
 

WWW.BROOKES.AC.UK/GO/RADAR 

RADAR 
Research Archive and Digital Asset Repository 
 

 

Kapadinou, M, Lee, S and Bolanos-Garcia, V 
 
 BubR1 kinase: protection against aneuploidy and premature aging 
 
Kapadinou, M, Lee, S and Bolanos-Garcia, V (2015) BubR1 kinase: protection against aneuploidy and premature aging. Trends 
in Molecular Medicine, 21 (6). pp. 364-372. 
 
doi: 10.1016/j.molmed.2015.04.003 

 
This version is available: https://radar.brookes.ac.uk/radar/items/04a4269e-59b8-4132-a15b-aba2e406ad0c/1/ 
 
 
Available on RADAR: July 2016  
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for 
personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted 
extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed 
in any way or sold commercially in any format or medium without the formal permission of the copyright holders.  
 
This document is the postprint version of the journal article. Some differences between the published version and this 
version may remain and you are advised to consult the published version if you wish to cite from it. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220158063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://radar.brookes.ac.uk/radar/items/04a4269e-59b8-4132-a15b-aba2e406ad0c/1/


1 
 

 

BubR1 kinase: protection against aneuploidy and premature aging 

 

 

Maria Kapanidou1, Semin Lee2, and Victor M. Bolanos-Garcia1,* 

 

 

 

1Faculty of Health and Life Sciences, Department of Biological and Medical 

Sciences; Oxford Brookes University; Oxford, England, OX3 0BP. 

 

2Center for Biomedical Informatics, Harvard Medical School, Harvard University. 10 

Shattuck St., Boston, Massachusetts, USA 02115. 

 
 

 

*Author for correspondence (vbolanos-garcia@brookes.ac.uk) 

 

 

*Running title: Prevention of aging by BubR1. 

 

Keywords: BubR1; Spindle Assembly Checkpoint (SAC); Genome Instability; 
premature aging; kinetochore; chromosome segregation. 

 

 

 

 



2 
 

Abstract 

The multidomain protein kinase BubR1 is a central component of the mitotic 

assembly checkpoint (SAC), an essential self-monitoring system of the eukaryotic 

cell cycle that ensures the high fidelity of chromosome segregation by delaying the 

onset of anaphase until all chromosomes are properly bi-oriented on the mitotic 

spindle. Here we discuss the roles of BubR1 in the SAC and the implications of 

BubR1-mediated interactions that protect against aneuploidy. We also describe the 

emerging roles of BubR1 in cellular processes that extend beyond the SAC, discuss 

how mice models have revealed unanticipated functions for BubR1 in the regulation 

of normal aging, and the potential role of BubR1 as therapeutic target for the 

development of innovative anticancer therapies.  
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The spindle assembly checkpoint (SAC) 

Mitosis equally distributes the duplicated genome to each of the nascent daughter 

cells. Defects in chromosome segregation can lead to aneuploidy (see Glossary), a 

condition that is implicated in tumourigenesis [1,2]. Attachment of mitotic 

chromosomes to spindle microtubules is mediated by the kinetochore, a 

proteinaceous framework that assembles onto the centromeric region of 

chromosomes (Figure 1). Notably, the kinetochore functions as a structural platform 

and as a signalling hub that coordinates chromosome attachment, spindle assembly 

checkpoint (SAC) activity and cell cycle progression from metaphase to anaphase 

(reviewed in [3-5]). In brief, the SAC is a cell signalling cascade that prolongs mitosis 

until all chromosomes form stable bipolar attachments to spindle microtubules (Box 

1). The core components of the spindle checkpoint are highly conserved and include 

a number of Serine/Threonine kinases such as budding uninhibited by 

benzimidazoles 1 (Bub1), budding uninhibited by benzimidazoles related 1 (BubR1) 

and monopolar spindle 1 (Mps1).  

 

The mitotic checkpoint kinase Bub1 was first identified in a screen for budding yeast 

mutants that were sensitive to a spindle destabilising drug benomyl [6]. Bub1 is 

required for chromosome congression; the recruitment to the kinetochore of mitotic 

arrest deficient 2 (Mad2), BubR1 and the centromere-associated proteins CENP-E 

and CENP-F in cells with an unsatisfied mitotic checkpoint [7]; and for the 

establishment and/or maintenance of efficient attachment to spindle microtubules [8]. 

Bub1 kinase activity is known to be important for the recruitment of Shugoshin-like 1 

(Sgo1) and the chromosomal passenger complex (CPC) to the centromere [9]. In 

fission yeast Bub1 phosphorylates H2A, a post-translational modification that 
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appears to be important for the maintenance of sister chromatid cohesion.  

 

Mps1 is a dual specificity checkpoint kinase. Mps1 kinase activity is required for the 

kinetochore localisation of Bub1, BubR1, Mad1 and Mad2 [10-13]. Reciprocal co-

immunoprecipitation studies using cells lysates indicated that Mps1 directly interacts 

with BubR1 [14]. Interestingly, the complex was also detected in lysates of Ndc80 

and Nuf2 co-depleted cells, suggesting that the BubR1-Mps1 complex can be 

formed outside kinetochores [14]. In addition to Mps1, multiple mitotic kinases (Cdk1, 

Plk1 and Aurora B) and CENP-E have been implicated as important regulators of 

BubR1 phosphorylation in human cells [15, 16].  

 

BubR1 is a multidomain protein (Figure 2A) that is normally present throughout the 

cell cycle and known to play roles in several biological processes such as 

chromosome segregation, DNA repair, differentiation of postmitotic neurons, and 

ciliogenesis [17, 18]. BubR1 hyperphosphorylation correlates with mitotic 

progression and induces microtubule depolymerisation [15-17]. A pool of BubR1, 

together with Bub3, Mad2 and Cdc20, forms part of the Mitotic Checkpoint Complex 

(MCC) the assembly formed in response to improper chromosome attachment with 

the mitotic spindle to inhibit the Anaphase Promoting Complex/Cyclosome (APC/C) 

[19]. The target of the mitotic checkpoint is Cdc20, a substrate specific subunit of the 

APC/C that catalyzes the polyubiquitination of Cyclin B and Securin, targeting them 

for eventual degradation by the proteosome. The delay imposed on mitotic exit is of 

a transient nature: cells with an unsatisfied checkpoint die or exit mitosis as a result 

of Cyclin B degradation or inactivation to enter the next G1 as single tetraploids. 
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BubR1 is a versatile multidomain protein 

Five main regions can be identified in the BubR1 polypeptide chain: (i) two units of 

the KEN box motif located in the N-terminal region and one putative destruction box 

(D-box) motif located in the C-terminal region;  (ii) a N-terminal fragment that is 

organised as a triple-tandem arrangement of the tetratricopeptide repeat (TPR) motif 

that contributes to the kinetochore localisation of BubR1 (Figure 2B); (iii) an 

intermediate, non-conserved region of low structural complexity that is required for 

the binding to Bub3 (Figure 2C); (iv) a region harbouring another Cdc20 binding site 

(referred to as IC20BD; Figure 2D); and (v) a C-terminal region that contains a 

catalytic serine/threonine kinase domain (Figure 2E). Mad3, a BubR1 homolog 

present in yeast, worms and plants, lacks the C-terminal catalytic domain. 

Importantly, there are no known species with both BubR1 and Mad3, suggesting that 

the functions performed by BubR1 in mammals may be carried out by Mad3 in the 

aforementioned organisms. 

 

The KEN box is a protein motif defined by consecutive lysine (K), glutamate (E), and 

asparagine (N) residues that often mediates substrate recognition and that is present 

in Bub1, BubR1 and Mad3. The KEN box motif is crucial for SAC function [20]. In 

BubR1 the first N-terminal KEN box is located within a flexible region of low 

complexity that extends from the TPR domain. This KEN box motif is required for the 

productive interaction of BubR1 with Cdc20 [20-22]. In human BubR1, another 

Cdc20 binding site has been mapped to a region referred to as IC20BD, and 

mediates the physical interaction of BubR1 with the Cdc20 WD40 repeat fold in a 

Mad2-independent manner [23, 24]. In human BubR1, the IC20BD region spans 

residues 490-560, in which six amino acids play an important role in binding to 
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Cdc20 [23]. Independent studies have confirmed the importance of the IC20BD 

region for binding Cdc20 and to elicit a proper SAC response [25, 26]. In one study 

the IC20BD region was named the ABBA motif, which refers to the identification of 

the motif in cyclin A, Bub1, BubR1, and Acm1 [25], whereas others referred to it as 

the Phe box because of the two phenylalanine residues that define the motif 

(FSIFDE in human BubR1) [26]. In the latter study a BubR1 putative C-terminal D-

box (consensus sequence RXXL) has also been implicated in binding Cdc20 [26].  

 

The interaction of BubR1 with Bub3, a protein that also adopts a canonical WD40 

repeat fold, is essential for the kinetochore localisation of BubR1 [27]. In human 

BubR1, a short conserved stretch of about 40 amino acid residues, the Gle2-binding-

sequence (GLEBS) motif, defines the Bub3 binding site (residues 400-440) [27]. The 

crystal structure of a complex formed between yeast Bub3 and a peptide that mimics 

the GLEBS motif of Mad3, the BubR1 yeast orthologue (Figure 2D) has revealed that 

the GLEBS motif forms an extensive interaction surface along the top surface of the 

WD40 repeat fold of Bub3 [27]. Disruption of the GLEBS motif-Bub3 protein interface 

results in extensive defects in chromosome segregation.  

 

In addition to binding the GLEBs motifs of BubR1 and Bub1, Bub3 also binds to the 

N-terminal Met–Glu–Leu–Thr (MELT) motif repeat of the kinetochore protein Knl1. 

Phosphorylation of the threonine residue of the MELT motifs by the mitotic 

checkpoint kinase Mps1 is required for the recruitment of Bub1 and Bub3 to the 

kinetochore [28-31]. Accordingly, preventing the phosphorylation of Knl1 by Mps1 

results in attenuated binding of the BUB proteins to Knl1, chromosome congression 

defects and failure to mount an appropriate checkpoint response [28, 30, 31]. The 
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fact that N-terminal Knl1 also binds to the TPR domains of Bub1 and BubR1 [32, 33] 

suggests a cooperative mode of interaction between the BUB mitotic checkpoint 

proteins and Knl1.  

 

The requirement of BubR1 kinase activity in the SAC and for the stabilisation of 

proper kinetochore-microtubule attachments remains unclear [34-36]. Some studies 

have shown that BubR1 from Xenopus laevis can inhibit the APC/C even after 

introduction of mutations that inactivate the kinase domain [36], whereas other 

studies on Xenopus and in other organisms have reported that BubR1 kinase activity 

is crucial in the process (reviewed in [17]). Similarly, some reports have suggested 

that BubR1 kinase activity is important for efficient chromosome capture and 

congression [37, 38], while others have concluded that inactivation of the kinase 

domain has a minimal effect on chromosome attachment [16, 34]. Some authors 

have suggested that BubR1 acts as a pseudokinase in SAC signaling [39], whereas 

others have found that BubR1 functions extend beyond the SAC including a role in 

DNA repair, ciliogenesis and aging [40-42]. Studies conducted in flies have shown 

that chromosome congression delay and unstable metaphase alignments occur in 

cells that express a kinase-dead BubR1 mutant (K1204A), thus indicating that in 

Drosophila BubR1 catalytic activity is required for correct kinetochore-microtubule 

attachments [43]. Furthermore, it has been reported that BubR1 from vertebrates 

undergoes auto-phosphorylation when the SAC is unsatisfied, and that it serves as 

the substrate of other kinases such as Polo-like kinase 1 (Plk1) and cyclin-

dependent kinase 1 (Cdk1) [16, 44].  

 

Clues about BubR1 catalytic function can be derived from a 3D structure model of 
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BubR1 kinase domain (residues 764-1044) that was generated by comparative 

modeling. The structure model reveals that C-terminal BubR1 shares the typical 

architecture of a protein kinase domain (Figure 2E). This structural feature and the 

conflicting data on the role of BubR1 kinase activity in SAC signaling suggest that 

the discrepancies reported can be due to factors such as different assays used to 

measure SAC function, the extent of depletion of the endogenous protein in different 

studies and/or variations in SAC function and mode of regulation that are organism-

specific [45, 46].  

 

The importance of post-translational modifications 

An additional layer of complexity in SAC regulation is represented by the extent of 

post-translational modifications of SAC components, including BubR1, in which 

phosphorylation, acetylation and ubiquitylation affect the stability, reversibility, sub-

cellular localisation, turnover, and hierarchical order of assembly/disassembly of 

SAC subcomplexes [47-49]. For instance, in prometaphase, BubR1 is acetylated by 

the histone acetyltransferase P300/CBP-associated factor (PCAF) at residue K250, 

a modification that protects BubR1 from degradation by APC/C–Cdc20 [50, 51]. 

When the checkpoint is satisfied by the proper attachment of microtubules to the 

kinetochores, BubR1 is deacetylated at K250 and becomes a substrate of APC/C-

Cdc20-dependent proteolysis. Thus, BubR1 acetylation/deacetylation functions as a 

molecular switch that regulates the conversion of BubR1 from an inhibitor of the 

APC/C complex, to its substrate. BubR1 residue K250 has also been reported as the 

target site of the NAD+-dependent deacetylase SIRT2 in vitro and in vivo [52]. 

However, the physiological implication of the SIRT2-dependent acetylation of BubR1 

remains unclear [52]. Furthermore, it has been reported that BubR1 K668 is 
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acetylated by the acetyltransferase CBP and deacetylated by SIRT2 [53]. Unlike the 

acetylation of BubR1 K250, acetylation at K668 promotes the ubiquitination and 

degradation of BubR1. Although the biological significance of BubR1 deacetylation 

by SIRT2 remains to be established, these studies suggest a complex mode of 

regulation of BubR1 levels by PCAF, CBP, and SIRT2 via the acetylation status of 

K250 and K668. 

 

BubR1 animal models of disease  

The observation that BubR1 protein levels decreased sharply in multiple tissues, 

including testis and ovary of normal mice age, first suggested that BubR1 acts as a 

central regulator of natural aging [42, 54]. Initial attempts to characterize the 

physiological implications of BubR1 deficiency were hindered by the fact that null 

mutant mice models (i.e. BubR1–/–) showed early embryonic lethality after 

implantation [42]. This problem was eventually overcome by the generation of 

hypomorphic BubR1 models that are viable, despite the fact that expression of 

BubR1 is reduced to approximately 10% of normal levels. Indeed, expression of 

BubR1 in mouse models is gradually reduced from normal levels to zero by the use 

of wild-type (+), knockout (–) and hypomorphic (H) alleles (Table 1). Heterozygous 

BubR1 knockouts show increased tumour formation when challenged with a 

carcinogen [42, 54, 55]. Such mice models have revealed unanticipated roles of 

BubR1 in the prevention of age-associated pathologies. The progressive reduction of 

BubR1 levels causes more aneuploidy in mice and mouse embryonic fibroblasts 

(MEFs). Reduced expression of BubR1 also affects male fertility at the levels of 

meiotic chromosome segregation, sperm number and fertilization [42]. Female mice 

expressing low levels of BubR1 also result in infertility which seems to be caused, at 
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least in part, by the accumulation of defects in meiotic chromosome segregation [42]. 

 

Mice with one hypomorphic and one knockout allele (BubR1–/H mice) express about 

4% of normal BubR1 protein levels. These mice exhibited premature chromosome 

separation and systemic near-diploid aneuploidy, which resembles the features 

observed in Mosaic Variegated Aneuploidy (MVA) patients [42, 55].  In contrast, no 

obvious abnormal phenotypes, including detectable aneuploidy, have been reported 

in Bub1R+/– and BubR1+/H mice. Comparison of the anaphase figures with lagging 

chromosomes which are larger in BubR1–/H and BubR1H/H compared to BubR1+/–, 

BubR1+/H and BubR1+/+ indicate that chromosome segregation accuracy is largely 

affected when the levels of BubR1 in the cell fall below a certain threshold 

concentration. Interestingly, MEF cultures of the BubR1H/H knock-in mice had 

substantially slower growth rates and a large number of cells positive for 

senescence-associated β-galactosidase activity than BubR1+/+ cultures [54]. BubR1–

/H MEFs had even more profound growth inhibition and senescence-associated β-

galactosidase activity. The data suggest that senescence has a good correlation with 

the degree of aneuploidy.  

 

BubR1 and aging  

In women, aging  of the reproductive system leads to increased abortions and birth 

defects, including Down syndrome [56, 57]. In mice models, BubR1-deficiency 

results in the early onset of aging-associated phenotypes and severely shortened 

lifespans. In contrast to homozygous BubR1 knockouts, which die as pre-

implantation stage embryos, heterozygous knockouts are viable [42, 54, 55]. The 

median lifespan for BubR1+/+ and BubR1+/H mice is similar at around 15 months, 
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whereas BubR1–/H mice can survive only a few hours after birth, with respiratory 

insufficiency as the probable cause of death [42]. Morphological, biochemical, and 

functional analyses of BubR1H/H mice have shown that BubR1 can prevent the onset 

of early vascular aging because arterial wall thickness and inner diameter were 

significantly reduced in this mutant mice [58]. Furthermore, functional studies 

showed reduced elastic properties of pressurized carotid arteries of the BubR1H/H 

mice [58]. These findings demonstrate that BubR1 insufficiency in mice results in 

phenotypic changes reminiscent of vascular aging in humans. Thus, BubR1 

deficiency increases the risk of stroke and suggests a role for BubR1 in the 

prevention of early vascular aging [58]. It will therefore be important to establish 

whether this phenotype is specific for BubR1 deficiency.  

 

p16Ink4a is a cyclin-dependent kinase inhibitor and tumour suppressor that can be 

used as biomarker. In cells expressing the INK-ATTAC transgene under the control 

of the p16Ink4a promoter, treatment with AP20187 can selectively induce apoptosis, 

leading to clearance of these cells [54]. Remarkably, the late-life clearance of 

senescent cells attenuated the progression of age-associated decline in the 

BubR1H/H;ATTAC hypomorphic mouse model. BubR1H/H;ATTAC mice survived to 

adulthood and were normal in appearance and size at birth, however, slow postnatal 

growth was noticed shortly afterwards [54]. Furthermore, two months and older 

BubR1H/H;ATTAC mice developed cataracts, reminiscent of age-associated cataracts 

in humans. Another striking characteristic of these mice was the severe impairment 

of the mitotic checkpoint and the development of diverse age-associated 

pathologies, including a premature decline of total body fat, infertility, lordokyphosis, 

sarcopenia, cardiac arrhythmias, arterial wall stiffening, impaired wound healing and 
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dermal thinning [54, 59].  

 

Mosaic Variegated Aneuploidy (MVA) syndrome is a rare human disorder 

characterized by inaccurate chromosome segregation [60, 61]. Children with MVA 

syndrome die at an early age, are cancer prone, and have progeroid features such 

as facial dysmorphisms, short stature, and cataracts [62, 63], supporting the view 

that the down-regulation of BubR1 expression can trigger cellular processes 

associated with aging. The majority of MVA cases are linked to mutations in BubR1 

that result in low expression levels of this protein. Further insight into the relationship 

between MVA and aging has been obtained from a mouse model that carries the 

BubR1 nonsense mutation 2211insGTTA, resulting in expression of a BubR1 protein 

which lacks the C-terminal kinase domain [60]. BubR1+/GTTA mice showed a reduced 

lifespan (93 weeks compared to 102 weeks for wild type mice) and acceleration of 

early age-related features such as muscle wasting and cataract formation [64]. 

Furthermore, low levels of BubR1 in these mice promoted aneuploidy and tumour 

growth induced by chemical carcinogens [64]. The BubR1+/GTTA mouse model 

demonstrated that a single copy of truncated BubR1 compromises longevity and 

health span, raising the intriguing possibility that mono-allelic variations in BubR1 

may account for different aging rates that are observed across the general 

population.  

 

Mutations in BubR1 associated with MVA, together with the observation that BubR1 

abundance declines with age in various mouse tissues, support the notion that 

BubR1 contributes to chronological aging. Further support comes from studies on 

mice expressing Flag-BubR1 under the control of an ubiquitous promoter; generated 
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in an attempt to define if the enhanced expression of BubR1 can extend healthy 

lifespan [65]. Expression of Flag-BubR1 corrected all premature aging phenotypes of 

BubR1H/H knock-in mice [65]. Moreover, high levels of expression of BubR1 in this 

model throughout life extended the lifespan [65].  

 

Downregulation of BubR1 might be a mechanism that contributes to age-related 

female infertility and certain birth defects. Whether the pathology of aging is a unique 

feature of hypomorphic BubR1 or the results of a defective SAC function is currently 

unclear. Therefore, it will be important to establish if other SAC components have a 

similar role in the process of aging. Overall, the studies of mice models indicate that 

sustaining high expression levels of BubR1 maintains genomic integrity and 

attenuates the progression of age-associated decline.  

 

The potential of BubR1 as a drug target   

A number of cancer-associated missense and nonsense mutations in BubR1 have 

been reported (Figure 3 and Table 2). Earlier observations showing that the 

weakening of SAC protein components inhibited tumour cell growth suggested that 

the SAC signalling pathway was a good target for cancer therapy (reviewed in [66]). 

Indeed, a number of inhibitors that target the SAC kinases Aurora B and Mps1 have 

entered clinical trials, including the Aurora kinase inhibitors AT9283 for the treatment 

of Non-Hodgkins lymphoma (Phase 1 completed, NCT00443976), and PF-03814735 

for the treatment of histologically or cytologically confirmed advanced malignancies 

(Phase 1 completed, NCT00424632). Recently developed Mps1 inhibitors are 

BAY1161909 (in Phase 1 trial for the treatment of solid tumours, NCT02138812), 

MPI-0479605 and AZ3146 [67, 68]. However, the use of small molecule inhibitors 
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targeting the ATP-binding site of protein kinases, including all the inhibitors listed 

above, remains controversial. There are concerns regarding the lack of specificity of 

these molecules, which may result in significant side effects. Furthermore, the use of 

ATP-binding competitors to inhibit protein kinases often leads to the rapid 

development of drug resistance [69].  

An innovative approach to circumvent the problem of drug resistance consists in the 

targeting of protein-protein interfaces (PPI). The design of small-molecules that 

target PPI upon SAC formation seems more advantageous than targeting the 

catalytic sites of mitotic checkpoint kinases. For instance, targeting BubR1 may be a 

good strategy to interfere with the assembly of the mitotic checkpoint complex (MCC) 

in order to control the levels of free and MCC-bound Cdc20. This may be of 

therapeutic interest because Cdc20 induces apoptosis through degradation of anti-

apoptotic proteins and mitotic exit via degradation of cyclin B. Hence, the tight 

control of MCC bound-Cdc20 levels can be used to determine whether cells die in 

mitosis or undergo slippage in response to mitotic arrest [70]. Importantly, the 

structural and chemical features of PPI are far more diverse than those defining the 

catalytic and/or substrate binding sites. Moreover, the disruption of a specific PPI 

should leave other interactions mediated by one (or both) target protein(s) 

undisturbed, thus minimising undesired side effects.  

 

Innovative approaches for the targeting of PPI include the design of stapled peptides, 

a strategy that combines well-established antibody techniques with the use of small 

molecules designed to fill occluded cavities at PPIs [71], and the computational 

comparison of cavities in interfaces of transient protein complexes [72, 73]. It will be 

important to clarify molecular details of the mode of interaction between BubR1 and 
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its different interaction partners and to investigate if the disruption of specific BubR1-

PPIs can be used to control mitotic progression in aberrant SAC signalling.  

 

There are cases where is advantageous to affect a PPI to enhance the affinity of the 

interaction, rather than to disrupt it [71-73]. In this regard, is worth mentioning the 

PPI that is defined by BubR1 in complex with the B56 regulatory subunit of Protein 

Phosphatase 2A (PP2A) [74, 75]. BubR1 binding to B56-PP2A occurs through a 

conserved motif that is phosphorylated by Cdk1 and Plk1. BubR1 counteracts Aurora 

B kinase activity at improperly attached kinetochores through the recruitment of B56-

PP2A complexes [74]. Formation of the B56-BubR1 complex also promotes motor-

driven chromosome movement towards the metaphase plate [76], and failure of 

BubR1 to recruit B56-PP2A contributes to the chromosome congression defects in 

cells derived from patients with the MVA syndrome. It would be interesting to 

investigate if small size compounds can stabilize the BubR1-B56 complex to 

reestablish proper SAC function in those patients.    

 

There is evidence that the healthspan of mice can be extended upon clearance of 

senescent cells [54], and that sustained high expression levels of BubR1 extend 

lifespan and delays age-related deterioration and aneuploidy in several tissues [42, 

54]. Defining the precise role(s) of BubR1 in cellular senescence should aid the 

development of innovative strategies to clear senescent cells and/or inhibit their 

effects in aging [77]. This strategy, together with the fine-tuning control of BubR1 

levels, can constitute a novel therapeutic window for the treatment and perhaps the 

prevention of age-associated diseases thus extending healthy lifespan. 
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The genetic screening of BubR1 in the general population or in groups of individuals 

suffering from conditions associated with BubR1 deficiency should provide important 

molecular insights into which BubR1 variants can predispose to the rapid decrease 

of healthy lifespan and contribute to clarify pending questions in the field (Box 2). 

 

Concluding remarks 

The combination of traditional structural biology approaches with emerging 

technologies such as single molecule methods and super-resolution microscopy has 

revealed new details of BubR1 regulation and its functions in health and disease. 

The advances have provided new insights into the exquisite regulation of the SAC 

including molecular details of the remodelling of mitotic checkpoint assemblies, and 

how the complexes ensure selectivity to SAC signalling. The study of diverse mice 

models suggest that sustaining high BubR1 levels help to preserve genomic integrity 

by attenuation of SAC defects, improper kinetochore-microtubule attachment and 

age-associated decline. It will be important to study further BubR1 alleles alone and 

in combination with targeted alleles of other SAC components in mice models to 

define more precisely the role of BubR1 in diseases associated with aging. The 

multidisciplinary study of BubR1 should advance our understanding of age-

associated processes in health and disease and also clarify the true potential of 

BubR1 as a novel promising target for the treatment of a broad spectrum of human 

cancers underpinning aneuploidy and age-associated malignancies. 
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Boxes 

Box 1. A simplified view of the Spindle Assembly Checkpoint (SAC). The mitotic 

checkpoint is a central control mechanism of the cell cycle, which prevents the 

separation of sister chromatids during cell division in cases of segregation errors 

(Figure 1). Improper bipolar attachment leads to the arrest of cells in mitosis through 

inhibition of the Anaphase Promoting Complex/Cyclosome (APC/C) by the Mitotic 

Checkpoint Complex (MCC), which is composed of BubR1, Bub3, Mad2, and Cdc20. 

Possible outcomes of undetected/uncorrected chromosome segregation errors 

include aneuploidy, tumourigenesis and premature aging. A number of mitotic 

checkpoint proteins are recruited to unattached kinetochores when the checkpoint is 

unsatisfied. After proper bipolar attachment and alignment of all chromosomes at the 

center of the cell, APC/C inhibition is released, thus allowing chromosome 

separation and mitotic progression. In humans, failure of the mitotic checkpoint is a 

major determinant of age-related genetic disorders, of aberrant chromosome 

segregation and genome instability and represents the leading cause of pregnancy 

loss, birth and development defects.  
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Box 2. Outstanding Questions  

• How do phosphorylation and dephosphorylation cascades acting upon BubR1 

affect normal aging and genome stability?  

• What are the post-translational modifications (other than acetylation) that 

regulate BubR1 levels in the cell? 

• How does BubR1 link the mitotic checkpoint with signalling networks that 

regulate aging and apoptosis, and what are the molecular details of the 

interactions? 

• How does Bub1 affect BubR1 and Cdc20 kinetochore localisation?  
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Figure legends 

Figure 1. The spindle assembly checkpoint (SAC). This monitoring mechanism of 

higher organisms detects and corrects errors in chromosome segregation and 

ensures genome stability. 

 

Figure 2. Structure of human BubR1. A. Overall domain organisation of human 

BubR1. B. 3D structure of TPR-BubR1 in complex with Knl1 Protein Data Bank 

(PDB) entry 3SI5. C. 3D structure of Cdc20 in complex with the N-terminal KEN box 

of BubR1. PDB entry 4GGD. D. 3D structure of GLEBS-Mad3 in complex with Bub3, 

PDB entry 2I3T. E. 3D structure model of the BubR1 kinase domain. The residue 

substitutions associated with disease are highlighted in stick-ball representations. 

The 3D structure was generated by comparative modelling.   

Abbreviations: GLEBS, Bub3 binding region; IC20BD, second Cdc20 binding site; 

KEN, KEN boxes; TPR, tetratricopeptide repeat motif. 

 

Figure 3. BubR1 and disease. Mapping of disease-associated mutations by single 

amino acid substitutions, nonsense (ns) and truncated protein fragments (∆) onto the 

human BubR1 polypeptide. 

Abbrevations: ATLL, Adult T-cell leukemia/lymphoma; MVA, Mosaic Variegated 

Aneuploidy; PCS, premature chromatid separation.  

Glossary   

Aneuploidy: a prevalent form of genetic instability observed in many types of 

human cancer. Aneuploidy is a condition in which premature separation of sister 

chromatids result in the loss or gain of chromosomes in daughter cells.  
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Cell cycle: The series of coordinated events in space and time that take place in a 

cell leading to its division and replication to produce two descendant (daughter) cells. 

Cellular senescence: an important mechanism to constrain the malignant 

proliferation of damaged or dysfunctional cells to form tumours.  

Chromosomal passenger complex (CPC): a macromolecular assembly composed 

by Aurora B kinase, the inner centromere protein (INCENP), surviving and borealin. 

The CPC regulates key mitotic events including correction of errors in chromosome-

microtubule attachments; stimulation of the SAC and the regulation of cytokinesis.  

Kinetochore: a large macromolecular assembly that acts as the site for attachment 

of chromosomes to microtubule polymers that pull sister chromatids apart during cell 

division. 

Mitosis: the process that takes place in the nucleus of a dividing cell, typically 

consisting of a series of successive stages: prophase, metaphase, anaphase, and 

telophase, and resulting in the formation of two new nuclei each with the same 

number of chromosomes as the parent nucleus. 

Mosaic variegated aneuploidy (MVA): a rare autosomal recessive human disorder 

characterized by inaccurate chromosome segregation and high rates of near-diploid 

aneuploidy. A number of BubR1 mutations have been associated with mosaic 

variegated aneuploidy. MVA syndrome has clinically heterogeneic features, including 

growth deficiency (with prenatal onset), mental retardation, microcephaly, facial 

dysmorphisms, cataracts and other eye abnormalities, short lifespan, and increased 

risk for childhood cancers such as rhabdomyosarcoma, Wilms’ tumour and leukemia.  
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Spindle assembly checkpoint (SAC): a conserved mechanism of higher organisms 

that monitors the proper assembly of the mitotic spindle and blocks the onset of 

anaphase until the kinetochores of all chromosomes are properly bi-oriented and 

attached to spindle microtubules. The protein kinases Bub1, BubR1, Mps1 and 

Aurora B play central roles in this process, working together with other kinetochore-

bound components including Bub3, Cdc20, Mad1 and Mad2. Importantly, mitotic 

checkpoint proteins obey a temporal order of assembly where the recruitment to 

kinetochores of the later proteins is dependent on the prior recruitment of early ones.  
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Tables 

Table 1. BubR1 mice modelsa 

Genotype Phenotype Reference 

 

BubR1+/+ 

 

Wild-type mice that undergo a normal aging 

process. Lifespan is approximately 15 months. 

 

[42, 54, 55] 

 

BubR1+/– Haploinsufficiency of BubR1 results in a slight 

decrease in lifespan (90 versus 102 weeks). Mice 

lack obvious abnormal phenotypes, however 

present splenomegaly and abnormal 

megakaryopoiesis. Development of lung and 

intestinal cancer in cells challenged with the drug 

azoxymethane.  

[42, 54, 55, 

64] 

 

BubR1+/H No obvious abnormal phenotypes. Median lifespan 

is similar to that of BubR1+/– and BubR1+/H mice (15 

months). 

[42, 54, 55] 

 

BubR1H/H Mice show normal size and appearance at birth but 

post-natal growth gradually slows. The mice 

develop some typical features of aging: short 

lifespan, cataracts, loss of subcutaneous fat, 

cachectic dwarfism, lordokyphosis, and impaired 

wound healing. Mice also show aneuploidy and 

infertility. No spontaneous tumourigenesis. Lifespan 

approximately 6 months. 

[42, 58] 

 

BubR1+/GTTA Resembles nonsense mutation 2211insGTTA found 

in MVA patients. Mice show early aging, including 

cataracts and the loss of skeletal muscle and fat. 

Reduced lifespan (93 weeks compared to 102 

weeks for wildtype mice). High aneuploidy and 

propensity for tumour growth induced by 

carcinogens. 

[64] 
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BubR1–/H 

 

Mice with one knockout allele and one hypomorphic 

allele that express only 4% of normal BubR1 protein 

levels. Mice exhibited premature chromosome 

separation and near-diploid aneuploidy, features 

that mimic those observed in MVA patients. Mice 

die shortly after birth possibly due to respiratory 

failure. 

[42, 55] 

 

BubR1K243R/+ 

 

Loss of BubR1 acetylation at residue K243. Mice 

show extensive chromosome missegregation and 

high tumour incidence, but no evident defects in cell 

development. Mice do not show the accelerated 

aging phenotype.  

[78] 

 

BubR1–/– 

 

Null mutant mice. Fail to survive beyond day 8.5 in 

utero due to extensive apoptosis. 

[42, 54, 55] 

 
aAbbreviations: MVA, mosaic variegated aneuploidy. 
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Table 2. Human BubR1 amino acid substitutions, insertion and deletion 
associated with diseasea.  

BubR1 
region 

 

 
Residue 

 
Domain 

 
Clinical condition 

 
Reference 

 
N-

terminal 
M40→T KEN box region Colorectal cancer [79] 

 
 Y155→C TPR-containing 

domain 
 
 

MVA 
 

[80] 

 E166→D ATLL [81]b 
 

 R224→STOP PCS syndrome [82] 
 A302→P Region of low 

structural 
complexity  

ATLL [81]b 
 

 Q349→A 
 
 
 

Q349→R 
 

Glioblastomas; breast 
cancer; colorectal 

cancer 
 

Glioblastomas 

[83, 84] 
 
 
 

[85] 

 Q363→R Breast cancer  
 

[86]  

 E390→D Close to the 
GLEBS motif 

region 

Wilms tumour [87] 

 
Middle 

 
523-538 deletion  

 
Region of low 

structural 
complexity  

 
ATLL  

 
[81]b 

 
  

 
R550→Q 

 
 

MVA; microcephaly; 
eye abnormality  

 

 
 

[80, 88] 

 612 deletion, 
frameshift  

PCS syndrome [82] 

 V618→A Colorectal cancer [89] 
 

 R727→C MVA [80] 
 738, insertion, 

frameshift 
MVA  

[60] 
 
 

C-
terminal 

R814→H  
Kinase domain 

 

MVA 
 

[60, 82] 

 L844→F Cryptorchidism [82, 90] 
 I909→T MVA; cerebellar 

hypoplasia  
             [82, 89] 

 Q921→H No observable effects [60, 82] 
 S928→STOP B-cell lymphoma [81]b 

 
 L1012→P MVA; hypothyroidism; 

anemia 
[60, 82] 

 1023 deletion  Colorectal cancer [79] 
 L1031→Q ATLL [81]b 
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aAbbreviations: ATLL, Adult T-cell leukemia/lymphoma; MVA, mosaic variegated 

aneuploidy; PCS, premature chromatid separation. 

bThese authors incorrectly number these residues; the numbering show here is 

correct. 


