0, 1, or 2, respectively).  

The index score was created by summing the responses, each multiplied by 100, and then 

dividing the total by 4 to yield a score between 0–200 on the index (Flynn, 2016).  Therefore, the 

variable is scaled in 25-point increments.   

Equally important to Tinto’s (1973, 1997) theory is social integration, and this study will 

use students’ score on the BPS:04/09 social integration index after the 2003–2004 academic year 

(SOCINX04).  The social integration index is calculated using the same method as the academic 

integration index and is made up of the following items: (a) attends or participates in campus 

arts, drama, music, or fine arts activities; (b) attends or participates in campus clubs or 

organizations; and (c) participates in or attends campus varsity, intermural, or club sports 
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activities.   Because there are only three components to the social integration index score, the 

variable is scaled in 33.333-point increments.   

The BPS:04/09 metrics used in determining a students’ academic and social integration 

index score are commonly used in research to measure academic and social integration.  

Additionally, by representing academic and social integration through different behaviors, the 

study considers different ways students engage on campus (Flynn, 2016).   

It is important to note that the academic and social integration indices only provide 

approximations of student engagement.  Although researchers have identified limitations of each 

index, Flynn (2012) found that the indices significantly predicted persistence and degree 

attainment and can be considered reliable measures of social and academic integration.  Finally, 

French and Oakes (2004) found the scale scores had satisfactory internal consistency reliability 

and intercorrelations among the subscales and with the total scale. 

Financial Aid Receipt 

The ability to afford tuition plays an important role in the ability of a student to socially 

integrate into their institution.  Although financial need is negatively associated with persistence 

and graduation, research has found that financial aid receipt can offset the negative effects of 

financial need (Ganem & Manasse, 2011).  Therefore, the amount of federal aid received will be 

included as an independent variable in all models.  All models will include the BPS:04/09 

variable TOTAID, which measures the cumulative amount of undergraduate federal loans and 

grants received during the 2003–2004 academic year.  The distribution among responses for 

financial aid was highly skewed and therefore natural logarithmic transformation was used to 

make the responses for total aid more closely to the normal distribution.   

Background Independent Variables 
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According to Tinto (1973, 1997), students bring various background characteristics to 

college, which then interact with environmental conditions that determine the level of social and 

academic integration for a student.  I will use five background characteristics that have been 

identified by research to influence academic integration variables and the outcome variables.  

Common background variables included in this study are students’ gender, socioeconomic status 

(measured by respondents’ income group for the 2003–2004 academic year), race/ethnicity, 

SAT/ACT math score, and high school GPA.  SAT/ACT math score will be used, rather than the 

more commonly combined SAT/ACT score, due to its influence on academic achievement for 

STEM leavers (Bonous-Hammarth, 2000; Crisp, Nora, & Taggart, 2009; Whalen & Shelley II, 

2010; Xie & Achen, 2009).    

Table 5 summarizes the descriptive statistics of the categorical independent variables in 

the study sample.  These variables include gender, race/ethnicity, and high school GPA.  Male 

participants make up more than half (59.2%) of the sample, compared to female participants 

(40.8%).  Although the BPS:2004/2009 dataset divides race/ethnicity into six classifications, the 

decision was made to reduce this number to two classifications: underrepresented minorities 

(URMs), made up of African Americans, Hispanics, Native Americans, and all other 

races/multiracial groups; and non-underrepresented minorities (non-URMs), comprising Whites 

and Asians.  The rationale for this decision was based on the need for adequate numbers within 

the cells. Non-URMs make up the majority of the sample (96.3%), compared to URM 

participants (3.7%).  Regarding high school GPA, again, the decision was made to reduce the 

number of categories from six to five.  The cells C to C- and C- and below were combined to 

produce one cell: C and below.  Again, this was based on the need for adequate numbers within 

the cells.  A little less than half of the participants in the sample (44.4%) were high achieving 
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students in high school and reported a high school GPA in the range of 3.5–4.0.  Of the 

participants, 33.3% reported a high school GPA of 3.0–3.4, and 9.3% reported a high school 

GPA in the B to B- range.  Finally, 13.0% of the participants had a high school GPA of C or 

below.  

Table 5 

Descriptive Statistics of the Independent Categorical Variables (N=540) 

Variable Number Percentage 

Individuals’ Characteristics   

Gender   

Male 320 59.2% 

Female 220 40.8% 

Race/Ethnicity   

Non-

Underrepresented 

Minority (Non-URM) 

520 96.3% 

Underrepresented 

Minority (URM) 

High School GPA 

20 3.7% 

A to A- (3.5–4.0) 240 44.4% 

A- to B (3.0–3.4) 180 33.3% 

B to B- (2.5–2.9) 50 9.3% 

C and below (0.0–2.0) 70 13.0% 
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Table 6 summarizes descriptive statistics for the independent continuous variables: academic 

integration index, social integration index, parental/independent income, SAT math score, total 

aid, college level math GPA, introductory laboratory science GPA, STEM GPA, and STEM 

credits attempted. 

Table 6   

Descriptive Statistics of the Independent Continuous Variables (N=540) 

Variable Mean SD Min Max 

Academic 

Integration 

Index 

87.57 39.554 0 200 

Social 

Integration 

Index 

59.78 50.707 0 200 

Parental/ 

Independent 

Income 

71262.45 54763.148 0 470000 

SAT Math 

Score 

516.76 154.826 0 800 

Total Aid 8847.80 8556.032 0 40121 

College Math 

GPA 

2.4479 1.03480 .00 4.00 

Intro Lab 

Science GPA 

2.3677 1.02855 .00 4.00 
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STEM GPA 2.4824 .96717 .00 4.00 

STEM 

Credits 

Attempted 

38.55 29.10839 00 225 

 
 

Weights 

 All estimates in this study will be weighted to account for the unequal probability of 

being involved in the survey and for nonresponse.  Applying weights prevents a biased estimate, 

which can cause inaccurate results.  Weighting must be applied in all studies that utilize a 

complex sample prior to generalizing results to the entire population.  Furthermore, utilizing 

sampling weights helps reduce the standard error, which then refines the accuracy of the 

significance of the estimate. 

 This study will use the sample weight panel (WTB000) and (WTC000), which are 

longitudinal weights that accommodate for students who participated in all three phases of the 

survey and the PETS:09 study.  These weights will be attached to each unit and normalized to 

compensate for the sample size of this study.    

Limitations 

 It should be noted that using the BPS:04/09 creates some limitations for this study.  First, 

the BPS:04/09 is a general-purpose study, and its questions and data collection instruments were 

not created to include variables that are specific to STEM education.  Specifically, the BPS:04/09 

does not provide any data related to classroom climate in STEM courses, which research 

suggests relates to STEM attrition (Seymour & Hewitt, 1997).    
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 Secondly, prior research hints that differences exist between majors within the STEM 

fields.  For example, Shaw & Barbuti (2010) suggest that engineering has more lower attrition 

rates than “softer” STEM fields.  Furthermore, research suggests that the reason a student 

decides to leave a STEM major may also differ based on the specific STEM major (Ost, 2010; 

Rask, 2010).  Due to the sample size, this study was unable to differentiate between different 

STEM fields.   

Lastly, although the CCM:2010 was used to code participants’ transcripts, the PETS:09 is 

unable to account for differences in course content and rigor based on institution.  For example, 

some institutions may define college-level math as calculus, whereas another considers algebra 

to be college-level math.  Students’ academic performance is often related to institutional and 

course variables that this study is unable to account for.  

Summary 

This chapter provided a description of the dataset used in this study (the BPS:04/09 and 

PETS:09) and the sample selected for the study.  Next, the methodology to be used in analyzing 

the sample was reviewed, along with limitations of the study.   
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CHAPTER IV 
 

ANALYSIS OF THE DATA 
 

Introduction 
 
 The purpose of this study was to examine the influence of STEM course enrollment and 

performance on various forms of academic achievement for students who originally enrolled in a 

STEM degree program and left the STEM fields.  As described in Chapter Three, the analytic 

sample for this study was drawn from the Beginning Postsecondary Longitudinal Study 

(BPS:04/09) and the associated Postsecondary Transcript Study (PETS:09) data set.  The final 

sample used for analyses represents the students who declared STEM majors upon enrollment in 

a bachelor’s degree program and graduated in a non-STEM field or never graduated.  Thus, the 

result will be reflective of this group, not all STEM students.   

 
 In this chapter, the statistical results of the analyses will be presented.  I will first discuss 

the sample demographics and their distribution across the various outcome variables.  Next, I 

will present inferential statistics to examine the relationship between the independent variables 

and the outcome variables of first year retention, graduation, time to degree and cumulative 

GPA. Sample sizes will be rounded to the nearest 10 given BPS:04/09 and PETS:09 are 

restricted NCES data.   

In this study, I explored the following research questions: 

1. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does the number of STEM credits attempted relate to:  

• First year retention rates for STEM leavers? 
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• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

2. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in college level math relate to:  

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

3. After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in introductory laboratory science relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

4. After controlling for ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in STEM courses relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 
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• Cumulative GPA for STEM leavers? 

Cross-Tabulation of Independent Categorical Variables 
 

 Cross-tabulation analysis was carried out to compare background characteristics across 

the outcome variables.  Table 7 shows the distribution of the independent categorical variables 

by first year retention.  Among the male participants, 78.1% were retained after the first year.  

For the female participants, this figure was 91.9%.  For the categorical variable gender (in Table 

7), a single factor Pearson’s chi-square (x2) test was applied to the crosstabs procedure to 

determine whether the gender and the outcome variable of first year retention.  The X2 (df = 2) 

test statistic for gender was 1.317, p=.251 and thus was not significant.   

 
Of the 520 Non-URM participants, 78.8% were retained after the first year.  In the URM 

participants, 50% were retained after the first-year.  For the race/ethnicity variable, a single 

factor Pearson’s chi-square (X2) test was applied to the crosstabs procedure to determine whether 

there is a correlation between race/ethnicity and first-year retention.  The X2 (df=1) test statistic 

was 0.397, p=.528 and thus was not significant.  However, the high school GPA variable was 

significant at the .01 level (X2(3) =13.999, p =.009) so it can be concluded that high school GPA 

is related to first-year retention. 

 
Table 7.  Descriptive Statistics of the Independent Categorical Variables by First Year Retention 
(N=540) 
 
Variable Retained Not Retained Chi-square test of 

significance 
Individuals’ Characteristics Number (%) Number (%) X2 

Gender   1.317+ 

Male  250 (78.1%) 70(21.9%)  
Female 180 (91.9%) 40 (8.1%)  

Race/Ethnicity   0.397+ 

Non-URM 410 (78.8%) 110 (21.2%)  
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URM 10 (50.0%) 10 (50.0%)  
High School GPA   13.399** 

A to A- (3.5-4.0) 210 (87.5%) 30 (12.5%)  
A- to B (3.0-3.4) 140 (77.8%) 40 (22.2%)  
B to B- (2.5-2.9) 40 (80.0%) 10(20.0%)  
C and Below (2.0-
0.0) 

50 (71.4%) 20 (28.6%)  

Significant variables are presented with asterisks +<.10, *p<.05, **p<.01, ***p<.001 
 
 

Table 8 shows the distribution of the independent categorical variables by graduation.  

Among the participants, 53.1% of males and 91.9% of females attained a bachelor’s degree.  A 

single factor Pearson’s chi-square (x2) test was applied to the crosstabs procedure to determine 

whether there is a correlation exists between gender and the outcome variable of graduation.  

The X2 (df = 2) test statistic for gender was 5.639 p=.018 and thus it can be concluded gender is 

related to graduation.  The race/ethnicity variable was not significant at the .05 level (x2(2)=0.53, 

p=.819).  The X2 (df=3) test statistic for high school GPA was 47.869, p=.000.  Therefore, it can 

be concluded that high school GPA is related to graduation.   

Table 8.  Descriptive Statistics of the Independent Categorical Variables by Graduation  
(N=540) 
 
Variable Bachelor’s Degree 

Attained  
Bachelor’s 
Degree Not 
Attained 

Chi-square test of 
significance 

Individuals’ 
Characteristics 

Number (%) Number 
(%) 

X2 

Gender   5.639* 

Male 170 (53.1.%) 150 (46.9%)  
Female 140 (91.9%) 80 (8.1%)  

Race/Ethnicity   0.53+ 

Non-URM 300 (60.0%) 200 (40.0%)  
URM 10 (50.0%) 10 (50.0%)  

High School GPA   47.869*** 

A to A- (3.5-4.0) 170 (87.5%) 70 (12.5%)  
A- to B (3.0-3.4) 90 (77.8%) 90 (22.2%)  
B to B- (2.5-2.9) 30 (80.0%) 20 (20.0%)  
C and Below 
(2.0-0.0) 

20 (71.4%) 50 (28.6%)  
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Significant variables are presented with asterisks +<.10, *p<.05, **p<.01, ***p<.001 
 
 

Table 9 shows the distribution of the independent categorical variables by time to degree.  

Among the males, 84.4% either did not graduate or graduated in over 49 months, while 78.7% of 

the female participants either did not graduate or graduated in over 49 months. The X2 (df = 2) 

test statistic for time to degree was 10.403, p=.001 and thus it can be concluded gender is related 

to time to degree.  Females were more likely to graduate in 48 months or less.  The race/ethnicity 

variable was not significant at the .05 level (x2(2)=0.12, p=.914).  The X2 (df=3) test statistic for 

high school GPA was 22.10, p=.000.  Therefore, high school GPA is related to time to degree.   

Table 9.  Descriptive Statistics of the Independent Categorical Variables by Time to Degree 
(N=540) 
 
Variable Graduated in 48 

months or less 
Graduated 
in 49 
months or 
more/no 
graduation 

Chi-square test of 
significance 

Individuals’ 
Characteristics 

Number (%) Number 
(%) 

X2 

Gender   10.403** 

Male  50 (15.6%)  270 
(84.4%) 

 

Female  60 (27.3%)  160 
(78.7%) 

 

Race/Ethnicity   0.12+ 

Non-URM  110 (21.2%) 410 (78.8%)  
URM  10 (50%)  10 (50%)  

High School GPA   22.102*** 

A to A- (3.5-
4.0) 

70 (29.1%) 170 (70.9%)  

A- to B (3.0-
3.4) 

30(16.7%) 150 (83.3%)  

B to B- (2.5-
2.9) 

10 (20.0%) 40 (80.0%)  

C and Below 
(2.0-0.0) 
 

10(16.7%) 50 (83.3%) 
 

 

Significant variables are presented with asterisks +<.10, *p<.05, **p<.01, ***p<.001 
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Analysis of Research Question 1 
 
Question 1: After controlling for race/ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social integration, how 

does the number of STEM credits attempted relate to:  

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

Binary Logistic Regression 

 Three separate binary logistic regression analyses were performed to assess the predictive 

impact of gender, race/ethnicity, total aid, academic integration index, social integration index, 

parental/independent income, SAT math score, high school GPA and number of STEM credits 

attempted on first year retention, graduation and time to degree.   

First Year Retention 

           The Tests of Model Coefficients table (Table 10) displays the model chi-square and tests 

for overall significance of the fitted model.  The fitted model chi-square was statistically 

significant (χ2 (9) = 22.509, p =.007), indicating that the fitted model was able to distinguish 

between participants who were retained or not retained past the first year.  The chi-square 

statistic represents the difference in log-likelihood (-2LL) values between the null and fitted 

models.  Goodness-of-fit tests are designed to determine the adequacy of the logistic regression 

model.  A model that is poorly fitted can give invalid results on the statistical inferences based on 

the fitted model (Field, 2009).  
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Table 10 shows the -2LL for the fitted model (388.155) and two pseudo R2 values, the 

Cox and Snell R2 and the Nagelkerke R2.  The -2LL statistic assesses the overall fit of the full 

model (Field, 2013).  The -2LL of 388.155 is lower than the null model, which indicates the 

fitted model is predicting the outcome variable more accurately.  The Cox and Snell (.052) and 

Nagelkerke (.081) are similar to the coefficient of determination used in OLS regression and are 

interpreted in the same way.  Therefore, the fitted model explains between 5.2% and 8.1% of the 

variance in first year retention. 

Table 10.  Goodness of Fit Statistics: First Year Retention (Research Question 1) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 22.509 9 .007 
Coefficients -2LL 410.848   
Cox & Snell R2 .052   
Nagelkerke R2 .081   

 

Table 11 presents the findings of the binary logistic regression analysis for first-year 

retention. STEM credits attempted was statistically significant (p < .001) and had an EXP(B) of 

.978 (95% CI between .969 & .992).  The odds ratio represents the constant effect of the 

predictor variable on the likelihood of the outcome.  Thus, the EXP(B) of .978 indicates the odds 

of retention decrease .022 (1-.978) for each unit increase in STEM credits attempted.  

Additionally, high school GPA was found to be significant (p<.05).  No other variables were 

statistically significant.   

These results are particularly important given the first year STEM curriculum requires 

students to enroll in a high number of math and science courses (Bettinger, 2010; Westrick, 

2014; Zhang et al., 2004).  The results indicate that enrolling in more STEM courses negatively 
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influenced first year retention.  Bettinger (2010) found that STEM courses accounted for 52% of 

all first semester courses for first year STEM students.  The results of this study suggest that first 

year STEM students are less likely to be retained after the first year due to the high percentage of 

STEM courses taken in the first year.   

Table 11. 

Logistic Regression Results: First Year Retention (Research Question 1) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) -.109 .257 .671 .897 .541 1.485 
Race/Ethnicity (non-URM) -.232 .670 .729 .793 .214 2.946 

High School GPA  -.063 .058 .278 .939 .838 1.052 
Total Aid .302 .313 .336 1.352 .732 2.498 

SAT Math (10 point scale) .000 .001 .886 1.000 .998 1.002 
Social Integration (33.333) 

point scale) 
.001 .003 .830 1.001 .995 1.006 

Academic Integration (25 
point scale) 

-.001 .004 .674 .999 .992 1.005 

Income  .140 .353 .692 1.000 .998 1.002 
STEM Credits Attempted -.022 .006 .000 .978 .966 .989 

Constant -1.612 2.270 .477 .199   

Graduation 

 The Omnibus Tests of Model Coefficients table (Table 12) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 51.792, p<.001), thus indicating the fitted model was able to 

distinguish between participants who were graduated or did not graduate. The Model Summary 

table shows the -2LL for the fitted model (518.940) and two pseudo R2 values, the Cox and Snell 

R2 and the Nagelkerke R2.  The Cox and Snell (.116) and Nagelkerke (.156) demonstrate that the 

fitted model explains between 11.6% and 15.6% of the variance in graduation. 
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Table 12.  Goodness of Fit Statistics: Graduation (Research Question 1) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 51.792 9 .000 
Coefficients -2LL 518.940   
Cox & Snell R2 .116   
Nagelkerke R2 .156   

Table 13 presents the findings of the binary logistic regression analysis for graduation. 

The predictor variables of high school GPA, SAT math and social integration index were 

statistically significant (p < .05).  The odds ratio for high school GPA was 1.161 (95% CI 

between 1.035 and 1.302).  This indicates that the odds of graduation increase 16.1 percentage 

points with each increase in high school GPA. The odds ratio for SAT math was 1.002 (95% CI 

between 1.001 and 1.004).  This indicates that the odds of graduation increase .002 with each 10 

point increase in SAT math score.  Finally, the odds ratio for the social integration index was 

1.005 (95% CI between 1.000 and 1.010), which indicates that the odds of graduation increase 

.005 with each 33.333 point increase in social integration index score.  As noted in Chapter II, 

social integration score represents students’ response to how often they participated in: (a) 

campus arts, drama, music, or fine arts activities; (b) campus clubs or organizations; and (c) 

campus varsity, intermural, or club sports activities.  No other variables were found to be 

statistically significant. 

Similar to the findings of Chen (2013), STEM credits attempted was not a significant 

predictor of graduation.  This suggests that academic performance rather than enrollment in 

STEM courses influences graduation.  While enrollment in STEM courses was not a significant 

predictor of graduation, this study did find that STEM course performance was a significant 

predictor of graduation.   
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Table 13. Logistic Regression Results: Graduation (Research Question 1) 

     95% CI for EXP 
(B) 

 B SE Sig. Exp(B) Lower Upper 
Gender (female) .405 .222 .068 1.499 .971 2.314 

Race/Ethnicity (non-URM) .141 .545 .796 1.151 .395 3.353 
High School GPA .149 .059 .011 1.161 1.035 1.302 

Total Aid -.154 .261 .556 .857 .514 1.431 
SAT Math (10 point scale) .002 .001 .005 1.002 1.001 1.004 

Social Integration (33.333 point 
scale) 

.005 .002 .031 1.005 1.000 1.010 

Academic Integration (25 point 
scale) 

.000 .003 .946 1.000 .994 1.006 

Income .362 .305 .236 1.437 .790 2.614 
STEM Credits Attempted .006 .004 .086 1.006 .999 1.013 

Constant -4.117 1.977 .037 .016   

Time to Degree 

 The Omnibus Tests of Model Coefficients table (Table 14) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 43.363, p<.001, thus indicating that the fitted model was able to 

distinguish the participants who graduated in 48 months or less. The chi-square statistic 

represents the difference in log-likelihood (-2LL) values between the null and fitted models.  The 

Model Summary table shows the -2LL for the fitted model (387.359), the Cox and Snell R2 

(.098) and the Nagelkerke R2 (.153). Based on these figures, the fitted model explains between 

9.8% and 15.3% of the variation in time to degree. 

Table 14.  Goodness of Fit Statistics: Time to Degree (Research Question 1) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 43.363 9 .000 
Coefficients -2LL 387.359   
Cox & Snell R2 .098   
Nagelkerke R2 .153   
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Table 15 presents the findings of the binary logistic regression analysis for time to degree 

Gender and SAT math score were found to be statistically significant (p < .001).  Gender had an 

odds ratio of 2.633 (95% CI between 1.577 and 4.394), which indicates females are 1.633 times 

more likely to graduate in 48 months or less compared to males.  SAT math score had an odds 

ratio of 1.003 (95% CI between 1.000 and 1.006), which indicates the odds of graduation in 48 

months or less increases .3% for each 10 point increase in SAT math score.  No other variables 

were found to be statically significant. 

Similar to Ewert (2012) and Goldrick-Rab (2006), female participants in this study had 

higher levels of academic achievement than the male participants.  Previous research has also 

identified that females are more likely to change out of the STEM fields due to strong grades in 

non-STEM courses (Mann & DiPrete, 2013; Ost, 2010).  The findings of previous research and 

the results of this study suggest that females are more likely to successfully navigate the STEM 

to non-STEM major change due to higher levels of academic achievement.  

Table 15. Logistic Regression Results: Time to Degree  

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender .968 .261 .000 2.633 1.577 4.394 
Race/Ethnicity .255 .628 .684 1.291 .377 4.416 

High School GPA .113 .095 .234 1.119 .930 1.347 
Total Aid .192 .297 .516 1.212 .678 2.168 
SAT Math .003 .001 .020 1.002 1.000 1.006 

Social Integration .004 .003 .110 1.004 .999 1.010 
Academic Integration .003 .004 .357 .1003 .996 1.011 

Income .588 .409 .150 1.801 .809 4.011 
STEM Credits Attempted -.002 .005 .736 .998 .989 1.008 

Constant -9.440 2.520 .000 .000   
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Ordinary Least Squares Regression 

Cumulative GPA 

 A simultaneous multiple linear regression was run using the predictor variables with 

cumulative GPA as the dependent variable.  The model summary below (Table 16) is shown 

with the adjusted R2 being .066. 

Table 16.  Cumulative GPA – Model Summary (Research Question 1) 

Model R R2 Adjusted R2 Std. Error of 
the Estimate 

1 .295 .087 .066 .816 

The ANOVA data (Table 17) show that the model was statistically significant with 

F=4.124, df=9 and p<.001.  Therefore, the combination of the predictor variables significantly 

predicted cumulative GPA. 

Table 17. Cumulative GPA ANOVA table (Research Question 1) 

Model Sum of 
Squares 

Df Mean Square F p 

1      
Regression 24.740 9 2.749 4.124 .000 
Residual 259.307 510 .677   
Total 284.047 540    

 The coefficients table demonstrates the beta values of the independent variables.  Beta 

values represent the strength of influence of the independent variable on the dependent variable.  

Table 18 indicates SAT math score, gender and STEM credits attempted were the only significant 

variables, with p=.006 and p<.001, p=.026, respectively.  Each 10-point increase in SAT math 

score increased cumulative GPA by .001 points.  Further, being female increased cumulative 
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GPA by .356 points.  Lastly, each increase in STEM credits attempted increased cumulative 

GPA by .003. 

 Again, as in previous research, the results indicate females have higher levels of 

academic achievement compared to males.  Further, females are more likely to leave the STEM 

fields for reasons other than poor academic performance (Bettinger, 2010; Kulturel-Konak, 

D’Allegro and Dickinson 2011; Griffith, 2010).  Therefore, the findings suggest females are less 

likely to be negatively affected by enrollment in STEM courses prior to changing to a non-

STEM major.   

It is also important to note that STEM credits attempted was positively associated with 

cumulative GPA.  While STEM credits attempted is negatively associated with first year 

retention, attempting more STEM credits has the opposite effect on cumulative GPA.  One 

explanation for this finding is that students who perform well in STEM courses may be more 

likely to continue to enroll in STEM courses, while students who perform poorly may drop out 

or transfer.   

Table 18. Coefficients Table: Cumulative GPA (Research Question 1) 

 Unstandardized Coefficients   
 B Std. Error t Sig. 

(Constant) 1.585 .740 2.142 .033 
Gender (female) .356 .085 4.181 .000 

Race/Ethnicity (non-URM) -.097 .209 -4.66 .642 
High School GPA .002 .020 .112 .911 

Total Aid -.099 .099 -1.000 .318 
SAT Math (10 point scale) .001 .000 2.241 .026 

Social Integration (33.333 point 
scale) 

0.00 .001 -.078 .937 

Academic Integration (25 point 
scale) 

.000 .001 .338 .735 

Income .098 .116 .841 .401 



 
 

69 

STEM Credits Attempted .003 .001 2.241 .026 
 

 
 
 

Analysis of Research Question 2 
 

Question 2: After controlling for race/ethnicity, SAT/ACT math score, high school GPA, 

gender, socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in college-level math relate to:  

• First-year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

Binary Logistic Regression 

 Three separate binary logistic regression analyses were performed to assess the predictive 

impact of gender, race/ethnicity, total aid, academic integration index, social integration index, 

parental/independent income, SAT math score, high school GPA and college level math GPA on 

first year retention, graduation and time to degree.   

First Year Retention 

 The fitted model chi-square was not statistically significant (χ2 (9) =11.927, p =.217), 

thus indicating the fitted model was unable to distinguish between participants who were 

retained or not retained. Because the model did not reach significance, regression results are not 

included. The Model Summary table shows the -2LL for the fitted model, 246.987 and two 

pseudo R2 values, the Cox and Snell R2 and the Nagelkerke R2.  The Cox and Snell R2 (.042) and 
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Nagelkerke R2 (.069) indicate the fitted model explains between 4.2 % and 6.9% of the variance 

in first-year retention. 

Table 19.  Goodness of Fit Statistics: First Year Retention (Research Question 2) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 11.927 9 .217 
Coefficients -2LL 246.987   
Cox & Snell R2 .042   
Nagelkerke R2 .069   

 

Herzog (2005) found that freshman who failed to complete a math course in the first year 

were five times less likely to be retained compared to those who successfully completed a math 

course in the first year.  As I will discuss later in this chapter, STEM GPA was a significant 

predictor of first year retention.  This result suggests that for first year STEM students, academic 

performance in all STEM courses has greater influence on first year retention than just college 

level math. 

Graduation 

 The Omnibus Tests of Model Coefficients table (Table 20) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 54.830, p <.001), indicating that it was able to distinguish 

between participants who graduated or did not graduate. The chi-square statistic represents the 

difference in log-likelihood (-2LL) values between the null and fitted models. 

The Model Summary table shows the -2LL for the fitted model (314.740) and the Cox 

and Snell R2 and the Nagelkerke R2.  The Cox & Snell R2 (.179) and Nagelkerke R2 (.243)  

suggest that the fitted model explains between 17.9% and 24.3% of the variance in graduation. 



 
 

71 

Table 20.  Goodness of Fit Statistics: Graduation (Research Question 2) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 54.830 9 .000 
Coefficients -2LL 314.740   
Cox & Snell R2 .179   
Nagelkerke R2 .243   

Table 21 presents the findings of the binary logistic regression analysis for graduation. 

The predictor variables of high school GPA and college level math GPA were statistically 

significant (p < .05).  High school GPA had an odds ratio of 1.231 (95% CI between 1.051 and 

1.440), which indicates for each high school GPA category, the odds of graduation increase by 

.231.  The odds ratio for college level math GPA was 1.833 (95% CI between 1.382 and 2.431).  

This indicates that odds of graduation increases .833 with each unit increase in college level 

math GPA.  These findings mirror the results of similar studies that found college level academic 

performance to be the most powerful predictor of academic achievement (Cabrera, Burkum, & 

La Nasa, 2005; Adelman, 2006).  No other variables in the model were found to be statistically 

significant.   

Table 21.  Logistic Regression Results: Graduation (Research Question 2) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) .045 .297 .881 1.046 .584 1.872 
Race/Ethnicity (non-URM) -.130 .753 .863 .878 .201 3.845 

High School GPA .207 .080 .010 1.231 1.051 1.440 
Total Aid -.148 .359 .680 .863 .427 1.742 

SAT Math (10 point scale) .002 .001 .140 1.002 .999 1.004 
Social Integration (33.333 point 

scale) 
.003 .003 .412 1.003 .997 1.009 

Academic Integration (25 point 
scale) 

.004 .004 .301 1.004 .996 1.012 

Income .606 .437 .165 1.833 .779 4.312 

College Level Math GPA .606 .144 .000 1.833 1.382 2.431 
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Constant -5.789 2.832 .031 .003   

Time to Degree 

 The Omnibus Tests of Model Coefficients table (Table 22) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 30.679, p<.001), indicating that it was able to distinguish the 

participants who graduated in 48 months or shorter.  The Model Summary table shows the -2LL 

for the fitted model (259.317).  The Cox and Snell R2 (.104) and Nagelkerke R2 (.161) suggest 

that the fitted model explains between 10.4% and 16.1% of the variation in time to degree. 

Table 22.  Goodness of Fit Statistics: Time to Degree (Research Question 2) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 30.679 9 .000 
Coefficients -2LL 259.317   
Cox & Snell R2 .104   
Nagelkerke R2 .161   

 

Table 23 presents the findings of the binary logistic regression analysis for time to 

degree. Gender and SAT math score were found to be statistically significant (p < .001).  Gender 

had an odds ratio of 2.572 (95% CI between 1.331 and 4.971), which indicates that the odds of 

graduating in 48 months or less is 1.572 times more likely for females compared to males.  SAT 

math had an odds ratio of 1.005 (95% CI between 1.002 and 1.008), which indicates the odds of 

graduating in 48 months or less increase .005 with each 10 point increase in SAT math score. 

College level math performance was not a significant predictor in the model.  Instead, 

pre-college academic achievement (SAT math and high school GPA) was significant and 

positively associated with graduation in 48 months or less.  Although previous research (Green 
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& Zwick, 2007; Geiser & Sanelices, 2007; Tross, Harper, Osher, & Kneidiner, 2000) has found 

high school GPA and SAT math score to be significant predictors of academic achievement, pre-

college academic achievement variables often lose significance when academic performance in 

college is considered (Adelman, 2006).  Interestingly, the results of this study suggest pre-

college academic achievement is a stronger predictor of graduation in four years than college 

level math performance.  These findings suggest that college level math performance does not 

hinder academic progress once a student has transitioned into a non-STEM field.   

Table 23. Logistic Regression Results: Time to Degree (Research Question 2) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) .954 .336 .006 2.572 1.331 4.971 
Race/Ethnicity (non-URM) .105 .846 .901 1.111 .211 5.832 

High School GPA .152 .127 .232 1.164 .907 1.493 
Total Aid .109 .376 .772 1.115 .534 2.328 

SAT Math (10 point scale) .005 .002 .005 1.005 1.002 1.008 
Social Integration (33.333 point 

scale) 
.003 .003 .426 1.003 .996 1.009 

Academic Integration (25 point 
scale) 

.002 .005 .736 1.002 .992 1.011 

Income .010 .512 .984 1.010 .370 2.756 
College Level Math GPA .116 .167 .489 1.122 .809 1.557 

Constant -7.531 3.253 .021 .001   

Ordinary Least Squares Regression 

Cumulative GPA 

 A simultaneous multiple regression was run using the predictor variables with cumulative 

GPA as the dependent variable.  The model summary (Table 24) is shown with the adjusted R2 

being .079. 
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Table 24.  Cumulative GPA – Model Summary (Research Question 2) 

Model R R2 Adjusted R2 Std. Error of 
the Estimate 

1 .316 .100 .079 .81066 

The ANOVA data (Table 25) shows that the model was statistically significant with 

F=4.803, df=9 and p<.001.  The model significantly predicted cumulative GPA. 

Table 25.  Cumulative GPA ANOVA table (Research Question 2) 

Model Sum of 
Squares 

Df Mean Square F p 

1      
Regression 28.408 9 3.156 4.803 .000 
Residual 255.638 510 .657   
Total 284.047 540    

 The coefficients table (Table 26) displays the beta values of the independent variables.  

Table 26 indicates gender, SAT math score, and college level math were the only significant 

variables with p<.001, p=.006, p=.001, respectively.  For each 10 point increase in SAT math 

score, cumulative GPA increased .002.  For each grade point increase in college level math, 

cumulative GPA increased .036.  Gender had the strongest influence on cumulative GPA.  This 

result aligns with previous research, which shows females tend to have higher levels of academic 

achievement outside of STEM fields (Ewert, 2012; Goldrick-Rab, 2006).  Females may be better 

equipped to successfully transition from STEM to non-STEM fields.   

 SAT math and college level math GPA also reached significance and were positively 

associated with cumulative GPA.  Previous research on STEM achievement has found SAT math 

and college level math GPA to be positively associated with STEM achievement and overall 

academic achievement in any field (Adelman, 2006; Cabrera, Burkum & La Nasa, 2005; Chen, 
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2013; Chen, 2015).  The results of the regression model indicate college level math is a predictor 

of cumulative GPA regardless of whether in a STEM or non-STEM field.  

Table 26. Coefficients Table: Cumulative GPA (Research Question 2) 

 Unstandardized Coefficients   
 B Std. Error t Sig. 

(Constant) 1.583 .733 2.159 .031 
Gender (female) .352 .084 4.173 .000 

Race/Ethnicity (non-URM) -.081 .208 -.390 .696 
High School GPA .002 .020 .118 .906 

Total Aid -.113 .098 -1.147 .252 
SAT Math (10 point scale) .001 .000 2.775 .006 

Social Integration (33.333 point scale) 0.00 .001 -.014 .989 
Academic Integration (25 point scale) .001 .001 .670 .503 

Income .098 .115 .848 .397 
College Level Math GPA .036 .011 3.267 .001 

 
 

Analysis of Research Question 3 
 

Question 3: After controlling for race/ethnicity, SAT/ACT math score, high school GPA, 

gender, socioeconomic status, receipt of financial aid, academic integration, and social 

integration, how does academic performance in introductory level laboratory science relate to: 

• First year retention rates for STEM leavers? 

• Graduation rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Cumulative GPA for STEM leavers? 

Binary Logistic Regression 

 Three separate binary logistic regression analyses were performed to assess the predictive 

impact of gender, race/ethnicity, total aid, academic integration index, social integration index, 
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parental/independent income, SAT math score, high school GPA and introductory laboratory 

science GPA on first year retention, graduation and time to degree.   

First Year Retention 

The Omnibus Tests of Model Coefficients table (Table 27) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was not 

statistically significant (χ2 (9) =11.911, p =.218), indicating that the fitted model was unable to 

distinguish between participants who were retained or not retained.   Thus, the results of the 

regression will not be reported. The chi-square statistic represents the difference in log-

likelihood (-2LL) values between the null and fitted models.  The Model Summary table shows 

the -2LL for the fitted model (273.281) and two pseudo R2 values, the Cox and Snell R2 (.038) 

and the Nagelkerke R2 (.063).  Therefore, the fitted model explains between 3.8% and 6.3% of 

the variance in first year retention. 

Table 27.  Goodness of Fit Statistics: First Year Retention (Research Question 3) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 11.911 9 .211 
Coefficients -2LL 273.281   
Cox & Snell R2 .038   
Nagelkerke R2 .063   

Graduation 

 The Omnibus Tests of Model Coefficients table (Table 28) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) =52.463 , p <.001), thus indicating that it was able to distinguish 

between participants who graduated and those who did not graduate. The chi-square statistic 
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represents the difference in log-likelihood (-2LL) values between the null and fitted models.  The 

Model Summary table shows the -2LL for the fitted model (350.583) and two pseudo R2 values, 

the Cox and Snell R2 and the Nagelkerke R2.  The Cox & Snell R2 (.158) and Nagelkerke R2 

(.215) show that the fitted model explains between 15.8% and 21.5% of the variance in 

graduation. 

Table 28.  Goodness of Fit Statistics: Graduation (Research Question 3) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 52.463 9 .000 
Coefficients -2LL 350.583   
Cox & Snell R2 .158   
Nagelkerke R2 .215   

Table 29 presents the findings of the binary logistic regression analysis for graduation. 

The predictor variables of gender and introductory laboratory science GPA were statistically 

significant (p < .05).  Gender had an odds ratio of 1.750 (95% CI between 1.019 and 3.005).  

Females were .750 more likely to graduate compares to males.  The odds ratio for introductory 

laboratory science GPA was 1.962 (95% CI between 1.482 and 2.597).  For each increase in 

introductory laboratory science GPA, the odds of graduation increased by .962.  With regards to 

gender, these findings support previous research that found females achieve higher levels of 

academic achievement in non-STEM fields (Ewert, 2012).   

Compared to the results of the logistic regression model examining the relationship 

between college level math GPA and graduation (see Table 21), introductory laboratory  science 

had a greater effect on graduation.  As noted in Chapter 2, there are few studies that address the 

relationship between courses other than math and English and academic achievement in the non-
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STEM fields.  This study found that introductory lab science was a stronger predictor of 

graduation than college level math. 

Table 29. Logistic Regression Results: Graduation (Research Question 3) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) .560 .276 .042 1.750 1.019 3.005 
Race/Ethnicity (non-URM) .162 .698 .816 1.176 .299 4.618 

High School GPA .110 .067 .101 1.116 .979 1.272 
Total Aid .024 .334 .942 1.025 .532 1.974 

SAT Math (10 point scale) .002 .001 .088 1.002 .999 1.004 
Social Integration (33.333 point 

scale) 
.003 .003 .322 1.003 .997 1.008 

Academic Integration (25 point 
scale) 

.000 .004 .932 1.000 .997 1.007 

Income .383 .381 .942 1.025 .532 1.974 
Intro Lab Science GPA .674 .143 .000 1.962 1.483 2.597 

Constant -5.628 2.516 .025 .004   

Time to Degree 

 The Omnibus Tests of Model Coefficients table (Table 30) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 40.149, p<.001, indicating that it was able to distinguish the 

participants who graduated in 48 months or shorter.  The Model Summary table shows the -2LL 

for the fitted model (293.755).  The Cox & Snell R2 (.123) and Nagelkerke R2 (.185) indicate 

that the fitted model explains between 12.3% and 18.5% of the variation in time to degree. 

Table 30.  Goodness of Fit Statistics: Time to Degree (Research Question 3) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 40.149 9 .000 
Coefficients -2LL 293.755   
Cox & Snell R2 .123   
Nagelkerke R2 .185   
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Table 31 presents the findings of the binary logistic regression analysis for time to 

degree. Gender and introductory lab science GPA were found to be statistically significant (p < 

.001).  Gender had an odds ratio of 2.730 (95% CI between 1.513 and 4.924), which means that 

the odds of graduating in 48 months or less is 1.730 times more likely for females compared to 

their male counterparts.  Introductory laboratory science GPA had an odds ratio of 1.807 (95% 

CI between 1.382 and 2.546), indicating the odds of graduating in 48 months or less increase 

.807 for each grade point increase in introductory lab science GPA.   

Introductory laboratory science GPA was also a significant predictor of graduation in 48 

months or less.  While introductory laboratory science is only one component of the STEM 

curriculum, the positive association between introductory laboratory science GPA and 

graduation in 48 months or less suggests that academic performance is an important factor in 

determining whether students can handle the major transition from STEM to non-STEM.  

Table 31.  Logistic Regression Results: Time to Degree (Research Question 3) 

     95% CI for EXP (B) 
 B SE Sig

. 
Exp(B) Lower Upper 

Gender (female) 1.004 .301 .001 2.730 1.513 4.924 
Race/Ethnicity (non-URM) .471 .711 .507 1.603 .398 6.457 

High School GPA .043 .086 .616 1.044 .882 1.235 
Total Aid .343 .351 .328 1.410 .998 1.004 

SAT Math (10 point scale) .001 .001 .433 1.001 .998 1.004 
Social Integration (33.333 point 

scale) 
.002 .003 .441 1.002 .996 1.008 

Academic Integration (25 point 
scale) 

.005 .004 .264 1.005 .996 1.013 

Income .579 .454 .202 1.784 .733 4.341 
Intro Lab Science GPA .592 .175 .001 1.807 1.382 2.546 

Constant -10.204 2.831 .000 .000   
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Ordinary Least Squares Regression 

Cumulative GPA 

 A simultaneous multiple linear regression was run using the predictor variables with 

cumulative GPA as the dependent variable.  The model summary is shown (Table 32) with the 

adjusted R2 being .102. 

Table 32.  Cumulative GPA – Model Summary (Research Question 3) 

Model R R2 Adjusted R2 Std. Error of 
the Estimate 

1 .350 .122 .102 .791 

The ANOVA data (Table 33) show that the model was statistically significant with 

F=6.017, df=9 and p<.001.  This indicates the model was able to significantly predict 

cumulative GPA. 

Table 33.  Cumulative GPA ANOVA table (Research Question 3) 

Model Sum of 
Squares 

Df Mean Square F p 

1      
Regression 33.916 9 3.768 6.017 .000 
Residual 242.989 510 .626   
Total 276.905 540    

 The coefficients table (Table 34) demonstrates the beta values of the independent 

variables.  Table 34 indicates gender, SAT math score, and introductory laboratory science GPA 

were the only significant variables with p=.001, p=.011 and p<.001, respectively.  Gender had 

the strongest influence on cumulative GPA.  Being female increases cumulative GPA by .271, 

which supports previous research on the academic achievement of females compared to males 

(Ewert, 2012).  Introductory laboratory science GPA was positively associated with cumulative 
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GPA.  This is not necessarily surprising given students’ course performance is likely indicative 

of their overall GPA.  However, it does indicate that students who do not do well in introductory 

lab science may struggle to raise their GPAs after switching out of the STEM fields. 

Table 34.  Coefficients Table: Cumulative GPA (Research Question 3) 

 Unstandardized Coefficients   
 B Std. Error t Sig. 

(Constant) 1.646 .715 2.303 .022 
Gender (female) .271 .084 3.213 .001 

Race/Ethnicity (non-URM) -.077 .203 -.381 .703 
High School GPA .002 .020 ..091 .928 

Total Aid -.077 .096 -.797 .426 
SAT Math (10 point scale) .001 .000 2.566 .011 

Social Integration (33.333 point 
scale) 

.000 .001 .005 .996 

Academic Integration (25 point 
scale) 

.000 .001 .098 .922 

Income .094 .112 .834 .405 
Intro Lab Science GPA .020 .005 4.291 .000 

  
 

Analysis of Research Question 4 
 
 

Question 4: After controlling for ethnicity, SAT/ACT math score, high school GPA, gender, 

socioeconomic status, receipt of financial aid, academic integration, and social integration, how 

does academic performance in STEM courses relate to: 

• First year retention rates for STEM leavers? 

• Time to degree for STEM leavers? 

• Graduation rates for STEM leavers? 

• Cumulative GPA for STEM leavers? 

Binary Logistic Regression 
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 Three separate binary logistic regression analyses were performed to assess the predictive 

impact of gender, race/ethnicity, total aid, academic integration index, social integration index, 

parental/independent income, SAT math score, and academic performance in STEM courses on 

first year retention, graduation and time to degree.   

First Year Retention 

The Omnibus Tests of Model Coefficients table (Table 35) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was not 

statistically significant (χ2 (9) = 13.489, p=.142, indicating that it was unable to distinguish the 

participants who were retained or not retained after the first year.  The Model Summary table 

shows the -2LL for the fitted model (402.783), and the Cox & Snell R2 (.032) and Nagelkerke R2 

(.051).  Therefore, the fitted model explains between 3.2% and 5.1% of the first year retention. 

Table 35.  Goodness of Fit Statistics: First Year Retention (Research Question 4) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 13.489 9 .142 
Coefficients -2LL 402.783   
Cox & Snell R2 .032   
Nagelkerke R2 .051   

 

Graduation 

 The Omnibus Tests of Model Coefficients table (Table 36) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 105.133, p <.001), indicating that the fitted model was able to 

distinguish between participants who graduated or did not graduate.  The chi-square statistic 

represents the difference in log-likelihood (-2LL) values between the null and fitted models.   
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The Model Summary table shows the -2LL for the fitted model (453.663) and two pseudo 

R2 values, the Cox and Snell R2 and the Nagelkerke R2.  The Cox & Snell R2 (.226) and 

Nagelkerke R2 (.304) indicate that the fitted model explains between 22.6% and 30.4% of the 

variance in graduation. 

Table 36.  Goodness of Fit Statistics: Graduation (Research Question 4) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 105.133 9 .000 
Coefficients -2LL 453.663   
Cox & Snell R2 .226   
Nagelkerke R2 .304   

Table 37 presents the findings of the binary logistic regression analysis for graduation. 

The predictor variables of STEM GPA, high school GPA, and social integration index were 

statistically significant (p < .05).  STEM GPA had an odds ratio of 3.003 (95% CI between 2.210 

and 4.164). Every grade point increase in STEM GPA increases odds of graduating by 2.003 

times. No other variables were statistically significant. 

 Chen (2013) found that the most common reason students leave the STEM fields is due 

to poor academic performance.  Considering these findings, the results of the regression are 

especially alarming with regards to the STEM to non-STEM major change and graduation.  

Course performance in STEM courses strongly influences chances of graduation in a non-STEM 

field.  Because most students leave the STEM fields due to poor performance and STEM GPA is 

a significant predictor of graduation, the findings of the regression model suggest the STEM to 

non-STEM major change puts students at risk of never graduating.  
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High school GPA had an odds ratio of 1.209 (95% CI between 1.077 and 1.358),  

indicating the odds of graduating increase .209 times for each unit increase in high school GPA.  

Students with lower high school GPAs are less likely to reach high levels of academic 

achievement in the STEM fields (Chen, 2013; Crisp, Nora, & Taggart, 2009; Whalen & Shelley 

II, 2010).  Students with stronger academic profiles in high school may be more equipped to 

successfully navigate the STEM to non-STEM major change due to their preparedness to 

successful complete college coursework.   

Table 37. Logistic Regression Results: Graduation (Research Question 4) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) .174 .244 .475 1.190 .738 1.918 
Race/Ethnicity (non-URM) .330 .627 .599 1.391 .407 4.757 

High School GPA .190 .059 .001 1.209 1.077 1.358 
Total Aid .039 .287 .813 1.039 .592 1.823 

SAT Math (10 point scale) .001 .001 .278 1.001 .999 1.003 
Social Integration (33.333 point 

scale) 
.007 .003 .010 1.007 1.002 1.012 

Academic Integration (25 point 
scale) 

.001 .003 .859 1.001 .999 1.007 

Income .382 .330 .247 1.465 .767 2.798 
STEM GPA 1.110 .162 .000 3.003 2.210 4.164 

Constant -6.947 2.222 9.779 .002 .001  

Time to Degree 

 The Omnibus Tests of Model Coefficients table (Table 38) displays the model chi-square 

and tests for overall significance of the fitted model.  The fitted model chi-square was 

statistically significant (χ2 (9) = 64.166, p<.001, thus indicating the fitted model was able to 

distinguish the participants who graduated in 48 months or shorter.  The Model Summary table 

shows the -2LL for the fitted model, (360.128).  The Cox & Snell R2 (.145) and Nagelkerke R2 



 
 

85 

(.225) suggest that the fitted model explains between 14.5% and 22.5% of the variance in time to 

degree. 

Table 38.  Goodness of Fit Statistics: Time to Degree (Research Question 4) 

Test χ2 df Sig. 
Omnibus Tests of Model Coefficients 64.166 9 .000 
Coefficients -2LL 360.128   
Cox & Snell R2 .145   
Nagelkerke R2 .225   

Table 39.  Logistic Regression Results: Time to Degree (Research Question 4) 

     95% CI for EXP (B) 
 B SE Sig. Exp(B) Lower Upper 

Gender (female) .749 .273 .006 2.114 1.237 3.612 
Race/Ethnicity (non-URM) .215 .683 .753 1.240 .325 4.733 

High School GPA .101 .083 .227 1.106 .939 1.302 
Total Aid .338 .311 .277 1.402 .762 2.576 

SAT Math (10 point scale) .001 .001 .278 1.001 .999 1.004 
Social Integration (33.333 point 

scale) 
.005 .004 .057 1.005 .999 1.011 

Academic Integration (25 point 
scale) 

.004 .004 .318 1.004 .996 1.012 

Income .653 .419 .119 1.922 .845 4.372 
STEM GPA .891 .201 .000 2.438 1.642 3.618 

Constant -11.484 2.662 .000 .000   

The predictor variables of STEM GPA and gender were statistically significant (p < .05).  

No other variables were found to be statistically significant.  STEM GPA had an odds ratio of 

2.438 (95% CI between 1.642 and 3.618).  This indicates that for every grade point increase in 

STEM GPA, the odds of graduating in 48 months or less increases by 1.438.  Gender had an odds 

ratio of 2.113 (95% CI between 1.237 and 3.612), which indicates females are 1.114 times more 

likely to graduate in 48 months or less than their male counterparts.   
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As previously noted, the most common reason students leave the STEM fields is due to 

poor academic performance (Chen, 2013).  The findings indicate that academic performance in 

STEM courses plays an important role in whether time to degree is increased as a result of 

leaving a STEM major.  In the regression model used to answer research question 1, STEM 

credits attempted was not a significant predictor of time to degree.  The findings of this study 

show that academic performance is the strongest predictor of academic achievement after leaving 

the STEM field.  

Ordinary Least Squares Regression 

Cumulative GPA 

 A simultaneous multiple linear regression was run using the predictor variables with 

cumulative GPA as the dependent variable.  A model summary (Table 40) is shown below with 

the adjusted R2 revealed as .601. 

Table 40.  Cumulative GPA – Model Summary (Research Question 4) 

Model R R2 Adjusted R2 Std. Error of 
the Estimate 

1 .781 .610 .601 .527 

The ANOVA data (Table 38) shows that the model was statistically significant with 

F=66.749, df=9 and p<.001.  This indicates that it was able to significantly predict cumulative 

GPA. 

Table 41.  Cumulative GPA ANOVA table (Research Question 4) 

Model Sum of 
Squares 

Df Mean Square F p 

1      
Regression 167.116 9 18.568 66.749 .000 
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Residual 106.822 510 .78   
Total 273.938 540    

 Table 42 indicates gender, high school GPA and STEM GPA were significant predictors 

of cumulative GPA.  STEM GPA had the strongest influence on cumulative GPA with a beta 

value of .758.   Gender had a beta value of .149 and high school GPA had a beta value of .031.  

No other variables were found to be significant.    

The results of the ordinary least squares regression used for research questions 2 and 3 

found college level math GPA and introductory laboratory science GPA to be significant 

predictors; however, the beta values were significantly lower compared to the beta value of 

STEM GPA.  This is not incredibly surprising as STEM GPA encompasses more coursework 

than just college level math or introductory laboratory science.   

Table 42.  Coefficients Table: Cumulative GPA (Research Question 4) 

 Unstandardized Coefficients   
 B Std. Error t Sig. 

(Constant) -.353 .490 -.719 .472 
Gender (female) .149 .056 2.648 .008 

Race/Ethnicity (non-URM) -.050 .135 -.369 .712 
High School GPA .031 .013 2.388 .017 

Total Aid .098 .076 1.182 .238 
SAT Math (10 point scale) .000 .000 -.633 .527 

Social Integration (33.333 point 
scale) 

.000 .001 -.276 .783 

Academic Integration (25 point 
scale) 

.001 .001 1.366 .173 

Income .089 .076 1.182 .238 
STEM GPA .758 .033 22.844 .000 

 
 Next, I will review the key findings and discuss implications. 
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CHAPTER V 
 

CONCLUSION AND IMPLICATIONS 
 

Introduction 
 

 The purpose of this study was to provide an understanding of how the STEM curriculum 

relates to the academic achievement of students who leave STEM degree programs.  Rather than 

focusing on what causes students to leave the STEM fields, this study focused on how 

enrollment and performance in STEM courses contributed to first year retention, graduation, 

time to degree and cumulative GPA. 

 
 The analytical sample for this study was taken from the Beginning Postsecondary 

Educational Study 2004:2009 (BPS:04/09) and the associated Postsecondary Education 

Transcript Study (PETS:09).  The sample included students that declared a STEM major upon 

their initial enrollment and changed their major to a non-STEM field or students that stayed in 

STEM and either transferred or did not graduate.  

 
 In this chapter, I will review discuss the key findings of the study.  I will then draw 

conclusions and recommendations for policy and practice.  Lastly, I will provide 

recommendations for future research. 

Key Findings & Conclusions 
 

STEM Credits Attempted 
 
 Along with academic performance in STEM courses, this study aimed to determine how 

enrollment in STEM courses related to academic achievement after leaving the STEM fields.  

With regards to first year retention, this study found that STEM credits attempted was a 

significant predictor of first year retention.  Each increase in STEM credits attempted reduced 
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the chances of first year retention by 2.2%.  The negative relationship between STEM credits 

attempted and first year retention suggests the STEM curriculum puts STEM leavers at risk of 

attrition.  The STEM curriculum requires enrollment in multiple “gatekeeping” courses that are 

particularly challenging for students (Bettinger, 2010; Westrick, 2014; Zhang et al., 2004) and 

the results suggest enrolling in more STEM courses increases the chances of a student not being 

retained after the first year.  This may be a result of the challenging nature of STEM courses and 

that STEM leavers perform poorly in these courses. 

The final regression model run to answer research question number one focused on 

cumulative GPA.  Surprisingly, STEM credits attempted was positively associated with  

cumulative GPA.    Students that leave the STEM fields most often cite poor academic 

performance in STEM courses as the reason for changing majors (Bettinger, 2010; Chen, 2013; 

2015).  Students that leave the STEM fields most often cite poor academic performance in 

STEM courses as the reason for changing majors (Bettinger, 2010; Chen, 2013, 2015).  

Therefore, it is reasonable to believe that an increase in STEM credits attempted would decrease 

cumulative GPA.  Conversely, this study found an increase in STEM units attempted increased 

cumulative GPA by .003.  This finding suggests that students may leave the STEM fields due to 

reasons other than poor academic achievement.  The results may also suggest that STEM leavers 

who perform poorly in STEM courses drop out or transfer rather than continue to take additional 

STEM credits.  Especially, since students who perform poorly in the first year are less likely to 

persist at their first institution (Adelman, 2006; Bettinger, 2010; Chen, 2013, 2015). 

College Level Math GPA 

 The second research question aimed to determine how academic performance in college 
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level math related to academic achievement for STEM leavers.  Each grade point increase in 

college level math GPA increased the chances of graduation by .833.  These results are not 

necessarily surprising given previous research has found academic performance in college level 

math to be a significant predictor of academic achievement (Adelman, 2006; Cabrera, Burkum, 

& La Nasa, 2005; Herzog, 2005).  Still, the results do suggest that college level math course 

predicts graduation after students leave the STEM fields. 

The regression model examining first year retention failed to reach significance.  This is 

somewhat surprising given previous research identifies college level mathematics as a strong 

predictor of retention.  For example, Herzog (2005) found that failing to complete a math course 

was a significant predictor of attrition after the first year.  One explanation the failure of the 

model to reach significance is that students that initially enroll in a STEM major are taking 

multiple STEM courses along with college level math.  On the other hand, students in a non-

STEM major are unlikely to take multiple STEM courses besides math.   Further, college-level 

math may have not reached significance since the population included students who initially 

enrolled in a STEM major and therefore the students in the study are more likely to have taken 

college-level math.  The differences in course enrollment between STEM and non-STEM 

students may explain why the model failed to reach significance. 

Introductory Laboratory Science GPA 

 Introductory laboratory science is unlikely to apply to non-STEM major requirements; 

however, student performance in these courses significantly predicted graduation.  Introductory 

laboratory science GPA was significant and positively associated with graduation.  Each grade 

point increase in introductory laboratory science GPA resulted in an .962 increase in the odds of 

graduation.  Although research has yet to examine the influence of courses other than math and 
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English on graduation, the results of this study suggest for STEM leavers, performance in 

introductory laboratory science courses is a significant predictor of graduation.  

STEM GPA 

 Previous research and the high attrition rates in the STEM fields demonstrate that the 

majority of students fail to persist in STEM fields due to poor academic performance (Bettinger, 

2010; Chen, 2013, 2015).  STEM GPA had the largest effect in the regression model for the 

outcome variable of graduation.  Each grade point increase in STEM GPA increased the odds of 

graduation by a factor of 2.003. Similarly, STEM GPA was significant and positively associated 

with time to degree and cumulative GPA.  Even though the participants in this study all left the 

STEM fields, the results for research question number four demonstrate the importance of STEM 

course performance on academic achievement after leaving STEM.  Students that fail to achieve 

in STEM courses are unlikely to see high levels of academic achievement after leaving STEM 

fields. 

Gender 

 Although the main focus of this study was to examine the relationship between STEM 

course enrollment and performance and academic performance, the findings related to gender are 

noteworthy.  Specifically, in all the regression models examining time to degree, gender was the 

strongest predictor of graduation in 48 months or less.  Females were more likely to graduate in 

48 months or less compared to males.  Also, three out of four of the regression models found 

being female to be positively associated with cumulative GPA.   

Previous research on females in the STEM fields provides context to the findings of this 

study.  Females are more likely to leave the STEM fields due to non-academic reasons (Seymour 

and Hewitt, 2007).  Further, females have higher levels of academic achievement compared to 
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males (Ewert, 2012; Goldrick-Rab, 2006).  Therefore, one explanation for the positive 

association between time to degree and cumulative GPA and being female is that females leave 

the STEM fields with strong academic profiles, which allows for a smooth transition from the 

STEM to non-STEM fields.   

Recommendations for Policy, Practice and Future Research 

 Based on this study’s findings and review of the literature, the following 

recommendations are offered:  

Policy and Practice 

 Recommendation 1. Institutions and faculty should consider reforming the STEM 

curriculum to provide students with the opportunity to gain exposure to courses from different 

disciplines, especially during the first year of enrollment.   

The decision to pursue a STEM major upon initial enrollment is often does not give 

consideration to interests and/or academic strengths (Cueso, 2005). Compared to students who 

declare a non-STEM major or are undeclared upon initial enrollment, students who initially 

enroll in a STEM major have less freedom to enroll in courses from different disciplines.   

Allowing students to ease into the STEM curriculum will provide the opportunity to confirm 

their interests and strengths.  The negative relationship between STEM credits attempted and 

first year retention found in this study demonstrates that many students are not prepared for the 

enrollment in STEM coursework and would benefit from taking courses in other disciplines.  

Although delaying enrollment in required STEM courses could increase time to degree for 

students that end up persisting in STEM, delaying STEM coursework in the would increase the 
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retention rates for the institution.  Further, students could use summer school to prevent an 

increase in time to degree. 

 Recommendation 2.  Academic advisors and faculty should target students who did not 

perform well in STEM fields and provide intervention that either provides additional resources to 

aid STEM course performance or steer students to non-STEM fields before poor academic 

performance causes students to drop out of college.  For example, students that fail at least one 

STEM course should be required to meet with an advisor to discuss their academic program and 

also academic advisors could provide students with resources to explore options outside the 

STEM fields.  This study confirmed the importance of academic performance in college level 

math, introductory level lab science and all STEM courses on academic achievement after 

leaving the STEM fields and intervention from academic advising may be able to prevent poor 

academic performance through intervention.  

 Recommendation 3.  Institutions should office remedial courses and extra academic 

support for introductory laboratory level science courses.   One of the most interesting findings 

of this study was that introductory laboratory science was a significant predictor of graduation.  

Many institutions have targeted college level math as a course that is a strong predictor of 

graduation and, as a result, institutions offer remedial courses and provide extra academic 

support for math courses.  The results of this study and previous research indicate institutions 

should provide remediation and extra support for first year STEM courses.  For example, Hessler 

and Gregory (2016) studied the impact of instructional support sessions on academic 

performance in college level chemistry for underprepared students.  The study found that after 
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receiving additional instruction, underprepared students achieved at the same level as college 

ready students.  

 Recommendation 4.  Institutions should require students meet certain academic 

benchmarks early in their academic career before fully declaring a STEM major.  As shown by 

the results in this study, academic performance in STEM courses is the key to successfully 

navigating the STEM to non-STEM major change.  Although students may want to pursue a 

STEM major, their grades often indicate whether their choice is major in a STEM field is 

appropriate.  By making students meet academic benchmarks prior to fully declaring a STEM 

major, students who do not meet the benchmarks would be forced to change their major, which 

could prevent poor performance from compounding.  Pre-major requirements are becoming more 

common in the STEM fields; however, pre-major requirements still tend to be more prevalent in 

the engineering fields.  Creating additional academic benchmarks and requirements for STEM 

students early in their academic careers could result in more students leaving the institution due 

to failing to these benchmarks.  However, providing additional advisement to the students who 

fail to meet STEM benchmarks could prevent students from leaving higher education.  While 

there could be some negative consequences of this recommendation, based on the results of this 

study, I recommend pre-major requirements should be applied to all STEM majors.   

Recommendations for Future Research 

 Recommendation 1.  Control for specific first year STEM courses in order to identify 

which first year STEM courses are most strongly associated with academic achievement for 

STEM leavers.  This study attempted to identify the relationship between certain STEM course 

types (college level math and introductory laboratory science) on academic achievement for 
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STEM leavers.  By classifying STEM courses more specifically, future research can identify 

how specific college level math and introductory level lab science courses relate to academic 

achievement in non-STEM fields.  For example, examining enrollment and academic 

performance in calculus, biology and chemistry will provide a deeper analysis into how the 

STEM curriculum relates to academic achievement for STEM leavers. 

 Recommendation 2. Qualitative analysis should be conducted to better understand the 

challenges students face when switching out of the STEM fields.  Qualitative analysis on the 

STEM to non-STEM major challenge will provide the student, faculty and staff perspective on 

the challenges associated with leaving the STEM fields.   The study of course enrollment and 

academic performance does not tell the entire story of why or why not a student is able to 

achieve academically after leaving the STEM fields.  One potential explanation that qualitative 

analysis could explore is how students perceive the value of a non-STEM degree and whether 

these notions related to the decision to pursue a degree after leaving the STEM fields. 

Recommendation 3.  Replicate this study, but change the sample to students who change 

from a non-STEM to a different non-STEM major.  This study focused on the STEM to non-

STEM major change due to the uniqueness of the STEM curriculum, which can present 

challenges for students who leave the STEM fields.  Studying the non-STEM to non-STEM 

major change and how course enrollment and performance in students’ first course of study 

relates to overall academic achievement will provide context to the findings of this study and 

help determine if the STEM to non-STEM major change is in fact more challenging to navigate 

than a non-STEM to non-STEM major change. 
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Summary 

 The need for a skilled STEM workforce in the United States and the struggle of colleges 

and universities to produce enough STEM graduates has led to a substantial body of empirical 

research examining why students leave STEM.  This body of research has identified poor 

academic performance as the most common reason students fail to persist in STEM fields 

(Bettinger, 2010; Chen, 2013, 2015).  Combined with poor academic performance, STEM 

leavers also face the challenge of failing behind due to the restrictive nature of the STEM 

curriculum, which limits students’ ability to take courses from other disciplines (Bettinger, 

2010).   

Despite the findings of previous research, few studies exist that examine how the STEM 

to non-STEM major change relates to academic achievement after leaving the STEM fields. This 

study aimed to determine how the STEM to non-STEM major change relates to academic 

achievement by examining the relationship between STEM course enrollment and academic 

performance on academic achievement (first year retention, graduation, time to degree and 

cumulative GPA) for STEM leavers.  The results of this study suggest academic performance in 

STEM courses and STEM course enrollment are significant predictors of academic achievement 

for STEM leavers.  The results should be utilized by academic advisors and faculty to help 

students successfully navigate the STEM to non-STEM major change.  Further, the results 

warrant further research on the STEM curriculum to determine if the traditional STEM 

curriculum should be revised.  

In conclusion, this study provides an insight into an at-risk population that has been 

widely ignored by educational researchers.  It is my hope that this study will lead to more 
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research on STEM leaver population and policies and practices that foster the academic 

achievement of STEM leavers. 
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