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Whole genome metagenomic analysis of the gut microbiome of differently
fed infants identifies differences in microbial composition and functional
genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort
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b Biomedical Research Department, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, United States
c Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
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A B S T R A C T

Background: Advancements in sequencing capabilities have enhanced the study of the human microbiome.
There are limited studies focused on the gastro-intestinal (gut) microbiome of infants, particularly the impact of
diet between breast-fed (BF) versus formula-fed (FF). It is unclear what effect, if any, early feeding has on short-
term or long-term composition and function of the gut microbiome.
Results: Using a shotgun metagenomics approach, differences in the gut microbiome between BF (n= 10) and
FF (n=5) infants were detected. A Jaccard distance principle coordinate analysis was able to cluster BF versus
FF infants based on the presence or absence of species identified in their gut microbiome. Thirty-two genera were
identified as statistically different in the gut microbiome sequenced between BF and FF infants. Furthermore, the
computational workflow identified 371 bacterial genes that were statistically different between the BF and FF
cohorts in abundance. Only seven genes were lower in abundance (or absent) in the FF cohort compared to the
BF cohort, including CRISPR/Cas9; whereas, the remaining candidates, including autotransporter adhesins, were
higher in abundance in the FF cohort compared to BF cohort.
Conclusions: These studies demonstrated that FF infants have, at an early age, a significantly different gut mi-
crobiome with potential implications for function of the fecal microbiota. Interactions between the fecal mi-
crobiota and host hinted at here have been linked to numerous diseases. Determining whether these non-
abundant or more abundant genes have biological consequence related to infant feeding may aid in under-
standing the adult gut microbiome, and the pathogenesis of obesity.

1. Background

Obesity is a national epidemic, with one in three adolescents over-
weight, [1] and one in five considered clinically obese. Adolescents
with obesity are at high risk for “adult” morbidities in their youth:
cardiovascular disease, type-2 diabetes, joint injury, sleep apnea, and
non-alcoholic fatty liver disease (NAFLD) [2]. Early dietary content is
critical to the long-term development of obesity in children and ado-
lescents [3]. Infants who are breast-fed have lower risk for childhood
and adult obesity compared to formula-fed infants [4]. Different
feeding regimens in infancy have been shown to contribute to

differences in weight gain [5] and to alter the gastrointestinal microbial
environment [6]. The multitude of organisms that live in the human
digestive tract, the fecal microbiota, and their genomes, the gut mi-
crobiome, in turn influence gastrointestinal satiety hormone secretion
and signaling, primarily through short-chain fatty acids [7]. Formula-
feeding increases the bacterial phyla Firmicutes and Proteobacteria and
decreases Actinobacteria as compared to breast-feeding [8,9]. While the
fecal microbiota differences between breast- and formula-fed infants
typically converge by the end of the second or third year of life [10],
there is evidence that the effect of the fecal microbiota’s divergence
early in the first year of life on metabolic, immunologic, and
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cardiovascular diseases is significant in the long term [11]. Very early
disruptions in the gut microbiome of infants by antibiotics, delivery
mode, or altered environments seem to play a lasting effect on its po-
pulation and function [4,12].

Two studies have demonstrated differences in the fecal microbiota
of infants who are breast-fed versus those who are formula-fed [8,9].
These groups used fecal collection from infants to assess the metage-
nomics (genomes of genetic material isolated from environmental
samples) of the two populations of infants. The sample sizes were small,
but key differences were noted. As stated, it is unknown whether the
differences in early fecal microbiota, and its corresponding gut micro-
biome, change the gut environment irrevocably and confer altered sa-
tiety regulation to children based on their different initial nutrition. The
study hypothesizes that a protective or an ameliorative effect of breast-
feeding on later risk for obesity occurs via fecal microbiota modulation
of satiety hormone expression and regulation.

Prior work comparing the gut microbiome of breast-fed and for-
mula-fed infants used a targeted approach (16S rRNA sequencing) [9]
or metagenomic and metatranscriptomic sequencing [8] based on
Roche (Nutley, NJ) 454 technology. The present study utilized a whole-
genome approach coupled with Illumina HiSeq technology to assess
taxa diversity between groups. Computational bioinformatics allowed
characterization of key functional differences by way of relative fecal
microbiota gene abundance comparisons. The study presented here
aims to strictly and rigorously characterize differences in the very early
gut microbiome of breast-fed vs. formula-fed infants; the primary goal
is to determine if diet-related changes in the gut microbiome early in
infancy initiate long-term cascading consequences even if abundance or
taxonomic population traits normalize with food introduction and with
early childhood growth. This cross-sectional pilot study sets the
groundwork for a longitudinal mapping of the gut microbiome trajec-
tory in these infants in the first two years of life.

2. Results

2.1. Subjects

Fifteen subjects were enrolled, and duplicate fecal samples were
processed for each subject. Table 1 details demographic information
about subjects. Ten infants were exclusively breast-fed (BF) and five
were exclusively formula-fed (FF). Infants were of similar age at en-
rollment/collection of sample (BF, 45–95 days vs. FF 46–100 days), si-
milar weight at birth (BF, mean 3.23 kg vs. FF, mean 3.37 kg) and

enrollment (5.10 kg vs. 5.06 kg), with similar maternal age (33 years vs.
33 years), paternal age (35 years vs. 34 years), BMI (27.9 kg/m2 vs.
26.7 kg/m2), and (maternal) pre-pregnancy BMI (26.5 kg/m2 vs.
24.7 kg/m2).

2.2. Metagenomic sequencing Beta-diversity

Each subject provided adequate duplicate fecal samples for shotgun
metagenomics analysis (Fig. 1). Library sequencing via Illumina HiSeq
technology resulted in over 376 million raw paired end reads with each
library having an average of over 12.5 million read pairs. Even after
adapter trimming and the decontamination of human and PhiX the
average number of read pairs per library remained over 12 million
(Supplementary Table 1). Taxonomic analysis was completed via the
Sunbeam pipeline with Kraken1 and yielded successful classification of
over 269 million reads with 253 million classified to at least the genus
level, over 81% of which were attributable to a species. Results between
biological replicates were consistent with R2 values ranging from 0.86
to 0.93 (Supplementary Fig. 1).

Breast-fed and formula-fed cohorts were examined using both Bray-
Curtis dissimilarity and Jaccard distance principal coordinate analysis.
Technical replicates at the individual level clustered together; however,
there was no clear pattern of beta-diversity by abundance at the cohort
level (Fig. 2A). On the other hand, presence or absence of species did
demonstrate clustering at the cohort level (Fig. 2B). Based on these
results, the difference in the fecal microbiota between early infancy
formula-fed and breast-fed infants at the species level is dependent on
presence or absence, rather than abundance, of taxa.

2.3. Phylogenetic abundance

While principal coordinate analysis clustering by species demon-
strated differences between the cohorts based on presence or absence,
we also assessed phylogenetic abundance in each cohort at the genus
level. The top twenty most abundant genera were determined and
plotted via box-whisker plots to examine distribution differences be-
tween the cohorts (Fig. 3), and statistical testing via edgeR [13] with an
FDR cutoff of 0.01 revealed five out of those twenty genera were sta-
tistically different between breast-fed and formula-fed infants (Fig. 3,
asterisks). In total, there were thirty-two genera with statistically sig-
nificant differences in abundance between breast-fed and formula-fed
infants (Supplementary Table 2). Twelve genera were decreased in
abundance in the formula-fed infants, including Haemophilus, Para-
bacteroides, Serratia, and Lactobacillus, while twenty genera were in-
creased in the formula-fed infants, including Clostridioides, Enterococcus,
Stenotrophomonas, and Akkermansia. Relative abundance of the top 20
genera in each sample is represented in Supplementary Fig. 3.

2.4. Differential gene counts and annotation

A co-assembly of all sequencing reads across all subjects was created
and had a total length of 435,829,348 base pairs (bp) and 305,432 total
contigs. The N50 was 3,422 bp and the mean was 1,426 bp. Maximum
contig length was 378,421 bp. Over 32,000 contigs were greater than
2,500 bp in length and were used for gene prediction. Reads from in-
dividual samples were then mapped back to the combined meta-
genome, gene abundances were calculated, and statistical testing was
performed using edgeR. The computational workflow identified 371
genes that statistically different abundances between breast-fed and
formula-fed infant samples using an FDR cutoff of 0.01. Of note, only
seven of these genes had low abundance in formula-fed compared to
breast-fed while the remaining 364 had high abundance (Table 2).

2.5. Validation of Cas9 identity and abundance

The aforementioned bioinformatic analysis identified a Cas9 gene as

Table 1
Subject Characteristics/Demographics.

Breast-fed
(n=10)

Formula-fed
(n= 5)

Sex, F 50% 0%
Age, days (mean, STD) 79, 15 65, 22
(median, IQR) 82, 14 59, 22
Race, Caucasian 80% 60%
Ethnicity, Hispanic 20% 20%
Delivery, SVD 90% 60%
Birth weight, g (mean, STD) 3.23, 0.46 3.37, 0.3
Enrollment weight, g (mean, STD) 5.10, 0.75 5.06, 0.40
Maternal age, years (mean, STD) 33, 4.0 33, 6.1
Paternal age, years (mean, STD) 35, 6.5 34, 6.6
Maternal BMI, kg/m2 (mean, STD) 27.9, 7.4 26.7, 3.4
Maternal pre-pregnancy BMI, kg/m2

(mean, STD)
26.5, 6.9 24.7, 4.2

Paternal BMI, kg/m2 (mean, STD) 29.8, 9.6 26.5, 2.2

Descriptive statistics for subject characteristics; two-tailed Student’s T-test for
numerical values, Fisher’s exact test for categorical values. There were no sta-
tistically significant differences between the two cohorts for any characteristic
measured except for maternal height (not shown), which was lower in the
formula-fed cohort (63 in. vs. 66.3 in., p < 0.01).
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Fig. 1. Metagenomic workflow for comparing breast-fed versus formula-fed infants. Bio specimen processing (top box): Subjects were enrolled into two groups; breast-
fed (BF) and formula-fed (FF) and demographics are summarized in Table 1. (1) A fresh fecal sample was collected and flash frozen per subject. (2) DNA was
extracted from the fecal sample and (3) used to prepare shotgun metagenomic libraries for next generation sequencing (Illumina platform). Bioinformatics: Sunbeam
(middle box): Raw reads (FASTQ) were (4) quality trimmed to remove adapter sequences and low-quality bases. The cleaned FASTQ files (5) were mapped to the
human genome and PhiX to remove contaminating (un-specific) or control reads. The reads from the decontaminated FASTQ (6) were classified using the Kraken
database. Bioinformatics: Publicly available algorithms, custom pipeline (bottom box): The Kraken classified reads were (7) analyzed via edgeR to determine differentially
represented genera, summarized in Table 2 and Figs. 2–4. The decontaminated FASTQ files were pooled (8) to create one large library for de novo assembly
(MEGAHIT) of a metagenome (9), annotated with prodigal and NCBI COGs. Reads from the individual FastQs were aligned, using STAR and RSEM, to the meta-
genome (10). Normalized gene counts were calculated via edgeR and results are displayed in Table 2.

Fig. 2. Principle coordinates analysis based on species level data. (A) Bray-Curtis distance plot based on species abundance per subject. Each data point represents
either a breast-fed (red) or formula-fed (blue) subject. The shape of the data points represents either technical replicate 1 (circle) or technical replicate 2 (triangle).
Axis 1 has a variance of 17.25% and axis 2 has a variance of 12.04%. (B) Jaccard Distance plot based on presence or absence of species per subject. Each data point
represents either a breast-fed (red) or formula-fed (blue) subject. The shape of the data points represents either technical replicate 1 (circle) or technical replicate 2
(triangle). Axis 1 has a variance of 7.62% and axis 2 has a variance of 6.46%. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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being completely absent in all formula-fed samples. While there are
multiple Cas9 genes originating from various bacteria, the potential
impact of this finding made its validation paramount. To confirm that
the gene in question was a Cas9, the Arg rich region was identified in
the peptide sequence manually and the canonical HNH and RuvC do-
mains [14] were identified via InterPro (Fig. 4A). A number of other
Cas9 specific domains were also found, a few of which, such as the Cas9
topo homology domain, are specific to Actinobacteria.

Since the shotgun sequencing and subsequent bioinformatic analysis
indicated that this Cas9 gene was completely absent from formula-fed
samples, non-quantitative PCR was used to validate these results in 6
samples. A PCR product for Cas9 was observed in all breast-fed but
none of the formula-fed samples (Fig. 4B). A carboxypeptidase was also
examined and yielded PCR products in all formula-fed, but only one
breast-fed sample. The presence or absence of PCR products for both
genes correlated perfectly with the presence or absence of raw read
counts which mapped to these genes in the bioinformatic analysis.

3. Discussion

Improved understanding of the gut microbiome and its components
in the context of the gut-brain-adipose axis [15], create opportunities to
develop novel therapeutic interventions for myriad medical conditions
[16], including obesity [17]. The intestinal milieu is comprised of both
intrinsic (host origin) and extrinsic (non-host origin) factors including
epithelial enterocytes, cytokines, paracrine hormones, microbes, and
inflammatory mediators, directly impact human health.

Recognizing the debate about the effect of breast-feeding vs. for-
mula feeding on long-term gut health (including the health and func-
tion of the microenvironment) [18], this study sought to explore the

role of exclusive single-source feeding in the gut microbiome early in
life. Ongoing studies will collect feeding logs, additional anthropo-
metric data, and fecal samples; this paper summarizes the results of the
baseline gut microbiome analysis.

The hypothesis was that the fecal microbiota would differ in for-
mula-fed and breast-fed infants, with specific increases in microbial
diversity and relative microbial gene abundance as early as the first
2 months. These changes early in life would impact long-term cellular
processes locally and throughout the host by way of interaction with
the gut epithelium in an entero-endocrine manner [7]. A recent study
demonstrated the susceptibility of specialized epithelial cells in the gut
to metabolically active compounds generated by the fecal microbiota
and these cells’ importance in neural pathways [19]. Future long-
itudinal studies will help determine if the changes are permanent or
not.

In this study, the BF and FF cohorts demonstrated clustering / si-
milarity based on the presence/absence of species (Fig. 2B). The global
abundance of bacteria is similar between the two groups. Greater var-
iation in species diversity implied an early divergence in infants who
varied by feeding source. Bacteroides genus predominated in BF, as
expected, while the prevalence of Bifidobacterium genus was compar-
able in the two groups. Notably, the potentially beneficial genus Lac-
tobacillus [20] was more than four-fold lower in the FF group perhaps
related to the mode of delivery. A more striking difference in the pre-
sence, absence, and abundance of Klebsiella, Escherichia, and Veillonella
between BF and FF is observed (Fig. 3) implying early divergence. On
average, Escherichia genus was more abundant in FF samples; in other
studies have noted associations with patient disease later in life [21].
Overall, the abundance of 12 genera decreased significantly in FF and
20 genera increased significantly in FF as compared to BF

Fig. 3. Distribution of genera identified in the gut microbiome of breast-fed and formula-fed infants. Left Panel: Box-plot of the top most abundant genera in breast-
fed infants (red boxes). Right Panel: Box-plot of the top most abundant genera in formula-fed infants (blue boxes). The red asterisks represent the genera that were
statistically different between the breast-fed and formula-fed cohorts. The y-axis represents phylogenetic abundance (percentage), and each genus is represented on
the x-axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2A
Differentially Abundant Genes in Formula-fed Infants.

Gene ID logFC logCPM P Value FDR Accession Function

167627 −12.88 6.78 3.6E-04 0.009 COG3513 CRISPR/Cas system Type II associated protein, contains McrA/HNH and RuvC-like nuclease domains
162597 −12.13 8.40 3.2E-05 0.002 COG0474 Magnesium-transporting ATPase (P-type)
158392 −10.71 7.83 1.0E-04 0.004 COG1196, COG1511,

COG3941
Chromosome segregation ATPase; Uncharacterized membrane protein YhgE, phage infection protein
(PIP) family; Phage tail tape-measure protein, controls tail length

203652 −9.94 9.24 3.8E-04 0.010 COG0085 DNA-directed RNA polymerase, beta subunit/140 kD subunit
236312 −8.72 10.61 3.3E-04 0.009 COG0787 Alanine racemase

M.D. Di Guglielmo, et al. Human Microbiome Journal 12 (2019) 100057
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(Supplementary Table 2). These observations show that formula
feeding dramatically influences the diversity of the gut microbiome
early in infancy. Over time, feeding sources typically converge with
introduction of solids and transition to table foods. The presence, ab-
sence, and relative abundance of fecal microbiota species stabilize and
become more “adult-like” beginning at age three years [22]. Individual
differences may persist. It is not known whether the early differences in
species/genera presence or absence fundamentally alters the function of
the gut microenvironment long-term.

The count differences of the bacterial genes detected in the cohorts
revealed that FF infants, compared to BF infants, had seven genes that
were significantly lower in relative abundance including a CRISPR as-
sociated protein 9 (Cas9), Magnesium-transporting ATPase
(MgATPase), DNA-directed RNA polymerase (DNA-RNAPol),
Chromosome segregation ATPase (ChromATPase), Uncharacterized
membrane protein YhgE (YhgE), Phage infection protein family (PIP),
and an Alanine racemase (AlaRace). In contrast, nine genes had higher
relative abundance in the FF infants (Table 2B). Of note, Auto-
transporter adhesin (ATAdhes) was the greatest increased abundance
gene for bacteria in FF infants. ATAdhes is a family of molecules in-
volved in microbe adherence to cellular structures and in forming
biofilms [23]. Biofilms can both contribute to disease and form barriers
important for immune function [24]. In the cohort analyzed, 3 out of 5
FF infants had a high abundance of ATAdhes, 2 out of 5 had no or
nominal abundance, and all 10 BF infants had no or nominal abun-
dance. Cas9 was the greatest decreased abundance gene for bacteria in
FF infants. The lack of CRISPR/Cas or altered alleles of the gene is as-
sociated with pathogenic strains and drug-resistance in Escherichia [25].
In the cohort analyzed, this gene was not detected in any of the five FF
samples. The foothold for more pathogenic-potential bacteria created in
the FF environment merits further examination in light of the absent
Cas9 gene abundance. Whether the lack of Cas9 gene changes over

time, or persists, may help to explain the divergence in non-BF infants’
gut microbiome. If more association with a shift to Escherichia or Veil-
lonella in FF infants becomes clear with subsequent temporal sampling,
Cas9 gene absence is one plausible explanation.

This study is limited by the size of the cohort and the cross-sectional
examination of the gut microbiome under the selection criteria. While
the small size limits generalizability, it mirrors other studies on infant
feeding and fecal microbiota make-up [8,9]. Notably, fecal samples
from an additional four formula-fed infants, collected in an earlier study
under the same ethics approval and consent, were processed in a dif-
ferent manner but included in a principal coordinate analysis
(Supplementary Fig. 2, Supplementary Table 3). Clustering seen with
the original 15 subject cohort was again noted when the four additional
samples were added to the analysis, supporting the conclusions
reached. The whole genome metagenomics and the bioinformatics
computational pipeline in this study yields a detailed examination of
the two groups. More data is needed to obtain a longitudinal picture of
the gut microenvironment and will help to determine if observed trends
do indeed persist beyond early infancy. The present study did not ac-
count for any concomitant urinary microbiome [26].

4. Methods

4.1. Aim, design, and setting

The study intended to confirm differences in the gut microbiome
resulting from early infant nutrition as determined by whole genome
untargeted (shotgun) metagenomic sequencing of fecal samples from
breast-fed and formula-fed infants to determine β-diversity, relative
abundance, and functional profiles. Study design is described graphi-
cally in Fig. 1. The setting was a tertiary children’s academic hospital
center serving a population of infants from four surrounding states. The

Table 2B
Differentially Abundant Genes in Formula-fed Infants.

Gene ID logFC logCPM P Value FDR Accession Function

231306 12.043 9.672 2.75E-09 1.92E-05 COG5295 Autotransporter adhesin
141164 11.605 10.333 9.35E-10 1.36E-05 COG5295 Autotransporter adhesin
174057 11.142 8.900 6.09E-09 1.92E-05 COG1032 Radical SAM superfamily enzyme YgiQ, UPF0313 family
179341 10.627 9.914 6.69E-08 1.22E-04 COG1239, COG1240 Mg-chelatase subunit ChlD
238386 10.485 9.778 6.73E-09 1.92E-05 COG0744 Membrane carboxypeptidase (penicillin-binding protein)
241599 10.202 7.317 2.34E-07 1.80E-04 COG0119 Isopropylmalate/homocitrate/citramalate synthases
179344 10.180 8.850 8.87E-09 1.92E-05 COG0609 ABC-type Fe3+ -siderophore transport system, permease component
145985 10.078 8.892 1.88E-07 1.52E-04 COG1984 Allophanate hydrolase subunit 2
175186 9.846 8.624 1.04E-07 1.34E-04 COG2271 Sugar phosphate permease
193265 9.601 8.654 5.34E-07 3.63E-04 COG0795 Lipopolysaccharide export LptBFGC system, permease protein LptF

The top seven, and top ten, genes that mapped as the most significantly decreased abundance (A) or increased abundance (B) in the formula-fed infants compared to
breast-fed infants.

Fig. 4. Cas9 Validations. InterPro was used to analyze the amino acid sequence coded for by the Cas9 gene to validate its identity (A). Non-quantitative PCR was used
to validate the results of the bioinformatic analysis for Cas9 (B) as well as a Carboxypeptidase (C).
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Nemours Institutional Review Board approved the study. The study was
registered at ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/
NCT03751137.

4.2. Recruitment

Fifteen healthy, term infants between 6weeks 0 days and 14weeks
6 days of age who were exclusively breast-fed (BF) or formula-fed (FF)
were recruited. Infants were excluded if they had any other sources of
nutrition, dietary restrictions (e.g. hypoallergenic formula), consumed
higher density formula (greater than20 calories/ounce), had exposure
to antibiotics, or had any gastrointestinal infection or disease that af-
fected the integrity of the intestinal mucosa. Fecal samples and clinical
data on infants were collected, including demographic information,
maternal and paternal age (years) at infant’s birth, maternal and pa-
ternal height and weight, delivery method, maternal antibiotic use
(breast-feeding mothers only), and maternal over-the-counter or pre-
scription medications taken during pregnancy.

4.3. Sample collection

Soiled diapers were sampled within 6 h of defecation for 10 sub-
jects; the remainder of subjects’ fecal samples were collected within 12
to 24 h. Stool was collected by application of two duplicate swabs
(Copan Diagnostics, Murrieta, CA) for metagenomics sequencing. The
containers were placed immediately into a dry ice ethanol bath and
then transferred to a −80° C freezer until processing. Processing was
completed at the Microbiome Center at the Children’s Hospital of
Philadelphia within 6months of freezing.

4.4. DNA Extraction and sequencing

DNA was extracted from samples using the DNeasy PowerSoil kit
using the manufacturer’s instructions (Qiagen, Germantown, MD).
Libraries were generated from 1 ng of DNA using the NexteraXT kit
(Illumina, San Diego, CA, USA) and sequenced on the Illumina HiSeq
2500 using 2x125bp chemistry in High Output mode. Extraction con-
trols (no template) and DNA free water were included to empirically
assess environmental and reagent contamination. Laboratory-generated
mock communities consisting of DNA from Vibrio campbellii,
Cryptococcus diffluens, and Lambda phage were included as positive
controls.

4.5. Bioinformatics analysis

FASTQ files were analyzed using the “QC” and “Classify” portions of
the Sunbeam pipeline (https://github.com/sunbeam-labs/sunbeam).
Trimmomatic [27] was configured for adapter removal and quality
trimming using “leading” and “trailing” settings of 3 with a sliding
window size of 4 bp and a required quality of 15. The resulting cleaned
FASTQ files were mapped to the GRCh38 assembly of the human
genome and the PhiX genome using BWA MEM (Li H. 2013, https://
arxiv.org/abs/1303.3997) with default settings; unmapped reads were
compiled into “decontaminated” FASTQ files for downstream analysis.
Kraken1 [28] was used to classify the decontaminated reads via a full
Kraken database built on 2018.10.23. Raw read counts, which were
classified down to the genus level, were analyzed using edgeR with
TMM normalization [29] to calculate statistical significance.

4.6. Contig Assembly, Annotation, and functional analysis

Decontaminated FASTQ files from all samples in the previously
discussed analysis were concatenated together and contig assembly was
performed using MEGAHIT [30]. Contigs which were≥ 1,500 bp in
length were kept for further analysis. Gene prediction was performed
using Prodigal [31], and functional annotations were added using NCBI

COGs [32]. The decontaminated reads for each sample were then
mapped to the annotated contigs using STAR [33] and ENCODE’s
standard settings. RSEM [34] was used to produce gene counts which
were analyzed using edgeR with TMM normalization to calculate sta-
tistical significance. Only those genes with an FDR less than or equal to
0.01 as well as an average of 150 TMM normalized counts in either
group were considered statistically significant.

4.7. Data upload to NIH sequence read archive

Data files used for the study are available via the National Institutes
of Health Sequence Read Archive, accession # PRJNA542703.

5. Ethics approval and consent to participate

All subjects were given permission to participate by a parent or
guardian via a signed parental permission form that was approved by
the Nemours Institutional Review Board.

Availability of data and material: The datasets generated and/or
analyzed during the current study are being uploaded to the NIH
Sequence Read Archive (SRA).
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