
Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 383
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Algorithms for Component-Based 3D Modeling
Neumayr, Andrea and Otter, Martin

383

Algorithms for Component-Based 3D Modeling

Andrea Neumayr1 Martin Otter1

1DLR, Institute of System Dynamics and Control, Germany, {andrea.neumayr,martin.otter}@dlr.de

Abstract
The experimental modeling environment Modia3D is used
to test and evaluate ideas to model and simulate larger and
more complex 3-dimensional systems than is possible with
a pure equation-based modeling system such as current
Modelica. The goal is to closely combine equation-based
modeling with component-based 3D modeling as used in
modern game engines. In this article some key algorithms
are discussed that have been developed for Modia3D. The
overall objective is to utilize the results for the design of
the next Modelica language generation.
Keywords: Modelica, Modia, Modia3D, Julia, DAE,
equation-based modeling, component-based modeling,
multi-body, collision handling

1 Introduction
The Modelica standard library1 supports the modeling of 3-
dimensional multi-body systems with its sub-library Mod-
elica.Mechanics.MultiBody (Otter et al., 2003). There have
been several attempts to improve this library with regards
to visualization, collision handling or support of larger
models, for example (Otter et al., 2005; Höger et al., 2012;
Hofmann et al., 2014; Elmqvist et al., 2015; Bardaro et al.,
2017). Over the years it was recognized that this is hard be-
cause the technology of current Modelica has some natural
limitations:

• No modern data structures, like dictionaries or trees,
or objects with member functions are supported in
Modelica, but they are standard in high level program-
ming languages and are needed to model for example
3D meshes or collision detection algorithms. Then,
the only choice is to interface external programs with
Modelica models: Developing such algorithms from
scratch in, say, C++, and then interface to Modelica
is too much effort.
Using existing code is hard either, because only par-
tial, incompatible solutions are available. For exam-
ple, it would be nice to interface the Bullet Physics
SDK2 to Modelica to get a state-of-the-art collision
handling package. However, this engine determines
only the penetration depth of colliding bodies, but for
variable-step solvers in offline simulation also zero-
crossing functions for DAE-solvers are needed that
require the Euclidean distance between non-colliding

1https://github.com/modelica/ModelicaStandardLibrary
2https://github.com/bulletphysics/bullet3

shapes as well (Neumayr and Otter, 2017). Visualiza-
tion, collision handling, mass properties calculations
require geometric information. Integrating such dif-
ferent description forms in Modelica is hard due to
the missing modern data structures. Whenever such
packages are integrated, shapes need a unique identifi-
cation, but this feature is hard to provide in Modelica.

• Modelica tools typically support only generic sym-
bolic transformation algorithms. It is hard or impos-
sible to utilize algorithms which are specialized for
a particular model class, for example to remove re-
dundant equations of nonlinear-equation systems due
to kinematic loops, to compute a common mass and
center of mass of rigidly connected bodies and use
it in the simulation, or to use an O(n) multi-body al-
gorithm. In Modelica, a user would have to use a
pre-processor that generates Modelica code, see e.g.
(Elmqvist et al., 2009).

• Since Modelica compilers typically expand the mod-
els for the symbolic engine, the same equation is
analyzed many times. For example if a mechanical
system has 100 bodies, then the equations of a body
are present 100 times in the generated code. C or C++
compilers are not designed to handle huge code parts
in a good way. Therefore, there are natural limita-
tions on the model size. For fluid models there are
some solutions available, where code for a component
is generated only once and reused many times, e.g.
(Sahlin and Grozman, 2003). For multi-body systems
such solutions might be possible, but yet need to be
developed.

The article Component-Based 3D Modeling of Dynamic
Systems (Neumayr and Otter, 2018) starts an approach to
cope with the underlying inherent issues. The basic idea is
to combine 3D modeling techniques closely with equation-
based modeling à la Modelica within one high level pro-
gramming environment. Modia3 (Elmqvist et al., 2016,
2017) is used for the equation-based modeling. It is imple-
mented with the Julia programming language4 (Bezanson
et al., 2017). Julia allows to program numerical algorithms
conveniently on a high level. It supports modern data struc-
tures, multiple dispatch, metaprogramming, has a just-in-
time-compiler and has excellent performance benchmarks
relative to C.

3https://github.com/ModiaSim/Modia.jl
4https://julialang.org

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institute of Transport Research:Publications

https://core.ac.uk/display/220158866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithms for Component-Based 3D Modeling

384 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

Modia utilizes Julias metaprogramming features to in-

tegrate an equation-based modeling language with a pro-
gramming language (e.g. a Modia model can be stored
in a dictionary that in turn is inquired in another Modia
model to select and use a submodel from this dictionary).
Modia3D5 is designed to model 3D systems, initially only
mechanical systems, but it shall be expanded into other
domains in the future. It is implemented in Julia and uti-
lizes ideas of multi-body programs and game engines. In
the near future, Modia and Modia3D shall be closely in-
tegrated, e.g. using a Modia3D model in Modia or using
Modia models in Modia3D. Up to now, Modia3D is im-
plemented for functionality and not tuned for efficiency.
Therefore, there are no benchmarks yet and in particular no
comparison with Modelica models. For animation the free
community edition as well as the professional edition6 of
the DLR Visualization library7 (Bellmann, 2009; Hellerer
et al., 2014) are used. The overall goal is to apply the
results of the Modia/Modia3D prototyping into the design
of the next Modelica language generation.

The user’s view of Modia3D was introduced in (Neu-
mayr and Otter, 2018) to show the very flexible definition
of 3D systems. In this article, several key algorithms are
discussed which have been developed for the Modia3D
prototype.

2 Component-Based 3D Modeling
Modia3D has two design patterns: the component-based
and the hierarchical structure. The ideas for component-
based structuring are from modern game engines, such as
Unity or Unreal Engine, which have a component-based
design. In the context of game engines a coordinate system
is located in 3D and has a container with optional com-
ponents (in Unity such an object is called GameObject8,
in Unreal Engine it is named Actor9, and in Three.js it is
called Object3D10). Each of these components has optional
properties such as geometry, visualization, dynamics, colli-
sion properties, light, camera, sound, etc., see for example
(Nystrom, 2014)11. This is a very flexible way to define
many optional components and variants and treat them
in a modular way. In this paper, this very special design
of the generic component-based design pattern is called
component-based 3D modeling. The Julia programming
language is particularly suited for this programming pat-
tern. In Section 2 a brief overview to component-based 3D
modeling and the features used in this paper is given.

Hierarchical structuring for grouping, aggregating and
defining 3D objects is performed with the Modia3D macro

5https://github.com/ModiaSim/Modia3D.jl
6https://visualization.ltx.de/
7http://www.systemcontrolinnovationlab.de/the-dlr-visualization-

library/
8https://docs.unity3d.com/Manual/GameObjects.html
9https://docs.unrealengine.com/en-us/Engine/Components

10https://threejs.org/docs/index.html#api/core/Object3D
11http://gameprogrammingpatterns.com/component.html

@assembly. A Julia macro is a metaprogramming12 lan-
guage element and starts with @. It generates an abstract
syntax tree (AST) of Julia code which is automatically com-
piled and executed at the line where the macro is called.
For further information, see (Neumayr and Otter, 2018).

Object3D

In Modia3D, component-based 3D modeling is performed
with so-called Object3D objects. An Object3D consists
of a 3D coordinate system that has optional associated
properties collected in the data container. Furthermore,
an Object3D stores connections to other Object3Ds, via
joint, force, or sensor elements (see Figures 2, 1). The code-
snippet13 of the following Julia constructor call14 creates a
new Object3D object obj:

1 obj = Object3D(parent,data,r=[0,0,0],
2 R=eye(3),fixed=true)

Each obj can be defined relative to a parent Object3D,
with the position vector r and the rotation matrix R. It is
rigidly connected to its parent if fixed=true, and it
can move freely if fixed=false. The initial position
and rotation matrix is defined with r, R. An Object3D is
said to be a reference Object3D, if no parentObject3D is
given. The 14 Object3Ds of Figure 2 demonstrate different
properties and are used below to explain a core algorithm.

Figure 1. Object3D defined relatively to its parent.

Joint Object

Two Object3Ds can be connected via a joint. In Figure 2
there are several joints, one joint is e.g. between obj2 and
obj4.

3 joint1 = Revolute(obj2,obj4;axis=3)

A reference to the revolute joint is stored in obj4. In case
the joint introduces a kinematic loop, it is replaced inter-
nally by a cut-joint (in Figure 2 this happens e.g. with the
joint between obj5 and obj13). A cut-joint is referenced
by the two Object3Ds that are constrained by it.

12https://docs.julialang.org/en/stable/manual/metaprogramming/
13For better reference every code-snippet is marked with a unique line

number on the left-hand side.
14When calling a Julia function, all optional keyword arguments

(name-value pairs) can be given in any order. They are set after the
positional arguments (here: parent and data).

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 385
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

root

obj1

joint

cut-joint

mass

collide

visible

force element
obj3

obj2

obj4

obj5

obj9

obj10

obj6

obj8

obj7

obj13

superObject2

superObject3

superObject5

superObject6

superObject4

fE

cJ

obj11

obj12

superObject1

Figure 2. 14 Object3Ds with different properties like they are allowed to collide, can have a mass, are visible and/or can have a
force element, are grouped into six rigidly attached general super-objects disjunct via joints and cut-joints.

obj1 | obj2 | obj3
obj4

obj6 | obj7
obj9

obj13

[3, 4]

[5, 6]

[6]

obj1 | obj3

obj7 | obj8

obj1 | obj2 | obj3
obj4

obj6 | obj7 | obj8
obj9 | obj11
obj12 | obj13

obj10

[2]

[3]

[4]

[5]

[6]

noCPairs

super-objects collection

obj11

obj12

collision-super-object mass-super-object force-super-object visualization-super-object
indices of
super-objects

canCollide hasMass canCollide ||
hasJoint ||
hasForceElement

isVisible &&
!hasJoint && !canCollide &&
!hasMass && !hasCutJoint &&
!hasForceElementallVisuElements = [obj2 | obj4 | obj7 | obj10 | obj11 | obj12]

forceElements = [fE]
cutJoints = [cJ]

[1]

Figure 3. A super-object collection holds four different super-objects types for collision, mass, force computation, and visualization.

Force Object

Two Object3Ds can be connected via a force element. In
Figure 2 there is a force element between obj11 and
obj8.

4 spring = Spring(obj11,obj8;c = 1e3)

A force element is referenced by the two Object3Ds on
which it is acting.

Geometry Object

A geometry, such as a sphere, box, cylinder, or a mesh can
be defined and associated with an Object3D. For example,
a sphere is associated with obj4 in Figure 2.

5 sphere1 = Object3D(obj4,Sphere(0.9),
6 r=[0,0,0.8])

Visualization Object

Visualization objects are an interface to the DLR Visu-
alization library (Bellmann, 2009; Hellerer et al., 2014).
For defining the visualization properties a Material ob-
ject has to be associated to a geometry object, or spe-
cial visualization objects can be used (for example a
CoordinateSystem). The following constructor call
generates a new Material object and associates it to a
sphere geometry.

7 vmat = Material(color=[0,0,255],
8 wireframe=false,transparency=0.5,
9 shininess=0.7,reflectslights=true)
10 sphere2 = Object3D(obj12,
11 Sphere(0.9,material=vmat),
12 r=[0,0,0.8])

Algorithms for Component-Based 3D Modeling

386 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

A geometry object is only visualized if a visualization
material is defined for the object.

MassProperties Object
A MassProperties object can be associated with an
Object3D to define mass, center-of-mass and inertia tensor
with respect to this Object3D. There are various options to
define mass properties, for example defining them explic-
itly (with or without a geometry) or computing them from
the volume of a geometry object and of a given density.

Collision Object
The geometry of the associated Object3D takes place in
collision handling if a contact response characteristics is
defined via an AbstractContactMaterial object.
For example, an elastic response characteristic with a linear
spring and damper is defined with ContactMaterial-
Elastic().

3 Collision Handling
Collision detection in Modia3D is based on the Minkowski
Portal Refinement algorithm (MPR-algorithm) (Snethen,
2008), which computes the shortest penetration depth of
two convex shapes/convex hulls. The MPR-algorithm is
much simpler to implement and has less numerical prob-
lems than the often used GJK/EPA-standard algorithms
(Gilbert et al., 1988; Bergen, 2003), because it only works
with triangles and not with tetrahedrons.

A Modia3D model is mathematically defined as a
Differential-Algebraic-Equation system (DAE) with xxx =
xxx(t) and a regular Jacobian JJJ (1c):

000 =

[
fff d(ẋxx,xxx, t,zi > 0)
fff c(xxx, t,zi > 0)

]
(a)

zzz = fff z(xxx, t) (b)
JJJ =

∂ fff d

∂ ẋxx
∂ fff c

∂xxx

 (c) (1)

Therefore, (1a) is an index 1 DAE and (1b) defines zero-
crossing functions zzz(t). To speed up the simulation and
to improve the robustness of the integration, Modia3D
uses the distances between convex shapes as zero-crossing
functions zi(t) (1b).

In the original version of the MPR-algorithm (Snethen,
2008) only penetration depths are determined. In Modia3D
improvements of the MPR-algorithm are utilized that have
been proposed in (Kenwright, 2015; Neumayr and Otter,
2017), in particular to compute the distances of shapes that
are not in contact and treating special collision situations
properly.

In Modia3D collision handling of n potentially colliding
shapes is performed in the following (mostly standard)
way:

1. Broad Phase
The shapes are approximated by bounding volumes
where potential collisions can be very cheaply deter-
mined resulting in O(n2) cheap tests. When using
special data structures (such as octrees or kd-trees),

it is possible to reduce the number of cheap tests to
O(n log(n)).

2. Narrow Phase
For the potentially colliding shape pairs as identified
in the broad phase, the signed distances are computed
with the improved MPR-algorithm (Neumayr and Ot-
ter, 2017).

3. Response Calculation
If two shapes are penetrated, a force and/or torque is
applied at the contact point, such as a spring - damper
force element, depending on the penetration depth.

The broad phase in Modia3D uses AABBs (= Axis Aligned
Bounding Boxes) (see e.g. (Bergen, 2003)). Each AABB
approximates one shape and only if the AABBs are inter-
secting, the distance between these two possibly colliding
shape pairs is calculated in the narrow phase. A preprocess-
ing of the tree-structure is executed to reduce the number
of possible collision pairs to npp before the broad phase is
processed. This leads to npp ≤ O(n2) tests. There are two
preprocessing rules:

1. Rigidly attached shapes cannot collide with each
other.

2. Shapes connected by a joint cannot collide with each
other if the joint specific option canCollide is set
to false (the default setting).

4 Object Preprocessing
In this section a central preprocessing step of Modia3D is
explained. The goal is to evaluate efficiently many objects
of different kinds during integration.

For example, the position and orientation of a visual-
ization object should only be computed when needed (at
communication points), and not in every model evaluation.
Furthermore, if mass properties are associated with rigidly
connected Object3Ds (two or more), then the resultant
mass properties of all these objects is computed once in
the preprocessing step (note, such an operation is hard to
automatically perform with a Modelica multi-body model).

Figure 2 presents an example of a Modia3D model, and
the connected objects are given. The goal is to generate the
data structure that is shown in Figure 3. Afterwards, the
usage of this data structure for an efficient evaluation of
the model during integration is explained.

4.1 Super-Objects
Rigidly connected Object3Ds are grouped together into so-
called super-objects. Super-objects are disjunct via joints.
Without any further assumptions, the grouping of the 14
Object3Ds of Figure 2 leads to six general super-objects
(Figure 4). Figure 5 also shows these six super-objects
connected via joints/cut-joints. The super-objects 2,3,4
and 6 are forming a kinematic loop. This kinematic loop
is detected and the joint between super-object 3 and 6 is

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 387
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

obj1 | obj2 | obj3
obj4 | obj5
obj6 | obj7 | obj8
obj9 | obj10 | obj11

[1]

[2]

[3]

[4]

[5]

super-objects

obj12 | obj13[6]

root

Figure 4. Six general super-objects.

su
pe
rO
bj
2

s
u
p
e
r
O
b
j
4superObj5

su
pe
rO
bj
3

superObj6

joint

cut-joint

superOb
j1

Figure 5. Six super-objects are connected via joints/cut-joints.

internally replaced by a cut-joint. Object3Ds can have sev-
eral properties that are collected in different super-object
data structures.

4.1.1 Super-Objects Collection
In the super-objects collection all information about dif-
ferent super-object types is stored, for example super-
objects for collision handling, mass and force com-
putation as well as visualization. The super-objects
collection of the above mentioned example (Figure 2)
with its different super-objects is shown in Figure 3.
For each of the super-object types, there is a function
assignObj(obj,superObjType) to store a refer-
ence of the object in the corresponding data structure
identified by superObjType. A super-object collec-
tion has 3 additional containers: allVisuElements
stores every Object3D which has visualization properties,
all force elements and all cut-joints are stored respectively
in forceElements and cutJoints (see Figure 3).

4.1.2 Super-Objects for Collision Handling
A geometry associated with an Object3D takes place in
collision handling, in case a contact material is defined (see
Section 2) and hence it gets assigned to a collision-super-
object (lines 13 - 17).

13 function assignObj(obj::Object3D,
14 superObjType::SuperObjCollision)
15 if canCollide(obj)
16 push!(superObjType.superObj, obj)
17 end; end

All Object3Ds within one collision-super-object are rigidly
connected, so they cannot collide with respect to each other
and therefore they already fulfill the first preprocessing
rule (see Section 3). To fulfill also the second preprocess-
ing rule, all collision-super-objects which are disjunct by
a joint/cut-joint are not allowed to collide either (if op-
tion canCollide = false). Therefore, the indices

of collision-super-objects which are not allowed to col-
lide, are stored in a collision-list called no collision pairs
(= noCPairs). For example superObject2 is not al-
lowed to collide with superObject3 and vice versa (see
Figures 2, 3, 5). It is sufficient to store this relation only
once for the first executed super-object. This leads to the
corresponding noCPairs container for collision-super-
objects (see Figure 3).

4.1.3 Super-Objects for Mass Computation
In case mass properties are defined for an Object3D it gets
assigned to a mass-super-object (lines 18 - 22). In a later
step, a resultant mass, center-of-mass and inertia tensor is
computed for all mass properties of one mass-super-object.

18 function assignObj(obj::Object3D,
19 superObjType::SuperObjMass)
20 if hasMass(obj)
21 push!(superObjType.superObj, obj)
22 end; end

4.1.4 Super-Objects for Force Computation
All Object3Ds which are allowed to collide, or have a joint,
or a force element are stored in a force-super-object (lines
23 - 28). For these Object3Ds kinematic laws (positions,
translation matrices, etc.) and especially forces need to be
re-calculated in each solver step.

23 function assignObj(obj::Object3D,
24 superObjType::SuperObjForce)
25 if (canCollide(obj) || hasJoint(obj) ||
26 hasForceElement(obj))
27 push!(superObjType.superObj, obj)
28 end; end

4.1.5 Super-Objects for Visualization
Object3Ds within a visualization-super-object are exclu-
sively for visualization (lines 29 - 36). The positions and
rotation matrices only need to be calculated at communica-
tion points with the visualization engine.

29 function assignObj(obj::Object3D,
30 superObjType::SuperObjVisu)
31 if (isVisible(obj) && !hasJoint(obj) &&
32 !hasMass(obj) && !canCollide(obj) &&
33 !hasForceElement(obj) &&
34 !hasCutJoint(obj))
35 push!(superObjType.superObj, obj)
36 end; end

4.2 Algorithm for Constructing Super-
Objects

The goal of this section is to introduce an algorithm to
detect and group rigidly attached super-objects. This al-
gorithm is based on a depth-first search algorithm (DFS)
(Tarjan, 1972; Hopcroft and Tarjan, 1974). The depth-first
search as well as the augmented version takes O(n) time.

4.2.1 Depth-First Search Algorithm
The depth-first search algorithm explores each branch as
far as possible to its leaves-level, afterwards it is stepping
back (see Figure 6). This procedure uses a stack and is

Algorithms for Component-Based 3D Modeling

388 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

A

B C

D E F

Figure 6. Example of a DFS.

executed until the stack is empty and hence every node
has been visited exactly once. Below a Julia pseudo code
is shown (lines 37 - 45). The DFS-algorithm works with
a Last In First Out - stack (LIFO). Therefore, append!
(line 44) inserts all children of an obj at the end of the
stack and pop! (line 42) returns the last item. All nodes
are stored in the above described order and a depth-first
search of the example in Figure 6 would lead to result
= [A,B,D,E,C,F].

37 stack = []
38 result = []
39 function DFS(root)
40 push!(stack,root)
41 while length(stack) > 0
42 obj = pop!(stack)
43 push!(result,obj)
44 append!(stack,obj.children)
45 end; end

4.2.2 Augmented Depth-First Search Algorithm
The augmented depth-first search is based on the idea of
the depth-first search algorithm (Section 4.2.1). Below,
a Julia pseudo code of the augmented depth-first search
is presented (lines 54 - 79). It creates a super-object
collection which holds all described super-object types.
The assignment of each Object3D takes place in function
assignAll(...) (lines 66, 71).

Every Object3D, except one, has a parent object and all
Object3Ds and their associated properties are connected
together and build up a tree, see Figure 2. The Object3D
without a parent is treated as the world object and it is the
root of the tree. The world object is not allowed to have
any additional properties, except for visualization. In case
any other Object3D has no parent an error occurs. Since
the Object3Ds form a tree, the root of every super-object
is an Object3D that is connected via a joint or it can move
freely with respect to its parent. This parent is located on a
different super-object.

The augmented DFS-algorithm works with a stack-like
buffer and a stack.

buffer Whenever the root of a new super-object is found,
it is pushed on the buffer. The index of an element
in the buffer is also the index of the super-object.
Therefore, the maximally reached length of the buffer
is equal to the total amount of general super-objects.
Additionally, variable actPos holds the index of the
super-object that is currently processed. When the
processing of a super-object is finished, this variable
is incremented by one as long as there are elements
on the buffer.

stack Starting from the root of a super-object, all Ob-
ject3Ds for this super-object are inspected with the
help of this stack. Whenever a boundary (an Object3D
with a joint or a freely moving Object3D) is reached,
this Object3D is pushed on the buffer (and not on the
stack). All Object3Ds of the super-object have been
inspected in depth-first order (see Figure 4), if the
stack is empty.

The properties of a super-object are stored in the following
structure:

46 mutable struct SuperObjs
47 superObjCollision::SuperObjCollision
48 superObjMass::SuperObjMass
49 superObjForce::SuperObjForce
50 superObjVisu::SuperObjVisu
51 noCPair::Array{Int64,1}
52 ...
53 end

Hereby, every essential property of an Object3D is an ele-
ment of this struct (such as superObjMass which holds
all Object3Ds that have a mass) of the corresponding super-
objects.

The top-level part of the algorithm:

54 stack = []
55 buffer = []
56 coll = SuperObjCollection()
57 augmentDFS!(root_obj)

initializes the stack, the buffer and the super-object collec-
tion and then calls function augmentedDFS! with the
root of the Object3D tree (= the topmost parent Object3D
of the root level assembly) as input argument. The details
of function augmentedDFS! are given below:

58 function augmentedDFS!(root::Object3D)
59 push!(buffer, root)
60 actPos = 1
61 nPos = 1
62 while actPos <= nPos
63 superObj = SuperObjs()
64 obj = buffer[actPos]
65 if obj != root
66 assignAll(superObj,obj)
67 end
68 fillStackOrBuffer!(superobj,obj)
69 while length(stack) > 0
70 objChild = pop!(stack)
71 assignAll(superObj,objChild)
72 fillStackOrBuffer!(superObj,objChild)
73 end
74 safeSuperObjsToCollection(coll,superObj)
75 nPos = length(buffer)
76 actPos += 1
77 end
78 addIndicesOfCutJointsToSuperObj(coll)
79 end

First, the root Object3D is pushed on the buffer and the
current element of the buffer actPos is set to one. After-
wards all elements of the buffer are inspected. For every
element of the buffer a depth-first search is performed. All

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 389
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Object3Ds are pushed on the stack that are rigidly con-
nected with their parents. Otherwise, it is pushed on the
buffer. This decision is made with function fillStack-
OrBuffer!:

80 function fillStackOrBuffer!(superObj,obj)
81 for child in obj.children
82 if isNotRoot(child)
83 if isNotFixed(child)
84 push!(buffer,child)
85 if !child.joint.canCollide
86 push!(superObj.noCPair,length(buffer))
87 end
88 else
89 push!(stack,child)
90 end; end; end; end

For each element of the SuperObjs data structure (lines
46 - 53) the assignAll function:

91 function assignAll(superObj,obj)
92 for val in fieldnames(typeof(superObj))
93 assignObj(getfield(superObj,val), obj)
94 end
95 end

calls the assignObj function to store the Object3D in the
particular specialized super-object. The right assignObj
function is chosen via multiple dispatch of the Julia pro-
gramming language, see Section 4.1.

4.3 Algorithms for Using Super-Objects
In this section, the usage of the generated data structure is
shortly sketched for an efficient evaluation during integra-
tion.

4.3.1 Usage of Collision-Super-Objects
The MPR-algorithm computes the distance between
two shapes in the narrow phase narrowPhase_MPR
(line 111) if their AABBs are intersecting in the broad
phase broadPhase_checkAABB (line 110). All Ob-
ject3Ds (line 104) of the actual super-object (line 102)
are allowed to collide with all Object3Ds (line 109) of
the subsequent super-object (line 107). In case the actual
super-object is not allowed to collide with the subsequent
super-object, the index of the subsequent super-object is
stored in noCPairs (see Figure 3 and Section 4.1.2).

96 # counter
97 # is: actual super-object
98 # js: subsequent super-object
99 # i: Object3D of is_th super-object
100 # j: Object3D of js_th super-object

101 for is = 1:length(collSuperObjs)
102 actSuperObj = collSuperObjs[is]
103 for i = 1:length(actSuperObj)
104 actObj = actSuperObj[i]
105 for js = is+1:length(collSuperObjs)
106 if !(js in noCPairs[is])
107 nextSuperObj = collSuperObjs[js]
108 for j = 1:length(nextSuperObj)
109 nextObj = nextSuperObj[j]
110 if broadPhase_checkAABB(actObj,nextObj)
111 narrowPhase_MPR(actObj,nextObj)
112 end; end; end; end; end; end

4.3.2 Usage of Mass-Super-Objects
If there are two or more Object3Ds with mass-properties in
a super-object, the resultant mass, inertia tensor and center
of mass is computed and a new Object3D is constructed at
the center-of-mass location. The previous mass-properties
objects are removed.

4.3.3 Usage of Force- and Visualization-Super-
Objects

In general, the Object3Ds on a super-object form a tree.
This tree is reconstructed so that every Object3D has the
root of the super-object as parent, in order to avoid un-
necessary coordinate transformations during integration.
All Object3Ds with exception of the Object3Ds that are
only used for visualization, are stored in an Object3D vec-
tor Object3DEvaluation in depth-first order. Dur-
ing integration, the absolute position, rotation, velocity,
angular velocity, acceleration, angular acceleration of all
Object3Ds are computed at every model evaluation by
traversing this vector from index 1 up to its last index and
computing the absolute quantities of an Object3D with its
relative quantities and the absolute quantities of its parent
Object3D. Furthermore, the forces and torques due to the
acceleration/angular acceleration of the mass properties
Object3Ds from section 4.3.3 are computed and stored in
the respective Object3D, as well as the forces and torques
of all forceElements and of all contact force elements.
Afterwards, vector Object3DEvaluation is traversed
from its last index down to index 1 and the resultant force
and torque at an Object3D is transformed and summed to
the force and torque of its parent Object3D. Finally, the
projection of the forces/torques at all joints into the non-
constrained motion of the respective joint results in the
residues f̄ff 2 of equation (7).

The handling of the cut-joints is a bit more involved (to
compute the residues f̄ff 3, f̄ff 4) and is not further elaborated
here. The absolute position and rotation of the Object3Ds
that have only visualization-objects need to be computed
only at communication points. This calculation is a simple
extension of the approach sketched above.

5 Simulation
Once the preprocessing steps are finished, the model
is transformed to DAE form (1) as sketched in sec-
tion 4.3.3 and solved with Sundials IDA (Hindmarsh et al.,
2005, 2015) that uses a variable-step, variable-order BDF-
integration (Backward Differentiation Formula) method.
The transformation of a multi-body system with kinematic
loops (for an example see figure 7) to the form (1) is
sketched in (Otter and Elmqvist, 2017) and shortly repeated
here:

Starting point are the equations of motion of a multi-
body system, see, e.g. (Arnold, 2016):

q̇qq = vvv
MMM(qqq, t)v̇vv+GGGT (qqq, t)λλλ = hhh(qqq,vvv, t)

000 = ggg(qqq, t)
(2)

Algorithms for Component-Based 3D Modeling

390 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

Figure 7. Modia3D model of a multi-body system with a kine-
matic loop.

where qqq are the generalized coordinates (here: joint coor-
dinates, such as a revolute angle), vvv are the generalized
velocities, λλλ are the generalized forces/torques in the cut-
joints, MMM = MMMT is the positive definite mass matrix, ggg
are the kinematic constraint equations of the cut-joints on

position level, GGG=
∂ggg
∂qqq

are the partial derivatives of the con-

straints equations with respect to qqq and has full row rank.
This DAE has index 3 and gives rise to numerical problems
when integrating it directly. Instead, with the method of
(Gear et al., 1985; Gear, 1988) it can be transformed to the
following index 1 form, see (Otter and Elmqvist, 2017):

000 = q̇qq− vvv+GGGT (qqq, t)µ̇µµ int
000 = MMM(qqq, t)v̇vv+GGGT (qqq, t)λ̇λλ int −hhh(qqq,vvv, t)
000 = ggg(qqq, t)
000 = GGG(qqq, t)vvv+ggg(1)(qqq, t)

(3)

where (a) the derivative of the constraint equations 000 =
ggg(qqq, t) are added as new equations, (b) new unknowns µ̇µµ int
are introduced that are used for stabilizing the DAE and
(c) the generalized constraint forces λλλ are replaced by λ̇λλ int
the derivatives of its integral. The question is how these
equations can be constructed by Modia3D:

IDA and other DAE integrators assume that the DAE is
mathematically described as:

000 = fff (ẏyy(t),yyy(t), t) (4)

For the solution, the following Jacobian is computed numer-
ically (ch is a step-size dependent variable that is provided
by the integrator):

JJJ =
∂ fff
∂yyy

+ ch ·
∂ fff
∂ ẏyy

(5)

This Jacobian can be automatically generated by IDA, but
is optionally also provided by Modia3D (to experiment
with sparse Jacobians).

One problem is that the new term GGGT (qqq, t)µ̇µµ int does not
appear in the equations of motions and should be "some-
how" constructed. The DAE variables yyy of the IDA inter-

face are defined as:

yyy =

yyy1
yyy2
yyy3
yyy4

=

qqq
vvv
λλλ int
µµµ int

 (6)

Hereby qqq are the generalized coordinates of the joints in the
tree of the super-objects (for example an angle of a revolute
joint), vvv are the generalized velocities of these joints (for
example the angular velocity of a revolute joint), λλλ int is the
integral of the generalized cut-forces in the cut-joints (for
example the cut-forces of a spherical cut-joint) and µµµ int
does not appear in the model.

In a first step the residues of the model equations are
computed in the following form (note that yyy, ẏyy are provided
by the IDA integrator as input arguments to the model):

f̄ff =

f̄ff 1
f̄ff 2
f̄ff 3
f̄ff 4

=

ẏyy1 − yyy2
MMMẏyy2 +GGGT ẏyy3 −hhh(yyy1,yyy2, t)
ggg(yyy1, t)
GGG(yyy1, t)yyy2 +ggg(1)(yyy1, t)

 (7)

Hereby, f̄ff 1 is directly computed from the input arguments,
f̄ff 2 are the generalized forces of the joints in the super-
object tree (for example the projection of the cut-torque
in a revolute joint to its axis of rotation, see section 4.3.3),
f̄ff 3 are the generalized kinematic closure conditions of
the cut-joints on position level and f̄ff 4 are the generalized
kinematic closure conditions of the cut-joints on velocity
level.

From time to time (so not in every step) the integrator
requires a Jacobian (5). First, the part of the Jacobian
is computed numerically where µ̇µµ int is not yet taken into
account (using (7)):

J̄JJ =
∂ f̄ff
∂yyy

+ ch ·
∂ f̄ff
∂ ẏyy

(8)

It can be noted that matrix GGG is part of this Jacobian (the
rows of this Jacobian with respect to f̄ff 4 and the columns
with respect to yyy2):

GGG =
∂ f̄ff 4

∂yyy2
= J̄JJ42 (9)

It is now possible to compute the Jacobian (5) as required
by IDA:

JJJ = J̄JJ+

000 000 000 ch · J̄JJ

T
42

000 000 000 000
000 000 000 000
000 000 000 000

 (10)

Furthermore, in every model evaluation also the residues
(4) can be calculated as required by IDA:

fff = f̄ff +

J̄JJT

42 · yyy4
000
000
000

 (11)

Algorithms for Component-Based 3D Modeling

DOI Proceedings of the 13th International Modelica Conference 391
10.3384/ecp19157383 March 4-6, 2019, Regensburg, Germany

Since the Jacobian (5) is not computed in every integra-
tor step, J̄JJT

42 · yyy4 need not be identical to GGGT (qqq, t)µ̇µµ int be-
cause J̄JJT

42 is potentially computed at a previous time instant.
However, this is uncritical because the method of Gear to
stabilize the DAE only requires that matrix GGG · J̄JJT

42 must
be regular (see for example (Otter and Elmqvist, 2017):
the derivation after eq. (13) shows that µ̇µµ int = 000). In the
unlikely situation that this approximation of the stabilizing
term looses rank, the integrator will most likely detect a
problem with its variable step-size control and will force a
new computation of the Jacobian, that will solve the issue.

6 Relation to other Work
Modern games use physics engines, like Havok or PhysX
for collision detection and rigid body simulations (Gregory,
2014). Physics engines of games work with fixed-step size
solvers and are interactive real-time simulations. Modia3D
simulates the system with variable-step size solver because
the target of its initial version is offline simulation. There-
fore, there are natural differences between the implemen-
tation approaches, for example in a physics engine the
position and orientation of visual objects need to be com-
puted in every model evaluation, whereas in Modia3D this
is only needed at communication points (if the visual ob-
ject does not take place in collision handling). To improve
efficiency, this is specially handled in Modia3D.

Game engines typically use a scene graph15 (Gregory,
2014) to describe the representation of the 3D objects. Of-
ten this is a tree data structure where all operations applied
on a node effect all children nodes. Changes to nodes
might be material data, such as the color of objects, or
3D transformations. Usually, closed kinematic loops are
not supported by game engines or are approximated with
various techniques. Therefore, a scene graph with a tree
data structure is sufficient.

In Modia3D kinematic loops are inherently supported
and therefore a pure tree data structure does not reflect
the system. From a users point of view a 3D system is a
graph with loops. It seems therefore not useful to apply,
say, a color to a node and define that this color holds for all
children, because the children might be part of a loop that
includes the node. Instead in Modia3D, an object such as a
material object might be defined once and then references
to this object might be used in the various nodes. For
practical reasons, the graph is represented internally as a
tree with additional information for the closing conditions
of kinematic loops. However, this is hidden from the user
and the user should not know in which way an internal tree
is constructed (this might even change with a new version).

The Modelica MultiBody library (Otter et al., 2003) was
implemented in 2003 and since this time only minor im-
provements have been made. The design is made in a rigid
way by defining a few part types, such as BodyShape
or BodyBox, to represent a fixed setup for a part with a

15https://en.wikipedia.org/wiki/Scene_graph

geometry, mass properties computed from this geometry
and a fixed set of frame connectors. This design is far
away from the flexibility of the Modia3D library where
various geometries, including base shapes and meshes, can
be defined and used in various ways for visualization, mass
properties computation, collision handling. Systems with
kinematic loops can be defined with the Modelica Multi-
Body library, but it was not possible to make this fully
automatic so that the user just defines the system as it is.
Instead, practically the user has to define somehow the
cut-joints or assembly-joints for a kinematic loop and also
has usually to explicitly define the states in a loop with
the StateSelect attribute, because otherwise the sim-
ulation becomes much too slow due to the dynamic state
selection.

7 Conclusion
In this article some newly developed algorithms have been
described that are used by the Modia3D prototype to con-
struct a model that can be efficiently evaluated in a simu-
lation with a variable-step solver. Due to its architecture
that is inspired by game engines, Modia3D allows a very
flexible way to build-up dynamic models of 3D-mechanical
systems and to model collisions. Contrary to games, the
main target of the package design are variable-step solvers
with step-size control. Modia3D is still an early prototype
and several important parts are under development, espe-
cially the integration with Modia is missing. Furthermore,
the code was currently mainly developed for its function-
ality and is not yet tuned for efficiency. For these reasons,
benchmarks about the simulation efficiency have not yet
been performed.

References
M. Arnold. DAE aspects of multibody systems. Technical report,

Martin-Luther-Universität Halle-Wittenberg, Institut für Math-
ematik, April 2016. URL http://sim.mathematik.uni-halle.de/
reports/sources/2016/01-2016.pdf.

G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Using
Modelica for advanced Multi-Body modelling in 3D graphical
robotic simulators. In J. Kofranek and F. Casella, editors,
Proc. of the 12th International Modelica Conference. LiU
Electronic Press, May 2017. URL http://www.ep.liu.se/ecp/
132/097/ecp17132887.pdf.

T. Bellmann. Interactive Simulations and advanced Visualiza-
tion with Modelica. In Francesco Casella, editor, Proc. of
the 7th International Modelica Conference. LiU Electronic
Press, Sept. 2009. URL http://www.ep.liu.se/ecp/043/062/
ecp09430056.pdf.

G.v.d. Bergen. Collision Detection in Interactive 3D Environ-
ments. Morgan Kaufmann Publishers, 2003.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A
Fresh Approach to Numerical Computing. SIAM Review, 59
(1):65–98, 2017.

Algorithms for Component-Based 3D Modeling

392 Proceedings of the 13th International Modelica Conference DOI
 March 4-6, 2019, Regensburg, Germany 10.3384/ecp19157383

H. Elmqvist, S. E. Mattsson, and C. Chapuis. Redundancies in

Multibody Systems and Automatic Coupling of CATIA and
Modelica. In Proceedings of the 7th International Modelica
Conference; Como; Italy; 20-22 September 2009, pages 551–
560. Linköping University Electronic Press, 2009. URL http:
//www.ep.liu.se/ecp/043/063/ecp09430113.pdf.

H. Elmqvist, A. Goteman, V. Roxling, and T. Ghandriz. Generic
Modelica Framework for MultiBody Contacts and Discrete
Element Method. In Peter Fritzson and Hilding Elmqvist,
editors, Proc. of the 11th International Modelica Conference.
LiU Electronic Press, Sept. 2015. URL http://www.ep.liu.se/
ecp/118/046/ecp15118427.pdf.

H. Elmqvist, T. Henningsson, and M. Otter. Systems Model-
ing and Programming in a Unified Environment based on
Julia. In Proc. of ISoLA Conference. Springer, Oct. 2016.
doi:10.1007/978-3-319-47169-3_15.

H. Elmqvist, T. Henningsson, and M. Otter. Innovations for
Future Modelica. In J. Kofranek and F. Casella, editors, Proc.
of the 12th International Modelica Conference. LiU Electronic
Press, May 2017. URL http://www.ep.liu.se/ecp/132/076/
ecp17132693.pdf.

C. W. Gear. Differential-algebraic equation index transformations.
SIAM J. Sci. Stat. Comput., 9(1):39 – 47, 1988.

C. W. Gear, G.K. Gupta, and B. Leimkuhler. Automatic integra-
tion of euler–lagrange equations with constraints. J. Comp.
Appl. Math., 12-13:77 – 90, 1985.

E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A Fast
Procedure for Computing the Distance Between Com-
plex Objects in Three-Dimensional Space. IEEE Jour-
nal of Robotics and Automation, 4(2):193–203, 1988.
URL https://graphics.stanford.edu/courses/cs448b-00-winter/
papers/gilbert.pdf.

J. Gregory. Game engine architecture. AK Peters/CRC Press,
2014.

M. Hellerer, T. Bellmann, and F. Schlegel. The DLR Visual-
ization Library - Recent development and applications. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc. of
the 10th International Modelica Conference. LiU Electronic
Press, March 2014. URL http://www.ep.liu.se/ecp/096/094/
ecp14096094.pdf.

C. Höger, A. Mehlhase, C. Nytsch-Geusen, K. Isakovic, and
R. Kubiak. Modelica3D - Platform Independent Simulation
Visualization. In M. Otter and D. Zimmer, editors, Proc. of
the 9th International Modelica Conference, Sept. 2012. URL
http://www.ep.liu.se/ecp/076/049/ecp12076049.pdf.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban,
D.E. Shumaker, and C.S. Woodward. SUNDIALS: Suite
of Nonlinear and Differential/Algebraic Equation Solvers.
ACM Transactions on Mathematical Software, 31(3):363–396,
September 2005.

A.C. Hindmarsh, R. Serban, and A. Collier. User Documenta-
tion for IDA v2.8.2. Technical Report UCRL-SM-208112,
Lawrence Livermore National Laboratory, 2015.

A. Hofmann, L. Mikelsons, I. Gubsch, and C. Schubert. Simu-
lating Collisions within the Modelica MultiBody Library. In
Hubertus Tummescheit and Karl-Erik Arzen, editors, Proc. of
the 10th International Modelica Conference. LiU Electronic
Press, March 2014. URL http://www.ep.liu.se/ecp/096/099/
ecp14096099.pdf.

J. Hopcroft and R. Tarjan. Efficient planarity testing. Journal of
the ACM (JACM), 21(4):549–568, 1974.

B. Kenwright. Generic Convex Collision Detection
using Support Mapping. Technical report, 2015.
URL https://www.semanticscholar.org/paper/Generic-
Convex-Collision-Detection-using-Support-Kenwright/
4f0f2d95375db7cfdbfaa345847418789d8cb970.

A. Neumayr and M. Otter. Collision Handling with Variable-step
Integrators. In Proceedings of the 8th International Workshop
on Equation-Based Object-Oriented Modeling Languages
and Tools, EOOLT’17, pages 9–18. ACM, 2017. URL https:
//modiasim.github.io/Modia3D.jl/resources/documentation/
CollisionHandling_Neumayr_Otter_2017.pdf.

A. Neumayr and M. Otter. Component-Based 3D Modeling
of Dynamic Systems. In M. Tiller, H. Tummescheit, and
L. Vanfretti, editors, Proceedings of the American Modelica
Conference, Oct. 2018. URL https://elib.dlr.de/124126/1/
2018_Modelica_Modia3D.pdf.

R. Nystrom. Game Programming Patterns. Genever Benning,
2014. URL http://gameprogrammingpatterns.com/.

M. Otter and H. Elmqvist. Transformation of Differential Alge-
braic Array Equations to Index One Form. In J. Kofranek and
F. Casella, editors, Proc. of the 12th International Modelica
Conference, May 2017. URL http://www.ep.liu.se/ecp/132/
064/ecp17132565.pdf.

M. Otter, H. Elmqvist, and S. E. Mattsson. The New
Modelica MultiBody Library. In P. Fritzson, edi-
tor, Proc. of the 3rd International Modelica Confer-
ence, Nov. 2003. URL https://www.modelica.org/events/
Conference2003/papers/h37_Otter_multibody.pdf.

M. Otter, H. Elmqvist, and J. Diaz Lopez. Collision Handling for
the Modelica MultiBody Library. In Gerhard Schmitz, editor,
Proc. of the 4th International Modelica Conference, March
2005. URL https://modelica.org/events/Conference2005/
online_proceedings/Session1/Session1a4.pdf.

P. Sahlin and P. Grozman. IDA Simulation Environment - a
tool for Modelica based end-user application deployment.
In P. Fritzson, editor, Proc. of the 3rd International Mod-
elica Conference, Nov. 2003. URL https://www.modelica.org/
events/Conference2003/papers/h33_Sahlin.pdf.

G. Snethen. Xenocollide: Complex collision made simple. In
Scott Jacobs, editor, Game Programming Gems 7, pages 165–
178. Charles River Media, 2008.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

	Session 3D: New Applications
	Algorithms for Component-Based 3D Modeling

