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Abstract 42 

Introduction: There is a high incidence of venous thromboembolism (VTE) in solid organ transplant 43 

recipients. The safety and efficacy of direct-acting oral anticoagulants (DOAC) have been well established 44 

in clinical practice for the prevention and treatment of VTE in broad populations. However, the 45 

management of VTE in the setting of solid organ transplantation remains a challenge to clinicians due to 46 

limited evidence of DOAC usage with calcineurin inhibitors.  47 

 48 

Areas covered: The current literature available on the pharmacokinetic-pharmacodynamic interaction 49 

between DOACs and calcineurin inhibitors is presented. A comprehensive review was undertaken using 50 

PubMed, Embase, drug product labeling, and drug product review conducted by the US Food and Drug 51 

Administration using Drugs@FDA. The potential for mitigation strategies and clinical management using 52 

extant knowledge is explored.  53 

 54 

Expert Opinion: Immunosuppression therapy is necessary to prevent graft rejection by the host. The 55 

sparsity of data together with the lack of well-designed prospective studies of DOAC use in solid organ 56 

transplant recipients presents a unique challenge to clinicians in determining the clinical relevance of 57 

possible drug interactions. Existing evidence suggests that with attention to concomitant drug use and 58 

renal function, the co-administration of DOACs and calcineurin inhibitors is safe and effective. 59 

 60 

Keywords: direct oral anticoagulants, DOAC, cyclosporine, tacrolimus, anticoagulation, venous 61 

thromboembolism, apixaban, rivaroxaban, dabigatran, warfarin 62 
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Article Highlights 64 

• The calcineurin inhibitors, cyclosporine and tacrolimus, are commonly used in maintenance 65 

immunosuppression regimens to prevent graft rejection following solid organ transplant. 66 

Cyclosporine may have a higher likelihood of inhibiting drug metabolizing enzymes and transporters 67 

compared to tacrolimus.  68 

• Direct oral anticoagulant (DOAC) clinical trials often excluded those on either cyclosporine or 69 

tacrolimus.  70 

• Identifying intrinsic and extrinsic variabilities in the pharmacokinetics-pharmacodynamics in solid 71 

organ transplant recipients may balance the risks of bleeding while maintaining adequate 72 

anticoagulation.  73 

• The Cockcroft-Gault formula using ideal body weight is used for dosing adjustments for apixaban and 74 

edoxaban while actual body weight is used to adjust dabigatran and rivaroxaban. 75 

• While limited, pharmacokinetic-pharmacodynamic and outcomes evidence suggests safe and 76 

effective use of DOACs together with calcineurin inhibitors. 77 

• Anti-Factor Xa monitoring is not standardized and is not helpful in dose selection. 78 

• Direct oral anticoagulant use should be avoided in the immediate post-operative period and 79 

considered only after there is stability of renal and hepatic function and when bleeding risk has 80 

stabilized. 81 

• Dose adjustment should not be made in the setting of acute thrombosis. After at least three months 82 

of therapy, intrinsic and extrinsic factors may inform the use of switching to attenuated dose for 83 

secondary thromboprophylaxis 84 

 85 

 86 

 87 
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1. Introduction 88 

Solid organ transplantation offers a lifesaving option to patients with end-stage kidney, liver, 89 

heart, or lung disease. Between 1987 and 2012, 2 million life-years were saved by solid organ 90 

transplantation in the United States.[1] Acute and chronic immunosuppression therapy has been 91 

established as the cornerstone to prevent graft rejection, subsequent loss of the transplanted organ, and 92 

overall survival of the patient. Management of the transplant recipient using immunosuppression therapy 93 

is multi-modal where most immunosuppressive regimens include the calcineurin inhibitors (CNI) 94 

cyclosporine (CsA) and tacrolimus.[2-4] 95 

Following solid organ transplantation, the incidence for venous thromboembolism (VTE) was 5%, 96 

14%, 29%, and 34%, for patients that underwent liver, renal, lung and heart transplant, respectively.[5] 97 

Although the reasons for higher incidence is not defined, factors including thrombophilic states (e.g. 98 

protein C, S or antithrombin III deficiency), clinical (e.g. diabetes mellitus, systemic lupus erythematosus), 99 

or donor-recipient (e.g. donor/recipient atheroma) have been proposed.[6] A thrombogenic state induced 100 

by immunosuppressive therapy has also been proposed based on in-vitro and clinical observations, 101 

however studies in renal transplant recipients remain contradictory.[7,8] Aside from the thrombogenic 102 

risk following organ transplant, risks for VTE are also inherent in patients who are greater than 40 years-103 

old, immobile, or obese.[9] 104 

The vitamin K antagonist warfarin has been the historical standard of care for the oral treatment 105 

of VTE. In solid organ transplant recipients, most protocols involve administering a parenteral 106 

anticoagulant (heparin or low molecular weight heparin) followed by warfarin maintenance for 3-6 107 

months.[5] In the general patient population, the direct acting oral anticoagulants (DOAC) are at least as 108 

efficacious as warfarin. They have fewer drug interactions, a wider therapeutic window, and a fixed-dose 109 

regimen without continuous monitoring of the coagulation profile. While these characteristics are 110 



5 
 

particularly appealing for use in clinical care, specific guidance in transplant patients is lacking since this 111 

population has been excluded from clinical trials of DOACs.  112 

Calcineurin inhibitors block several drug transporters and metabolizing enzymes. Direct oral 113 

anticoagulants are substrates of specific drug transporters and metabolic enzymes involved in the 114 

absorption and elimination of drugs. Given the incidence of VTE following solid organ transplant and the 115 

prevalent use of CNIs in maintenance immunosuppressive regimens, the use of DOACs together with CNIs 116 

may result in a drug-drug interaction (DDI). These drug interactions are most impactful at treatment doses 117 

for labeled indications of venous thromboembolic disease or atrial fibrillation, rather than the lower doses 118 

used for primary prevention of venous thromboembolic disease. 119 

 120 

2. Maintenance Pharmacotherapy in the Solid Organ Transplant Recipients: Calcineurin Inhibitors 121 

2.1. Tacrolimus 122 

Tacrolimus is a macrolide antibiotic isolated from Streptomyces tsukubaensis. Its mechanism 123 

involves complexation with the immunophilin FK-binding protein which produces immunosuppression by 124 

downstream inhibition of cytokine production and a loss of T-lymphocyte activation, proliferation, and 125 

response. Tacrolimus is part of maintenance immunosuppression in over 80% of kidney, pancreas, liver, 126 

intestine, heart, and lung transplant recipients and is indicated for the prophylaxis of organ rejection in 127 

kidney, liver and heart transplant.[10,11] Following oral administration, tacrolimus is extensively 128 

metabolized by cytochrome P450 (CYP) CYP3A4 and CYP3A5 and is a substrate for permeability 129 

glycoprotein (P-gp). It is unclear whether tacrolimus has the potential to inhibit drug metabolizing 130 

enzymes or efflux transporters in humans. While in-vitro and non-human in-vivo models have described 131 

a possible inhibitory effect on CYP3A4 and P-gp,[12] the pharmacokinetic impact of tacrolimus and other 132 

CYP3A and P-gp substrates in healthy volunteers is likely to be clinically irrelevant in patient 133 

populations.[13,14]  134 

 135 
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2.2. Cyclosporine 136 

Isolated from the fungal species Tolypocladiumin flatum found in soil, cyclosporine was originally 137 

developed as an antifungal medication. Reduction in T-lymphocyte activity and immunosuppression by 138 

CsA occurs through the binding and complex formation with cyclophilin that results in downstream 139 

transcriptional inactivation of various interleukins and cytokines. Cyclosporine is extensively metabolized 140 

by CYP3A4 in the intestine and liver and is a P-gp substrate.[15] In addition, CsA is a potent inhibitor of 141 

intestinal and hepatic efflux transporters including breast cancer resistance protein (BCRP) and P-gp; 142 

hepatic uptake transporters such as organic anion transporting polypeptide (OATP); and CYP3A4. Drug 143 

metabolism by 3A4 takes place in liver and pre-systemically in the intestine. Due to its activity at the level 144 

of the intestines and liver, CsA may pose clinically relevant DDIs as both the victim and perpetrator drug. 145 

Cyclosporine is indicated for the prophylaxis of organ transplant rejection following kidney, liver, and 146 

heart transplantation.[16,17] Although tacrolimus appears to be the favored CNI in the US and Asia, there 147 

is still considerable global use of CsA.[18,19] Dose-dependent acute nephrotoxicity and chronic 148 

nephropathy from CsA exposure is a significant adverse event contributing to renal dysfunction following 149 

renal or non-renal transplant.  150 

 151 

3. Pharmacokinetics Following Transplantation: Absorption, Distribution, Metabolism, & Elimination  152 

A number of physiological changes occur after transplantation which impact drug disposition 153 

(figure 1). The major transplanted organs have a direct or indirect role in drug absorption, distribution 154 

and elimination. These changes are dynamic and can occur immediately following transplantation. 155 

Changes in gastric pH and emptying, gastrointestinal motility, incidence of diarrhea, bile dysfunction, and 156 

differential expression of drug efflux transporters following transplantation can alter absorption of drugs 157 

into the systemic circulation.[20-26] Drug distribution into tissues or free-fraction availabilities have also 158 

been shown to be impaired due to fluctuations in body weight or alterations in protein binding.[27-34] 159 
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Lastly, drug elimination may be altered due to higher hepatic blood flow, upregulation of drug 160 

metabolizing enzymes, changes in bile flow, or decline in renal function.[35-40] 161 

 162 

4. Intrinsic and Extrinsic Factors Affecting DOAC Disposition in Solid Organ Transplant Recipients  163 

No formal studies have investigated the PK of DOAC therapy in solid organ transplant recipients. 164 

Variability derived from intrinsic (altered protein binding, obesity, gastric motility) and extrinsic (DDI) 165 

factors following transplantation may contribute to significant inter-recipient variability in the exposure 166 

and the efficacy or safety response to DOACs. For the purposes of this review, extrinsic factors- mainly 167 

those contributed from DDIs- will be discussed in detail.  Drug metabolizing enzymes and transporters 168 

play an important role in the disposition of drugs. The drug transporters, P-gp and BCRP, are commonly 169 

expressed in the intestinal epithelia where their expression limits entry of therapeutic drugs.[41] In 170 

excretory organs, drug transporters function to remove endogenous and xenobiotic compounds. 171 

Therefore, efflux mechanisms can result in pharmacokinetic DDIs between CNI and DOACs during the 172 

absorption or elimination phases. For CsA an interaction in the intestine can be considerable, since a large 173 

magnitude of the delivered dose is in unbound form compared to delivery to the liver. In the intestines, 174 

the inhibition of P-gp and BCRP by CsA was estimated using physiologically based pharmacokinetic 175 

modeling to be up to 80% and 67%, respectively.[42] Moreover, up to 97% of intestinal CYP3A4 is inhibited 176 

following a single oral dose. [42] In the intestines, P-gp, BCRP and CYP3A4 activity returns to maximal 177 

activity within 4-6 hours after discontinuing CsA. Within the liver, P-gp, BCRP, and CYP3A4 enzyme activity 178 

is estimated to be reduced by 4%, 2%, and 26%, respectively.[42] Tacrolimus has been shown to share 179 

common inhibitory mechanisms as CsA with significantly less inhibition potential. For stabilized renal 180 

transplant patients receiving tacrolimus, intestinal and hepatic CYP3A4 and P-gp activities are 181 

insignificant. In contrast, the activity of intestinal CYP3A4 were starkly elevated in patients on CsA together 182 

with significant reductions in intestinal and hepatic P-gp.[43] These findings enforce the differential 183 
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effects of CsA and tacrolimus on drug metabolizing enzymes and transporters for which a greater variation 184 

in drug exposure is anticipated for drugs co-administered with CsA. Clinically, the magnitude of tacrolimus 185 

inhibition on CYP3A4 and P-gp is expected to be minimal at therapeutic drug doses. [12,43]  186 

It is important to keep in mind that although the magnitude of inhibition of transporters and 187 

enzyme may appear large, differential expression along the length of the small intestine and lower 188 

abundance of protein relative to the liver may minimize drug interaction potential.[44] In the case of the 189 

DOACs, clinically relevant DDIs may result at the level of absorption (i.e. the intestines) or elimination (i.e. 190 

renal or non-renal routes) when given together with CsA or tacrolimus. All DOACs are substrates of drug 191 

efflux transporters and, with the exception of dabigatran, substrates for CYP3A4. Use of P-gp or CYP3A4 192 

inhibitors, especially CsA or tacrolimus, were mostly excluded from pivotal trials in patients during the 193 

clinical development of each DOAC.[45-48] While information related to the clinical relevance of the DDI 194 

in patient populations is limited, available PK studies in healthy volunteers may provide insight in the 195 

magnitude of change and its relationship to safety and efficacy. Table 1 summarizes the extrinsic factors 196 

relating to DDIs for DOACs and their respective exposure and peak concentration changes in the presence 197 

of their substrate transporter and/or enzyme inhibitor. In the absence of a dedicated CsA or tacrolimus 198 

study, we reference available substrate transporter and/or enzyme inhibitors that share the same 199 

mechanistic pathways to provide insight to the magnitude of changes in the exposure and peak 200 

concentrations.  201 

4.1. Dabigatran 202 

Dabigatran etexilate directly and reversibly inhibits thrombin, rather than reducing the 203 

production of vitamin K dependent clotting factors.[49] Dabigatran etexilate is a prodrug that is orally 204 

absorbed with an absolute bioavailability of approximately 3-7%. Conversion to the active moiety, 205 

dabigatran, is independent of CYP isoenzymes and is formed following hydrolysis by carboxylesterases. It 206 

is the prodrug that is a substrate of P-gp rather than the active moiety, which may account for its low 207 
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bioavailability and variable PK. In addition, changes in gastric pH and intestinal motility have also 208 

contributed to the observed differences in PK following surgery.[50] The volume of distribution is 209 

moderate at 60 liters with an in-vitro plasma protein binding of 35% across therapeutic concentrations. 210 

Dabigatran, but not dabigatran etexilate, is detectable in systemic circulation following oral 211 

administration. Dabigatran metabolism is minimal and it is not a substrate or inhibitor of CYP450 enzymes. 212 

Renal clearance is the major route of dabigatran drug elimination representing 80% of the total clearance. 213 

Following intravenous dosing, greater than 80% of the dose was recovered in the urine compared to only 214 

7% after oral administration. The remaining 86% of orally dosed dabigatran was recovered in the feces 215 

most likely due to incomplete absorption of DE. Dabigatran elimination half-life is 12-17 hours.  216 

Dabigatran etexilate exhibits predominately P-gp dependent transport, demonstrated by in-vitro 217 

inhibition studies using verapamil as a P-gp inhibitor.[51] In the presence of CsA, a P-gp and BCRP inhibitor, 218 

greater than 80% of efflux was inhibited as observed using the same in-vitro Caco-2 permeability model. 219 

These results implicate CsA as a potential perpetrator for clinical in-vivo drug interactions following co-220 

administration with dabigatran etexilate. To date, no dedicated in-vivo clinical studies have been 221 

conducted evaluating the DDI between dabigatran etexilate co-administered with either CsA or 222 

tacrolimus. P-gp inhibition may be time-dependent and influenced by the timing of a co-administered 223 

perpetrator. Following multiple oral doses of verapamil in healthy volunteers, total dabigatran exposure 224 

and peak concentration increased by 54% and 63% after a single-oral 150 mg dabigatran etexilate dose 1 225 

hour after verapamil, respectively.[52] When dabigatran etexilate was given 2 hours prior to verapamil, 226 

exposure and peak concentration increased by 18% and 12%, respectively. Considering the inhibition 227 

activity of CsA in-vitro, results from co-administered verapamil alone may not satisfy the clinical relevance 228 

of both P-gp and BCRP inhibition. Insightful results based on in-silico modeling using ritonavir, a dual P-gp 229 

and BCRP inhibitor, have estimated exposure and peak concentration increases of approximately 25% and 230 

16%, using a simulated 200 mg twice-daily regimen, respectively.[53]  231 
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Dabigatran transporter mediated DDIs are best assessed using data obtained in healthy 232 

volunteers using the broad ATP-binding transporter and CYP3A4 inhibitor ritonavir.[54] Following 233 

multiple-oral doses of ritonavir 100 mg daily, single-dose dabigatran exposure was increased by 15% when 234 

administered simultaneously and reduced by 29% when dabigatran etexilate was administered 2 hours 235 

prior to dosing ritonavir. These observations likely confirm the time-dependency of co-administered 236 

perpetrator drugs on the PK profile of dabigatran. P-gp inhibition and renal dysfunction are both 237 

independent factors that enhances the exposure of DE.  238 

In patients receiving dabigatran etexilate for treatment and prevention of VTE, there is no dosage 239 

adjustment or contraindication to P-gp inhibitors so long as patients have a creatinine clearance greater 240 

than 50 mL/min.[55] These recommendations are intuitive considering the most important factor 241 

influencing dabigatran exposure is renal clearance. Therefore, the use of dabigatran etexilate is 242 

completely contraindicated in those with creatinine clearances less than 50 mL/min. Despite these results, 243 

the U.S. labelling for CsA suggests avoiding co-administration with dabigatran etexilate altogether 244 

regardless of renal function.[16,17] Drug-drug interactions involving dabigatran etexilate may be 245 

restricted to only intestinal P-gp rather than other sites. In addition, BCRP and CYP3A4 liability is not a 246 

general concern as witnessed from in-vitro permeability models and clinical DDI studies using the P-gp, 247 

BCRP and CYP3A4 inhibitor, ritonavir. Based on these findings, dabigatran is a suitable choice in transplant 248 

patients co-prescribed CsA or tacrolimus, so long as estimated creatinine clearance is > 50 ml/min. As the 249 

risk of higher exposures and subsequent bleeding risk will be low in those with creatinine clearances 250 

greater than 50 mL/min using a CNI, caution should be enforced especially during periods of fluctuating 251 

physiology during the post-transplant period. A shorter acting parenteral anticoagulant should be 252 

considered before dabigatran until renal function stabilizes and the bleeding risk has declined. In the 253 

setting of acute VTE, the label outlines at least five days of treatment be with a parenteral agent (heparin 254 

or enoxaparin) before transitioning to dabigatran etexilate.  255 
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4.3. Rivaroxaban 256 

Rivaroxaban is a direct oral factor Xa (FXa) inhibitor approved by the FDA for the treatment and 257 

prevention of recurrent VTE and reducing risk of stroke in atrial fibrillation.[56] Absolute bioavailability is 258 

dose dependent where almost complete absorption (80 to 100%) is achieved at the 10 mg dose but 259 

reduced to 66% for the 20 mg dose. The site of absorption is primarily in the proximal small intestine 260 

where peak concentrations are observed 2 to 4 hours following oral intake. Rivaroxaban is highly bound 261 

to plasma proteins with a steady-state volume of distribution of 50 liters.  Approximately two-thirds of 262 

the administered dose is subjected to metabolic transformation through CYP3A4/5 and CYP2J2 263 

metabolism where it accounts for 18% and 14% of the total rivaroxaban elimination, respectively. No 264 

major active circulating metabolites in plasma are present following administration. The remaining one-265 

third of the administered dose is eliminated renally as unchanged drug where 30% is removed through 266 

active renal secretion and the remaining 6% through glomerular filtration. The elimination half-life in 267 

healthy subjects is 5 to 9 hours whereas elderly subjects had prolonged half-lives ranging from 11 to 13 268 

hours. Rivaroxaban is a substrate for the efflux transporters P-gp and BCRP and has equal affinity for both 269 

transporters.[51] 270 

Based on pooled phase I results, the impact of age, race, renal and hepatic insufficiency were 271 

observed to influence the area under the concentration-time curve (AUC). Healthy elderly subjects older 272 

than 75 years of age have greater than 40% higher exposures, primarily due to a decline in renal function 273 

and non-renal rivaroxaban clearance.[57]. A dose-reduction strategy is recommended to account for renal 274 

function based on creatinine clearance.[56]  275 

Although there is no dedicated DDI study with CsA, similar perpetrator inhibitors- such as 276 

erythromycin- sharing the same inhibitory pathway may offer an insight in the magnitude of 277 

interaction.[58] Erythromycin is a combined P-gp and moderate CYP3A4 inhibitor which shares the same 278 

characteristic as CsA. Following multiple-doses of erythromycin, the AUC and peak concentrations are 279 
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increased by 34% and 38% after a single-dose of rivaroxaban. Similarly, the AUC and Cmax are increased 280 

by 42% and 28% following co-administration with the combined moderate CYP3A4 and BCRP inhibitor 281 

fluconazole. These individual elevations in the AUC and peak concentrations alone do not warrant a 282 

dosage change or contraindication as these values fall within the ranges observed of drug use in the 283 

general patient population. Although one intrinsic or extrinsic factor alone does not preclude the use of 284 

rivaroxaban, the presence of greater than one factor may present a complex drug-drug and drug-disease 285 

interaction producing a clinically significant increase in rivaroxaban exposure. When accounting for renal 286 

function, age, and DDI with erythromycin, increase in the AUC by 1.9, 2.4, and 2.6-fold were predicted in 287 

younger patients with mild, moderate, or severe renal impairment while co-administered erythromycin, 288 

respectively.[59] The impact from older age with erythromycin (55-65 years old) predicted a 2.5, 2.9 and 289 

3-fold increase in the AUC in individuals with mild, moderate or severe renal impairment, respectively. 290 

Although these results should not be extrapolated to those using CsA or tacrolimus, cautious monitoring 291 

and careful clinical consideration for rivaroxaban use should be practiced especially in older patients with 292 

reduced renal function.  293 

4.4. Edoxaban 294 

Edoxaban is a selective inhibitor of FXa indicated for the risk reduction of stroke and emboli in 295 

non-valvular atrial fibrillation and treatment of VTE.[60] Like dabigatran but unlike the other FXa 296 

inhibitors, edoxaban is labeled to be started after 5 to 10 days of parenteral anticoagulation in the 297 

treatment of acute VTE. Edoxaban demonstrates pH-dependent solubility where optimal dissolution is 298 

achieved in the pH range of 3 to 5. Absorption primarily occurs in the proximal small intestine with an 299 

absolute bioavailability of 62%. The volume of distribution is estimated to be 107 liters and plasma protein 300 

binding is estimated to be about 55% for concentrations from 0.2 to 5 ug/mL. Edoxaban metabolism is 301 

primarily mediated by carboxylesterase 1 (CES1) and CYP3A4. M4, an active circulating metabolite in 302 

plasma, is formed following CES1 metabolism and contributes to 10% of the total edoxaban systemic AUC. 303 
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Approximately 50% of the total clearance of unchanged edoxaban is through the kidneys with the 304 

remaining half appearing in feces and bile. After oral administration, the terminal elimination half-life is 305 

10 to 14 hours. Edoxaban is a substrate for P-gp with its active metabolite, M4, a substrate for the influx 306 

transporter OATP1B1. In-vitro evidence suggests equivalent efflux transport from P-gp and BCRP.[51] 307 

In the registration trial for use in VTE, study patients on concurrent P-gp inhibitors with body 308 

weight < 60 kg or moderate renal impairment received an edoxaban dose reduction to 30 mg daily with 309 

patients on CsA excluded from the study.[47] Edoxaban prolongs the prothrombin time in a 310 

concentration-dependent manner with a linear relationship between edoxaban and anti-FXa. The AUC of 311 

drug concentration is a predictor of therapeutic response when compared to warfarin across subjects with 312 

normal, mild, or moderate renal function.[61]  313 

 The interaction between edoxaban and CsA has been evaluated in healthy volunteers. Co-314 

administration with CsA resulted in a 73% increase in edoxaban peak concentration and 72% increase in 315 

AUC.[62] Furthermore, the active circulating metabolite was observed to increase by greater than 7-fold 316 

for the both peak concentrations and AUC. In the population pharmacokinetic analysis of all VTE studies, 317 

no significant exposure-response for bleeding was observed in in patients on 30 mg daily, however the 318 

risk of recurrent VTE was modestly higher (1.77% vs. 1.57%) compared to patients on 60 mg.[63] The 319 

product label outlines  30 mg once daily dose of edoxaban for patients with creatinine clearances between 320 

15 to 50 mL/min, body weight < 60 kg, or those on certain P-gp inhibitors.[60]  321 

4.5. Apixaban 322 

Apixaban is indicated for the treatment and prevention of VTE and reducing the risk of stroke  in 323 

atrial fibrillation.[64] Absorption occurs primarily in the upper gastrointestinal tract with a reduction in its 324 

absorption witnessed in more distal sites of the intestines.[65] Alterations in gastric acidity is not 325 

anticipated to produce significant changes since apixaban has no ionizable groups across physiological pH. 326 

Apixaban has an absolute bioavailability of approximately 50% and demonstrates dose-proportional 327 
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increases in AUC for oral doses up to 10 mg. Approximately 87% of drug is bound to protein while the 328 

distribution volume is low at 21 liters. Metabolism is predominately through CYP3A4 with a quarter of its 329 

metabolites appearing in urine and feces. Less than a third of apixaban is eliminated through renal 330 

excretion whereas the remaining fraction occurs through biliary and intestinal secretion into the feces.  331 

Apixaban is a substrate for P-gp and BCRP with an estimated half-life of 12 hours. Using in-vitro 332 

permeability and transport assays with transfected cell monolayers, apixaban undergoes concentration 333 

and time-dependent transport via P-gp and BCRP with efflux ratios between 23-38 and 8-12, 334 

respectively.[66] In inhibition studies using Caco-2 bidirectional monolayers together with CsA, a non-335 

specific inhibitor of P-gp and BCRP, the observed inhibition of apixaban efflux was 64%.[51] The efflux of 336 

apixaban is inhibited by 13% in comparison to verapamil, a strong and specific inhibitor of P-gp. As a result, 337 

although P-gp has a role in apixaban intestinal efflux, BCRP-dependent transport may predominate. 338 

A concentration-dependent increase in anti-FXa activity is observed following single and multiple 339 

oral doses of apixaban. Intrinsic and extrinsic covariates that predicted apixaban total clearance are age, 340 

sex, race, renal function and co-administration of dual moderate and strong CYP3A4 and P-gp 341 

inhibitors.[67] Independent contributions from age, sex, race, and co-medications resulted in less than a 342 

25% increase in apixaban exposures. Those with mild, moderate and severe renal dysfunction were found 343 

to have 17%, 34%, and 56% higher exposures, respectively.  344 

Considering that close to one-third of the total systemic clearance of apixaban is due to renal 345 

elimination, decline in renal function is expected to largely affect the magnitude of exposure. Although 346 

intrinsic covariates such as age, sex, and race identified less than a quarter change in apixaban exposures, 347 

clinicians should be cognizant of additive effects when multiple factors are present. Declining renal 348 

function from CNI exposure may also be synergistic with previously mentioned factors and can potentially 349 

contribute to higher apixaban exposures. The PK of apixaban was evaluated in 12 healthy male volunteers 350 

together with CsA and tacrolimus. Following multiple-doses of CsA and tacrolimus, the AUC and Cmax of a  351 
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single 10 mg apixaban dose was observed to increase by 20% and 43% for CsA but decline by 22% and 352 

13% for tacrolimus when compared to apixaban alone, respectively.[68] The contrasting effects of 353 

cyclosporine and tacrolimus on apixaban exposure noted in the study were unexpected, and the 354 

mechanism unclear. Based on safety analyses, elevated apixaban exposure and peak concentrations alone 355 

after co-administration with CsA is not anticipated to pose any clinically relevant bleeding events. In the 356 

case of tacrolimus, a 22% reduction in exposure may not result in loss of efficacy as witnessed in subjects 357 

with body weights > 120 kg. With a 25% decline in apixaban exposures due to extreme body weight, a 358 

third as many patients experienced a stroke or thromboembolic compared to warfarin observed from 359 

pivotal trials in atrial fibrillation.[69] Additionally, although within the lower bounds of apixaban 360 

exposures, tacrolimus co-administration is not expected to confer loss of efficacy at the indicated 2.5 mg 361 

twice-daily dose for VTE prophylaxis.[67] Although each factor is independent, the synergism from body 362 

weight being greater than 120 kg and tacrolimus use should warrant further clinical monitoring as the 363 

combination of both may compromise efficacy. 364 

 365 

8. Conclusion  366 

VTE is common in solid organ transplant recipients. The decision to choose DOAC over warfarin in 367 

this subset of patients is largely limited by the perceived risk of DDIs leading to bleeding or thrombotic 368 

concerns provoked by CNI maintenance immunosuppression therapy. DOACs have much less dose-369 

response variability than warfarin, and accordingly do not require therapeutic monitoring, dose titration, 370 

or frequent dosage adjustments. This is an attractive option for transplant recipients requiring 371 

anticoagulation considering a large majority of individuals require lifelong chronic medications for 372 

immunosuppression and other comorbidities. Unfortunately, DOACs may be underutilized based on the 373 

DDI potential provoked by CNI use for maintenance immunosuppression. A visual is provided in figure 2 374 

which summarizes the available evidence relevant to the pharmacokinetic changes that best emulates 375 
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that of CsA and tacrolimus. In the absence of a dedicated DDI study between a particular DOAC and CNI, 376 

clinicians can extrapolate the information presented for an inhibitor that shares the same inhibitory 377 

pathway with caution. Rather, educating patients to monitor for signs of bleeding or thrombosis is 378 

encouraged at present.  379 

 380 

9. Expert Opinion  381 

For the transplant recipient, DOAC selection is individualized and based on factors that may 382 

attenuate higher or lower anticoagulant exposure while on a CNI. It is estimated that the 5-year risk of 383 

chronic kidney disease after non-renal transplant ranges between 7 to 21%.[70] Indeed renal function 384 

may decline overtime as a result of CNI exposure, age, and pre-existing comorbidities. Since a considerable 385 

fraction of DOACs are cleared by the kidneys, renal function is an important consideration when selecting 386 

an anticoagulant for the transplant recipient. Furthermore, an important consideration is the site of drug 387 

interaction. For example, interactions with dabigatran etexilate occur primarily at the absorption level 388 

where P-gp efflux in the intestines predominates. The active drug, dabigatran, is then renally cleared 389 

without further interaction with P-gp in elimination organs (e.g. biliary ducts) or drug metabolizing 390 

enzymes. In comparison, direct FXa inhibitors may have interactions occurring at the absorption and 391 

elimination phase. This may further enhance exposure and increase the probability of a bleeding event 392 

during which metabolism or excretion is inhibited (e.g. CsA). Together with declining renal function, 393 

bleeding risks may increase when both the absorption and elimination pathways are inhibited. Although 394 

one factor alone may not enhance the safety risk, presence of renal dysfunction, CNI, additional P-gp or 395 

CYP3A4 inhibitors (e.g. antifungals or antibiotics) or other covariates (e.g. extremes in body weight) may 396 

contribute to a higher likelihood of bleeding. In the case of apixaban co-administered with tacrolimus, the 397 

reduction in apixaban exposure and peak concentration does not warrant efficacy concern. However, the 398 

likelihood of any compromise to efficacy is currently unknown for individuals with > 120 kg in body weight 399 
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co-medicated with apixaban and tacrolimus. Interestingly, data from a large cohort of 91,330 Taiwanese 400 

patients found no significant risk of major bleeding in combined DOAC users with concurrent use of 401 

CsA.[71] Although the population of those using CsA together with DOACs was small at 0.62%, the risk of 402 

a major bleed was observed to be five-times greater in those taking apixaban compared to propensity-403 

score matched controls.  404 

Bleeding during CsA and rivaroxaban therapy have also been reported in small observational 405 

studies.[72,73] Although the number of patients included were small, both trough rivaroxaban 406 

concentration and anti-FXa activity were within the ranges considered therapeutic at their respective 407 

doses.[74] It should be noted that with each case, the reported creatinine clearances were far below the 408 

threshold value of 80 mL/min for which rivaroxaban is contraindicated in patients receiving dual P-gp and 409 

moderate CYP3A4 inhibitors. These results reflect several important implications for clinical practice 410 

where 1) dosage adjustments should be made to reflect renal function and CNI co-administration, 2) 411 

although the use of anti-FXa activity as a correlate to plasma drug levels is appropriate for FXa inhibitors, 412 

calibration specificity of anti-FXa activity for the FXa inhibitor (i.e. rivaroxaban, apixaban, or edoxaban) is 413 

critical to make an accurate determination and 3) lastly, the choice of tacrolimus for immunosuppression 414 

may be favorable compared to CsA. In a single-center retrospective cohort study in 37 thoracic transplant 415 

patients on concomitant DOAC and CNI therapy, bleeding rates were comparable to those without DDIs 416 

during DOAC therapy.[75] Tacrolimus was used in 73% of patients with 78% of the patients on rivaroxaban. 417 

The median creatinine clearance at the initiation of DOAC therapy was 59 mL/min. DOACs were used first-418 

line as anticoagulation therapy for VTE in this report. Lung transplant recipients received rivaroxaban as 419 

the preferred DOAC if their creatinine clearances were above 30 mL/min, whereas apixaban was selected 420 

for those with creatinine clearances less than 30 mL/min. Those with identified DDIs- including roughly a 421 

quarter of those on CsA- were found to not have any statistically significant incidences in bleeding 422 
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compared to those without identified DDIs. These observational studies, although limited in the sample 423 

size, may demonstrate the role of DOACs in transplant recipients requiring anticoagulation.  424 

Considering that most maintenance immunosuppressive regimens now contain tacrolimus, 425 

bleeding risks with DOACs may be less of a concern from DDIs. In the case of those requiring 426 

immunosuppression using CsA, which is a P-gp, BCRP, OATP and moderate CYP3A4 inhibitor, dabigatran 427 

etexilate may be appropriate based on its predominate P-gp transport in the gastrointestinal tract. This 428 

recommendation can be complicated considering that regulatory labeling for CsA recommend against use 429 

with dabigatran etexilate.[16,17] In addition, real-world limitations such as complex physiological 430 

changes, affordability, or insurance coverage may discourage the use of one DOAC over another.  431 

As thrombosis research continues, development of safer and effective anticoagulants may offer a 432 

solution to DDI concerns. As an example, darexaban, a FXa inhibitor in clinical development demonstrated 433 

no relevant interactions in the presence of strong dual P-gp and CYP3A4 inducers suggesting a low 434 

potential of clinically relevant DDIs.[74] Unfortunately, further development of the compound was 435 

discontinued. In addition, small molecules targeting factors XII and XI are in development and may provide 436 

a safer alternative to potential bleeding risks encountered with current DOACs.[75] Future research 437 

applying pharmacometric and pharmacoepidemiological methods using rich data sources like the 438 

electronic medical record would be most useful in determining the pharmacokinetic-pharmacodynamic 439 

interaction within this subgroup.    440 

Taken together, clinicians should consider the complex physiological changes that affect the 441 

absorption and elimination of drugs following transplantation to fully optimize anticoagulation therapy in 442 

recipients. Monitoring for renal function is essential in order to individualize anticoagulation therapy with 443 

DOACs. Monitoring of anti-FXa levels requires a drug specific assay, drug dosed to steady state, and a rigid 444 

attention to dose and draw time. There is no standardized dose adjustment based upon anti-FXa level and 445 

for these reasons the use of monitoring is discouraged. Dosage adjustments should follow the product 446 
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labeling with attention to renal function. Although limited, pharmacokinetic-pharmacodynamic and 447 

observational data suggest that the use of CNIs, specifically tacrolimus, together with DOACs is safe and 448 

effective.   449 

 Drug doses used for primary prophylaxis of VTE are less than those used for treatment of acute 450 

thrombosis or for secondary prophylaxis for a prior thrombotic event. The magnitude of any DDI will be 451 

accordingly less. Additional bleeding events attributable to prophylactic/low dose anticoagulation are low. 452 

For these reasons, patients with solid organ transplantation should have doses of thromboprophylactics 453 

guided by the general FDA approval label for all agents. In general, if there is concern for need of an 454 

invasive procedure or short term increased bleeding risk in an inpatient setting, the use of an injectable 455 

agent such as enoxaparin or unfractionated heparin is preferable to a DOAC without a readily available 456 

reversible agent. 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 
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Table 1. Summary changes to DOAC pharmacokinetics measured as changes in peak concentrations (Cmax) and exposure (AUC).  686 

Drug 
In-vitro 

Transporter 
Affinity 

Perpetrator 
Victim / 

Perpetrator 
Regimen Studied 

Effect of P-gp 
and/or CYP3A4 

Inhibition 
Comments Reference 

Dabigatran 
Predominantly P-

gp dependent 
transport 

Verapamil  

Single-dosed DE 150 
mg 2 hours before + 
verapamil IR 120 mg 

BID  

Cmax: ↑18%                                                                                              
AUC: ↑12% 

Do not use together with P-gp 
inhibitor if creatinine clearance is < 50 

mL/min. Labeling for both 
cyclosporine formulations suggest 

avoiding co-administration with 
dabigatran. 

[16, 17, 51, 52, 
53]  Ritonavir 

Single-dosed DE 150 
mg 2 hours before + 

ritonavir 100 mg 
daily 

Cmax: ↓ 27%                                                                                           
AUC: ↓ 29% 

Ritonavir 
Single-dosed DE 150 
mg + ritonavir 100 

mg daily 

Cmax: ↑13%                                                                                              
AUC: ↑15% 

Rivaroxaban 
Equivalent P-gp 

& BCRP transport 

Fluconazole 

Single-dose 
rivaroxaban 20 mg+ 
fluconazole 400 mg 

daily for 5 days   

Cmax: ↑28%                                                                                              
AUC: ↑42% Do not use together with P-gp and 

strong CYP3A4 inhibitor if creatinine 
clearance < 80 mL/min. No dedicated 

CsA or Tacrolimus DDI conducted. 
Fluconazole is a BCRP inhibitor. 

Erythromycin is a P-gp and moderate 
CYP3A4 inhibitor. 

[51, 58]  

Erythromycin 

Single-dose 
rivaroxaban 10 mg 
+erythromycin 500 
mg TID for 4 days   

Cmax: ↑38%                                                                                              
AUC: ↑34% 
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Edoxaban 
Equivalent P-gp 

& BCRP transport 
Cyclosporine 

Single-dose 
edoxaban 60 mg + 

single-dose CsA 500 
mg   

Cmax: ↑ 74%                                                                                           
AUC: ↑ 73% 

Recommended dose of 30 mg once-
daily. Patients on CsA were excluded 

from pivotal VTE trial. CsA is an 
inhibitor of OATP1B1 uptake for M4 

metabolite. 

[51, 62]  

M4 (active 
metabolite) 

Unknown Cyclosporine 
Cmax: ↑ 8.7 fold                                                                                           
AUC: ↑ 6.9 fold 

Apixaban 
Preferential 

BCRP-dependent 
transport 

Cyclosporine 

Single-dose 
apixaban 10 mg + 
CsA  100 mg daily 

for 3 days  

Cmax: ↑43%                                                                                              
AUC: ↑20% 

No clinically meaningful impact on 
efficacy or safety with elevated 

exposure together with CsA; reduced 
expsoure together with tacrolimus.  

[51, 68]  

Tacrolimus 

Single-dose 
apixaban 10 mg + 
tacrolimus  5 mg 
daily for 3 days 

Cmax: ↓ 13%                                                                                           
AUC: ↓ 22% 

AUC: Area under the plasma-concentration time curve extrapolated to infinity, BCRP: Breast Cancer Resistance Protein, BID: Twice-daily, Cmax: Peak 687 
plasma concentration, CsA: Cyclosporine, DDI: Drug-drug interaction, DE: Dabigatran etexilate, IR: Immediate-release, OATP: Organic anion 688 
transporting polypeptide1B1, P-gp: Permeability glycoprotein, TID: Three times-daily 689 
 690 
 691 
 692 
 693 
 694 
 695 
 696 
 697 
 698 
 699 
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Figure 1. Physiological changes following solid organ transplantation that impact the pharmacokinetics (absorption, distribution, metabolism, and 700 

excretion) of drugs.   701 

 702 

 703 
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 710 
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 713 

 714 

 715 

 716 

 717 

 718 

The illustration is a derivative of “Arterial circulation”, “Arrow”, “Capsule”, and “Complete digestive apparatus” by Servier Medical Art 719 

(https://smart.servier.com/) under the Creative Commons License (CC BY 3.0).  720 

https://smart.servier.com/
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Figure 2: Effect of cyclosporine, tacrolimus, or similar perpetrator drugs on the pharmacokinetics of DOACs. 721 

 722 
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 731 
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 733 

 734 

 735 

 736 

 737 

 738 

Results from dedicated drug-drug interaction studies in healthy-volunteers for dabigatran, rivaroxaban, edoxaban (and M4 metabolite), and 739 

apixaban. Reference values for the individual direct oral anticoagulant are for the AUC and Cmax parameters in the absence of the co-administered 740 

drugs. Cmax, peak concentrations. AUC, area under the plasma concentration-time curve from time zero extrapolated to infinity. CI, confidence 741 

interval.  742 
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