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Evolution of tolerance to PCBs and susceptibility to a bacterial
pathogen (Vibrio harveyi) in Atlantic killifish (Fundulus
heteroclitus) from New Bedford (MA, USA) harbor

Diane Naccil, Marina Huberl, Denise Champlinl, Saro Jayaramanl, Sarah Cohen?, Eric
Gauger3, Allison Fong3, and Marta Gomez-Chiarri

1 US Environmental Protection Agency, Office of Research and Development, National Health and
Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett RI

2 San Francisco State University, Department of Biology, Romberg Tiburon Center, San Francisco,
CA

3 University of Rhode Island, Department of Fisheries, Aquaculture, and Veterinary Sciences,
Kingston RI

Abstract

A population of the non-migratory estuarine fish Fundulus heteroclitus (Atlantic killifish) resident
to New Bedford (NB), Massachusetts, USA, an urban harbor highly contaminated with
polychlorinated biphenyls (PCBs), demonstrates recently evolved tolerance to some aspects of PCB
toxicity. PCB toxicology, ecological theory, and some precedence supported expectations of
increased susceptibility to pathogens in NB killifish. However, laboratory bacterial challenges of the
marine pathogen Vibrio harveyi to wild fish throughout the reproductive season and to their mature
laboratory-raised progeny demonstrated comparable survival by NB and reference killifish, and
improved survival by NB males. These results are inconsistent with hypothesized tradeoffs of
adaptation, and suggest that evolved tolerance in NB killifish may include mechanisms that minimize
the immunosuppressive effects of PCBs. Compensatory strategies of populations persisting in highly
contaminated environments provide a unique perspective for understanding the long-term ecological
effects of toxic chemicals.

Keywords
PCB tolerance; Genetic adaptation; Fitness costs; Infectious disease

Introduction

Populations that persist despite chronic, multi-generational exposures to chemical pollutants
display a range of compensatory mechanisms that minimize toxic impacts. For example, many
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CAPSULE: Killifish resident to a highly PCB-contaminated estuary survive pathogenic bacterial challenges well, suggesting their
tolerance to PCB immunosuppression.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nacci et al.

Page 2

insect species display pesticide resistance or tolerance (e.g., McKenzie and Batterham 1994),
defined by Raberg et al. (2007) as mechanisms that minimize biological exposure or effects,
respectively. Certain aquatic animal populations residing in highly contaminated sites also have
evolved mechanisms that mitigate the adverse effects of toxic chemicals (Martinez and
Levinton 1996; Levinton et al. 1999; Weis 2002; Wirgin and Waldman 2004; Van Veld and
Nacci 2008). Despite some common, generalized mechanisms, each example illustrates unique
biological and ecological compensatory responses that interact to produce condition-specific
benefits, and, potentially, costs to population persistence.

The non-migratory estuarine fish, Fundulus heteroclitus (Atlantic killifish), has served as an
important model species for the study of adaptation in the wild. Classic studies have
characterized evolutionary responses of killifish to environmental conditions such as
temperature across large geographic and geological time scales (e.g., reviewed in Mitton
1994; Burnett et al. 2007). Contemporary evolution (e.g., Kinnison and Hairston 2007) is also
displayed in killifish populations whose residence sites vary widely in the nature and degree
of their contamination by persistent, bioaccumulative, and toxic pollutants, such as
polychlorinated biphenyls (PCBs) (Nacci et al. 1999; Nacci et al. 2002a; Nacci et al. 2002b).
This investigation focused on one population of killifish resident to an urban harbor, New
Bedford (NB), Massachusetts (USA, Figure 1), highly contaminated from industrial discharges
of PCBs (e.g., Nelson et al. 1996). Although these discharges ceased in the 1970s (Nelson et
al. 1996), NB Kkillifish still contain tissue concentrations of PCBs that are toxic to many fish
species (Black et al. 1998a; Monnosson 1999/2000), and reduce reproductive output and early
life stage survival in some populations of this fish species (Black et al. 1998b; Gutjahr-Gobell
etal. 1999; Nacci etal. 1999). Yet, the NB killifish population appears robust: fish are abundant
and display high condition indices (Nacci et al. 2001; Nacci et al. 2002b).

A series of studies have explored demographic and toxicological compensatory mechanisms
by which NB killifish persist (Nacci et al. 2002b; Nacci et al. 2008). One that likely plays an
important role is toxicological adaptation: an inherited or evolved tolerance to some of the
toxic effects of PCBs (Hahn 1998; Nacci et al. 1999; Bello et al. 2001; Nacci et al. 2002a;
Nacci et al. 2008). Specifically, NB killifish and their uncontaminated progeny are protected
from lethal effects of PCBs during embryonic development (Nacci et al. 1999; Nacci et al.
2002a), a particularly susceptible period for PCB toxicity in fishes (e.g., Elonen et al. 1998;
Tillitt et al. 2008). Because the exact biochemical and genetic mechanisms of developmental
tolerance in NB Killifish have yet to be identified (Hahn 1998; Hahn et al. 2004; Van Veld and
Nacci 2008), it is not known to what extent and by what mechanism(s) other life stages and
processes might be protected from the toxic effects of PCBs.

In this study, we were specifically concerned about pathogen susceptibility of NB Killifish
because immunological suppression is one of the most sensitive effects of PCBs on vertebrate
species (Kerkvliet 2002; Luebke et al. 2006). Since disease is an important regulator of wild
populations (e.g., Acevedo-Whitehouse and Cunningham 2006), protection from the
immunosuppression effects of PCBs on adults, demographically important life stages, would
be particularly beneficial for population persistence (e.g., Munns et al. 1997; Nacci et al.
2008). However, some empirical studies suggested that NB and other killifish resident to highly
contaminated sites (but showing some aspects of tolerance) demonstrate more pathological
lesions and increased incidence of parasites than reference killifish (e.g., Stegeman and Wolke
1979; Cohen 2002; Hicks and Steele 2003; Cohen et al. 2006; Frederick et al. 2007; but, see
Schmalz et al. 2002). In addition, one chemically-tolerant killifish population (resident to the
Atlantic Wood site, Norfolk, VA, USA) shows increased susceptibility to opportunistic
microbial infection when transferred to clean laboratory conditions (Rice 2001; Meyer and Di
Giulio 2003; Frederick et al. 2007). These patterns of increased parasitism and disease could
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reflect poor immunological function, e.g., as a cost of evolved chemical tolerance (Meyer and
Di Giulio 2003).

Thus, existing information supported contradictory expectations concerning the vulnerability
of NB killifish to infectious diseases. Tolerance of the immunosuppressive effects of PCBs
might be an adaptive benefit, potentially related to mechanisms affording protection from
developmental toxicity to PCBs. Alternatively, increased susceptibility to infectious disease
might be an adaptive cost. To evaluate pathogen susceptibility, we conducted acute laboratory
challenges using a ubiquitous marine pathogen, Vibrio harveyi (Thompson et al. 2004; Austin
and Zhang 2006; Gauger and Gomez-Chiarri 2002), comparing survival of killifish from NB
and nearby, relatively uncontaminated reference sites. We tested highly PCB-contaminated
field-collected killifish over the summer breeding season when the presumed cost of
reproduction might increase disease susceptibility (e.g., Viney et al. 2005), and into the fall
when reproduction had ceased. To evaluate whether potential differences in pathogen
responses between wild fish populations were genetically based, and unrelated to differences
in tissue PCB concentrations, we also tested mature, laboratory-reared uncontaminated
individuals from these populations. These laboratory studies provide the first report of immune
functionality of killifish with evolved PCB tolerance.

Materials and Methods

Experimental animals

Adult fish were collected by trapping and held in the laboratory as described elsewhere (Nacci
etal. 1999; Nacci et al. 2005). Laboratory-reared fish (Fo generation) were spawned from the
progeny of field-collected fish and grown until about two years old, when they were similar in
length to field-collected fish used in other bacterial challenges. Laboratory conditions
supported high rates of survival and growth in young fish, and maintained adult fish in
seasonally-appropriate reproductive condition. Fish were held at low densities in large tanks
of flowing uncontaminated sea water, and fed a varied diet including commercial and live food
(Nacci et al. 1999; Nacci et al. 2002a; Nacci et al. 2005). Two to three weeks prior to each
bacteria challenge, fish were transferred to flowing sea water tanks where holding temperature
was adjusted to 25°C at a rate no greater than 1°C per day.

Fish were collected from the NB upper harbor (NB), nearby West Island (WI, Fairhaven, MA),
and more distant to NB, Annisquam Inlet, Gloucester (GL, MA) (Figure 1). Fish collected from
another uncontaminated site, Block Island, RI (BI), were used to enhance bacterial virulence
prior to bacterial challenges (described below). Collection site location, sediment PCB
concentrations, and tolerance to PCB126 have been described previously for NB and WI
(Nacci et al. 2002a), but are included here for comparison to the other reference sites, GL and
Bl (Table 1). For two sites, NB and WI, we also measured PCBs in the livers of female and
male fish (Table 1). PCBs in sediments and tissues were measured using previously reported
methods (Nacci et al. 2002a). Chemical tolerance was characterized using a standardized
laboratory challenge as previously described (Nacci et al. 2005). Briefly, early life stage
toxicity was assessed using exposures to a toxic PCB congener (3,3',4,4',5-pentachloro
biphenyl, IUPAC congener number 126, PCB126), which contributes most of the toxicity to
killifish from NB PCBs (Black et al. 1998b). Exposed embryos were monitored for
development and survival until seven-days post-hatching (Nacci et al. 2005), and results were
summarized as modeled estimates of exposure concentration producing 20% lethality, LCyq
(Bruce and Versteeg 1992).

Environ Pollut. Author manuscript; available in PMC 2010 March 1.
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Bacterial Challenges

Bacterial challenges used similar proportions of male and female fish (treatment replicates
ranged from 40 — 62% males) of similar size (mean length ranged from 62.5 —78.2 mm).
Challenges were conducted in early- (June), mid- (July), late- (September) or post- (October)
spawning condition for field-collected fish or post-spawning condition (November) for lab-
reared fish. Challenges with Vibrio harveyi strain DNO1, (Soffientino et al. 1999) were
conducted using reported methods (Gauger et al. 2006). Bacteria were cultured and passaged
through BI killifish to increase virulence, then bacteria were re-isolated, cultured and used to
challenge test fish. Challenge units consisted of four or five fish from a single population, held
in static, aerated 20-L glass tanks at 25°C, maintained by partial immersion in flowing water
from a single source at constant temperature. On the day prior to challenge, fish were distributed
into these tanks arrayed in a haphazard fashion, where three to five replicate tanks comprised
each treatment x population combination. Challenges began by anesthetizing fish lightly with
MS-222 (50 pug/ml 3-aminobenzoic acid ethyl ester or tricaine methane sulphonate, Sigma
Chemical, St. Louis, MO, USA) then identified by sex, measured for total length, and
inoculated by intraperitoneal injection with 100 pl of nine salts solution (NSS, Gauger et al.
2006) containing 0 (control) or 107 — 10° colony forming units (CFU) Vibrio harveyi per ml.
After inoculation, fish were held unfed, and observed twice daily for seven days during which
time dead fish were removed, identified by sex and measured for length, and examined for
signs of vibriosis. Bacteria were re-isolated from at least five fish using aseptic techniques to
confirm V. harveyi as the cause of mortalities. At the termination of the experiment, all
remaining fish were euthanized according to institutional animal care policies.

In vitro effects of PCBs on V. harveyi

An in vitro study was conducted to test for direct suppressive effects of PCB 126 on bacterial
proliferation and production of proteases as a proxy for virulence factors (Denkin and Nelson
1999). Vibrio harveyi DNO1 was grown in LB20 overnight at 21°C and then back-diluted to a
concentration of 102 CFU per ml in 10 ml LB20 containing acetone (0.1 ml, solvent control)
or 36 pg/ml PCB 126 dissolved in acetone (0.1 ml). This concentration of PCB 126 was used
to represent maximum tissue concentrations in NB killifish (36 pg/g liver, Black et al.
1998a). Each medium was assayed in triplicate, and the experiment was run twice. At each
time-point (0, 0.5, 4, 8, and 72 hours), the viable cell count (CFU) was determined by plating
serial dilutions of V. harveyi cultures and counting colonies. Culture supernatants were also
assayed for proteolytic activity using the azocasein assay (Denkin and Nelson 1999). The
endpoint for this assay is a colored reactant (442 nm), and specific proteolytic activity is
calculated using the formula: 1000 ODg42/(Log (CFU/mI)).

Statistical Analysis

We used general linear models and Fisher’s least-significant-difference test to test for
differences between populations in their survival responses to V. harveyi challenges. Per cent
data (survival and males) per replicate were arc sine square root transformed prior to analysis
to account for heterogeneity of variance. To evaluate differences among replicates that might
be related to differences between sexes in mixed sex replicate tanks, responses were calculated
using only males or females then analyzed similarly to the unaltered, mixed sex data set. The
effect of PCBs on the growth and protease production by V. harveyi was tested using two-way
analysis of variance. All analyses were conducted using SAS© (SAS Institute 2000).

Environ Pollut. Author manuscript; available in PMC 2010 March 1.
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Results

Fish Populations Tested

Killifish collected from NB were highly contaminated, with liver PCBs about 100 fold higher
than those in W1 fish. There were no significant differences between male and female NB fish
(p=0.13) (Table 1). PCB tolerance to developmental toxicity reflected differences in exposures
at residence sites: the LCyq for NB was about 100 — 1000 fold higher than those for reference
populations (Table 1).

Field-collected fish challenges

Vibrio harveyi had a significant effect on survival of field-collected fish for each challenge
conducted throughout the reproductive season (Figure 2, p <0.0002). When tests were analyzed
individually, neither the source population (p = 0.23, 0.80, 0.19) nor the population by dose
interaction (p = 0.56, 0.16, 0.16) significantly affected this response in the June, September,
and October challenges, respectively. In the mid-reproduction (July) challenge, populations
interacted differentially with dose to affect survival (p = 0.0019), with higher survival among
the NB versus the WI fish. Similarly in the post-reproductive challenge (October), NB survival
was significantly greater (p < 0.05) than both reference populations, W1 and GL, for a single
treatment (107 CFU per fish).

Data from NB and WI for a single treatment (107 CFU per fish) from multiple challenges were
also analyzed together, excluding June data because treatment survivals were significantly
lower for both NB and WI populations than for subsequent challenges. Overall, NB fish
survived this treatment better (p = 0.0001) than did WI fish (Table 2). Across these tests, fish
did not differ in size (p = 0.60), but there were more males in WI replicates (p = 0.0042),
averaging 72.9% males (4.9% se) per replicate versus 51% males (4.3% se) per replicate for
NB fish. Since sexes might respond differently, data were separated by sex and treatment
responses reanalyzed (Table 2). Survival did not differ between sexes within W1 or when
populations were combined; however, survival was higher in males from NB when compared
with NB females or WI males (Table 2).

Laboratory-reared fish challenges

A single experiment was conducted after the reproductive season (November, Table 3) using
mature NB and W1 killifish reared in the laboratory for two generations, which retain their
differential sensitivities to PCBs (Nacci et al. 2002a). The single concentration of injected V.
harveyi (3 x 107 CFU/fish) affected survival (p = 0.0005), but did not affect populations
differently when mixed-sex tanks were compared, nor when only males or females were
compared (Table 3).

In vitro effects of PCBs on V. harveyi

A solution of PCB 126 formulated at a concentration estimated from tissue measurements of
F. heteroclitus from NB (36 pg/ml, Black et al. 1999b) had no significant effect on bacterial
growth rate nor specific proteolytic activity in culture supernatants (data not shown).

Discussion

NB Killifish provide a dramatic example of persistence under extreme conditions, even within
a species remarkable for its hardiness (e.g., Nordlie 2006; Burnett et al. 2007). This large
population of non-migrating, estuarine fish resides in one of the most highly PCB-contaminated
estuaries in the US (Long et al. 1995), bioaccumulating toxic concentrations of PCBs in adult
fish (Table 1), which are distributed to their developing progeny (Nacci et al. 1999). Consistent
with our expectations concerning adaptation, extraordinary tolerance to developmental PCB

Environ Pollut. Author manuscript; available in PMC 2010 March 1.
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toxicity has been documented in NB killifish in this (Table 1) and in other studies (Nacci et al.
1999; Nacci et al. 2002a). For example, the range of developmentally - toxic PCB
concentrations (LCyq) between NB killifish and the most sensitive killifish populations exceeds
the range of sensitivities to similar compounds across all fish species tested (Tillitt et al.
2008; Van Veld and Nacci 2008). In combination with other independently evolving killifish
populations persisting under similarly extreme but unique chemical conditions, this species
provides an important system to explore intra-specific patterns and test hypotheses concerning
genetic, biological, and ecological compensatory mechanisms (Cohen 2002; Meyer and Di
Guilio 2003; Cohen et al. 2006; Fisher and Oleksiak 2007; Burnett et al. 2007; Tirindelli
2007; Van Veld and Nacci 2008).

In this study, we were specifically concerned with the relationship between evolved chemical
tolerance and disease vulnerability of adult NB killifish. As others have (e.g., Arkoosh et al.
2005; Carlson and Zelikoff 2008), we used survival following acute bacterial challenges as an
indicator of pathogen susceptibility in fish. Results of these tests reflect innate immunity:
immediate, non-specific pathogen responses used by fish as a first line of defense (e.g., Rice
2001; Neumann et al. 2001; Dautremepuits et al. 2006; Magnadottir 2006; Carlson and Zelikoff
2008). In addition to direct interaction with infectious agents, the innate immune system also
mediates more generalized inflammatory responses and acquired immune responses, such as
the production of specific antibodies which may begin weeks after infection in fish (e.g., Rice
and Xiang 2000; Yada and Nakanishi 2002; Dautremepuits et al. 2006). Based on its critical
role in early as well as later responses, the innate immune system in fishes has been described
as even more important than acquired immunity in infectious disease susceptibility and
outcome (Maule et al. 1996, Camp et al. 2000; Palm et al. 2003). Because innate immunity is
important, short-term challenges such as ours have been used by others to assess one aspect of
disease vulnerability in fish exposed to chemical pollutants (e.g., Arkoosh et al. 1998, Arkoosh
et al. 2005, Palm et al. 2003; Carlson and Zelikoff 2008). Results from these tests are also
useful because innate immunity provides primary protection against infection without
depending upon prior exposure to any particular agent. Therefore, our tests using a single
bacterial pathogen may be representative of short-term responses to typically encountered
bacterial pathogens.

Our studies showing that NB killifish respond acutely to a common marine pathogen at least
as vigorously as reference populations suggest that some important, short-term immune
responses are not compromised in NB killifish, and in fact, may be enhanced. In addition, our
in vitro tests suggested that PCBs did not directly suppress bacterial virulence, which might
have masked poor immunological responses in heavily contaminated NB fish. However, field
studies of chemically-tolerant Atlantic Wood killifish, which appear to be
immunocompromised (Frederick et al. 2007), show alterations in innate and acquired
immunity. Although it has been proposed that innate immunity may compensate for acquired
immunity deficiencies (e.g., Kurtz et al. 2003), it may be important to account for responses
of the acquired immune system in NB killifish before making inferences concerning disease
susceptibility of NB killifish in the wild (although see below and, e.g., Cohen et al. 2006).

While our results did not show a strong seasonal pattern, NB killifish had improved survival
during peak reproduction (Figure 2), and a consistent pattern of improved survival throughout
the reproductive season (Table 2). Due to increased energetic demands, e.g., from gamete
production and mating behavior, and a complex interplay between stress and reproductive
hormones and the immune system, spawning is often considered a period of increased
vulnerability to disease and other stressors in fishes (e.g., Luebke et al. 1997;Schreck

1996; Tatner 1996;Harris and Bird 2000;Maule et al. 1996;Yada and Nakanishi 2002). Other
endocrine factors that may also vary seasonally, such as thyroid hormone, have been shown to
affect immune response in killifish and other fish (Yada and Nakanishi 2002). Unexpectedly,
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there were differential effects of sex between populations, with male fish from NB surviving
better than other groups (Table 2), which could not be explained by differential levels of PCB
contamination between male and female fish (Table 1).

Although NB killifish show apparently normal reproductive output (Black et al. 1998a; Nacci
et al. 2002b), male killifish collected from NB show evidence of endocrine disruption,
including markers of estrogenic exposures (Greytak et al. 2005) and altered levels of estrogen
receptors (Greytak and Callard 2007). This feminization of NB fish could contribute through
direct or indirect mechanisms to the apparently enhanced immune responses in male fish
collected from NB. However in a single bacterial challenge, uncontaminated (laboratory-
raised) progeny from NB performed similarly to field-collected fish. These results suggest that
tissue concentrations of PCBs that are toxic to killifish from reference sites (e.g., Black et al.
1999b) are not immunotoxic to NB killifish. However, these limited findings do not establish
definitely the heritability of enhanced male performance in bacterial challenges by NB killifish.
Therefore, additional studies to clarify the mechanistic basis for the sex-specific improved
survival following bacterial challenge in NB fish are needed. Such studies may also provide
information more generally relevant to understanding interactions between reproductive
hormones/antagonists, immunological responses, and altered disease incidence in fishes (e.g.,
Maule et al. 1996; Kurtz et al. 2007).

Increased disease susceptibility, which has been proposed as an adaptive trade-off of chemical
tolerance in Atlantic Wood killifish (Meyer and Di Giulio, 2003), might also be expected for
NB killifish. Several types of fitness costs have been associated with the evolution of chemical
tolerance. For example, rapid adaptation is often accompanied by decreased genetic variation,
which is strongly associated with increased susceptibility to infectious diseases and parasites
in many species (e.g., Coltman et al. 1999; Acevedo-Whitehouse et al. 2003; Reid et al.
2003; Spielman et al. 2004; Whitman et al. 2006; Hale and Briskie, 2007). However, reduced
genetic diversity is unlikely in killifish populations (e.g., Mitton 1994). Even those killifish
populations resident to highly contaminated sites, including NB, show no evidence of genetic
bottlenecks (Cohen 2002; Mulvey et al. 2003; Roark et al. 2005; McMillan et al. 2006; Adams
et al. 2006; Tirindelli 2007; Duvernell et al. 2008). More specifically to immunological
function, killifish populations resident to sites that vary widely in chemical contamination,
including NB, show high diversity and unique amino acid substitutions in the peptide binding
site of major histocompatibility complex (MH in fishes, known as MHC in mammals),
suggesting that this component of acquired immunity is not compromised (Cohen 2002; Cohen
et al. 2006; Tirindelli 2007).

However, other types of trade-offs or conditional fitness costs, specific genetic “pleiotropic
by-products” (Futuyma 1986) or more general energetic costs of adaption, have sometimes
been associated with chemical tolerance in examples from the laboratory and the field. For
example, lines of the least killifish (Heterandria formosa) selected in the laboratory for
resistance to cadmium had reduced fecundity under uncontaminated conditions relative to
unselected lines (Xie and Klerks 2004a), and pesticide-tolerant versus sensitive mosquitoes
respond more poorly to bacterial infection (Duron et al. 2006). Yet, trade-off costs have not
always been found (e.g., Roush and McKenzie 1987), and should, perhaps, be expected only
when consistent with adaptive mechanisms (e.g., Taylor and Feyereisen 1996, Coustau et al.
2000). For example, common mechanisms of tolerance to metals in fish (Xie and Klerks
2004b) and pesticides in insects (e.g., Roush and McKenzie 1987; Raymond et al. 2001)
involve costly production (up regulation) of protective proteins.

Unlike these common mechanisms of tolerance, poor responsiveness or down regulation of
the aryl hydrocarbon receptor (AHR) signal transduction pathway is the hallmark of tolerance
in killifish populations studied to date (e.g., Prince and Cooper 1995; Hahn 1998; Elskus et al.
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1999; Bello et al. 2001; Wirgin and Waldman 2002; Meyer et al. 2003b; Van Veld and Nacci
2008) and, most recently, in Hudson River tomcod (Yuan et al. 2006). While perhaps an overly
simplistic generalization of the mechanisms that confer chemical tolerance in killifish (e.g.,
Hahn 1998; Bard et al. 2002; Weis 2002; Meyer et al. 2002; Meyer et al. 2003a; Meyer et al.
2005; VanVeld and Nacci 2008), down regulation draws few resources away from expensive
biological processes such as reproduction and immunity. Therefore, this energetically thrifty
strategy employed by killifish may not engender the energetic costs associated with chemical
tolerance in some other examples.

Because PCBs are known to be highly immunosuppressive to fish species (e.g., Duffy et al.
2002, Carlson and Zelikoff 2008), including killifish (Fries 1986), tolerance to this aspect of
PCB toxicity would be very beneficial to NB killifish. It is known that NB killifish are
developmentally tolerant to the class of PCB congeners that are most toxic to vertebrates
(Nacci et al. 1999; Nacci et al. 2002a), and are mechanistically related to the highly toxic
compound, dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) (e.g., Safe 1994). Most, if not
all, of the toxic effects of these compounds to fish are mediated through the AHR pathway
(e.g., Tillitt et al. 2008). Furthermore, it is known that the immunosuppressive action of dioxin-
like compounds is at least partially mediated via the AHR in the vertebrate species tested
(Silkworth et al. 1984; Kerkvliet et al. 1990; Kerkvliet 2002). Since dioxin-like PCB congeners
are immunotoxic to fishes (e.g., Rice and Schlenk 1995; Regala et al. 2001; Duffy et al.
2005), AHR-mediated tolerance in NB killifish may mitigate some of the effects of PCBs on
disease susceptibility. However, nondioxin-like PCBs also affect fish immune responses (e.g.,
Maule et al. 2005; Duffy and Zelikoff 2006), and PCB congeners that vary toxicologically
probably affect pathogen responses differently (e.g., Rice and Schlenk 1995; Regala et al.
2001; Arkoosh et al. 2001; Maule et al. 2005; Duffy et al. 2002; Duffy et al. 2005; Duffy and
Zelikoff 2006; Carlson and Zelikoff 2008). While the relative importance of AHR-mediated
tolerance to disease susceptibility in PCB-exposed fish is difficult to predict, out results suggest
that high tissue concentrations of PCBs are not immunosuppressive to NB Killifish.

Itis reasonable that the relative success of NB killifish in response to acute infectious challenges
may reflect adaptive benefits of alterations of the AHR pathway. But, adaptive strategies
indirectly related or unrelated to chemical pollution may also be involved in the persistence of
NB killifish in their highly contaminated and ecologically disturbed residence site. A diversity
of primary and (potentially) secondary adaptations may be revealed by ongoing research into
the biochemical and genetic mechanisms of chemical tolerance in killifish, which complement
empirical studies such as this one that explore the realized benefits and costs of contemporary
evolution.

Conclusion

A population of the non-migratory estuarine Atlantic killifish (Fundulus heteroclitus) that
persists despite toxic pollutants contaminating their residence site, PCB-contaminated NB
harbor, serves as a unique example of contemporary evolution. In this study, we were
specifically concerned with the relationship between evolved chemical tolerance and disease
vulnerability of adult fish: demographically - important life stages. Some theoretical and
empirical considerations supported expectations that NB killifish would be at increased risk
for infectious disease, especially during the stressful, energetically-expensive reproductive
period. However, our results showed that field-collected, contaminated NB killifish and their
laboratory-raised uncontaminated progeny survived acute bacterial challenges as well as or
better (NB males) than did fish from less-contaminated reference sites. Although our studies
were not mechanistic by design, a parsimonious explanation of our results consistent with other
studies using this species and other vertebrates, is that the biochemical mechanism of
developmental PCB tolerance in NB killifish may also mitigate some aspects of
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immunosuppression. While we interpret our results cautiously with respect to the complex
factors associated with disease susceptibility in the wild, our findings challenge expectations
of generalized adaptive costs and suggest realized adaptive benefits associated with this
example of contemporary evolution to toxic chemicals. Independently evolving populations
of killifish, such as those resident to chemically - contaminated sites, provide a unique examples
of intra-specific compensatory strategies in response to human-mediated stressors.
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Figure 1.

Map of Atlantic coast US study area showing collection sites for Fundulus heteroclitus.
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Figure 2.

Cumulative seven-day survival (means and standard errors of within-test replicates) of
Fundulus heteroclitus from West Island (gray bar), or New Bedford (black bar) (MA, USA)
following injections of bacteria (Vibrio harveyi) during tests conducted early- (June), mid-
(July), late- (September) or post-(October) reproductive season; Gloucester (white bar), was
also tested in October, only; letters indicate within-test statistical comparisons.
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Table 2
Average (+ standard error) survival for tests conducted in July, September, and October following exposure to the
pathogen, Vibrio harveyi (107 colony forming units per fish) in (n) tanks of fish collected from West Island (WI), a
relatively uncontaminated reference site, or New Bedford (NB), Massachussetts, USA, including probabilities (p) for
rejecting differences within rows or columns.

Population Females, only Males, only Both sexes p
Wi 60.0 £ 12.5 (10) 65.2 6.9 (12) 64.6 +4.1(12) 0.831
NB 79.2+7.7(12) 100.0 £ 0.0 (12) 90.0 £3.9(12) 0.011
Both populations 70.5+7.2(22) 82.6 £ 5.0 (24) 77.3+3.8(24) 0.0001
p 0.1607 <0.0001
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Average survival (+ standard error) following exposure to Vibrio harveyi (3 x 107 colony forming units per fish) in (n)
tanks of laboratory-bred fish from populations resident to West Island (W1), a relatively uncontaminated reference site,
or New Bedford (NB), Massachussetts, USA, including probabilities (p) for rejecting differences within rows or

columns.
Population Females, only Males, only Both sexes p
wi 11+11 (3) 0+0(3) 6.7 +6.7 (3) 0.374
NB 223+223(3) 33.3+16.7 (3) 26.7+17.6 (3) 0.627
Both populations 16.7 £ 9.5 (6) 16.7 £ 11.4 (6) 16.7 £ 9.5 (6) 0.388
p 0.802 0.091
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