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Abstract—In this paper, we present Bowlmap, a web-based
visualization tool designed for network monitoring and debug-
ging. Bowlmap offers a highly-customizable representation of
different measurement traces in the same network map. An
important feature of Bowlmap is that it provides the user a
convenient way to visualize both live and offline measurements
and combine results from different sources. In addition to its
flexibility, Bowlmap is designed to achieve low bandwidth usage,
which allows faster visualization updates to the viewers. We
demonstrate Bowlmap’s capabilities and performance through
several case studies to show how Bowlmap facilitates network
monitoring and debugging.

Index Terms—Visualization, network debugging, monitoring.

I. INTRODUCTION

Monitoring and debugging a network, composed of sev-

eral components, is a challenging task. Network researchers

typically rely on measurements performed by tools such as

tcpdump that capture traffic. However, as the number of nodes

and measurement sources increases, identifying and combining

the relevant information becomes a daunting task. In these

cases, visualization can significantly improve our understand-

ing of networked systems. Especially, real-time visualization

of data allows perceiving complex relationships between dif-

ferent parts of the system, and quickly ascertain whether

the results match expectations and also, identify unexpected

results. Such visualization may also help combine several

quantitative results to see the spatio-temporal relationships.

In this paper, we present such a visualization framework,

designed - initially - to visualize the BOWL (Berlin Open

Wireless Lab) wireless network at Technische Universität

Berlin (TUB), which is an outdoor WiFi network of 46 nodes

used both for Internet access and as a testbed for wireless

research [1], [2]. With Bowlmap, we achieve live network map

support that combines different measurement sources (e.g.,

node states, connectivity, routing state etc.) in an intuitive

manner, which allows us to monitor the changes to the network

and debug problems more easily. Given the fact that testbeds

undergo continuous changes, we extended our design to create

a modular and flexible visualization framework that can handle

these changes as well as completely new network set-ups.

In our framework, there are four main components: (1)

measurement sources, (2) measurement post-processing, (3)

a state server and (4) a client (see Fig. 1). The measure-

ment sources are, for instance, tools running in the network

Fig. 1. Bowlmap architecture.The arrows show the information flow from
measurement tools to the client browser. The black arrows represent the
information flow inside the Bowlmap architecture, whereas the gray flows
represent input to the Bowlmap.

and writing to a database back-end. The measurement post-

processing component collects information from the different

sources, and communicates them to a state server through an

XML-RPC-based interface. Through this interface, the state

server gathers all the new information about what and how

to visualize the measurements. The state-server also provides

an interface for client queries and transports a compact per-

client map object, which carries only the updates since the last

query. This way, the bandwidth necessary to send the updates

is reduced, allowing faster updates. Finally, the web frontend

at the client side periodically queries the state server and

processes the received map object to generate a visualization.

It is built using OpenLayers which is an open source Javascript

framework to embed dynamic maps into web pages.

Our design achieves the goal of flexibility by handling

purely measurement-related actions in separate components

(the measurement sources and measurement postprocessing).

Hence, no change is necessary to the network state server or

web frontend when there are modifications to measurement

sources, or when new measurement sources are added. Fur-

thermore, addition of new measurement sources do not require

building everything from scratch and can be incrementally
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added to the existing system. We evaluate the flexibility

and scalability of Bowlmap through several examples from

the BOWL network, as well as based on traces from other

networks.

The rest of the paper is organized as follows. In Section II,

we describe the Bowlmap design. In Section III, we present

several examples that show the representation ability, flexibil-

ity and scalability of Bowlmap. Section IV presents the related

work and we conclude with future work in Section V.

II. BOWLMAP DESIGN

Bowlmap [1] exports a browser-based front-end using

JavaScript, which allows users to view visualization of their

target network remotely and from a range of devices such

as hand-helds. Nowadays, each major browser technically

supports interactive applications and hence, a JavaScript pro-

gram works sufficiently consistently and efficiently on mod-

ern browsers. However, a challenge with implementing the

Bowlmap as a browser-based application is the requirement of

sending visualization data over the network. In order to scale,

the amount of information that needs to be communicated to

clients for visualization must be kept low. The work presented

in this paper is motivated by this challenge. In the rest of

this section, we explain the design of Bowlmap and how it

achieves flexibility and scalability in more detail.

A. Higher Flexibility with Postprocessing Plug-ins

In Bowlmap, we use measurement postprocessing scripts

to be able to modify or update visualizations easily (see

Fig. 1). These scripts read measurement sources and invoke

XML-RPC functions to draw the current network state, as

configured by the user, on the map. For instance, let’s assume

we would like to monitor node on and off states in the

network and depict this information by putting green icons

for nodes in “on” state, and red icons for nodes in “off”

state in their respective locations on the network map. Here,

the measurement sources provide node locations, and on and

off information to the measurement postprocessing script.

Then, this script communicates the updates about which nodes

should be represented as on or off to the state server. The state

server maintains the current network state, and upon receiving

client queries, transmits this information.

Postprocessing scripts provide high flexibility to developers

as they can be written in any language with an XML-

RPC library support. The main functionality of these scripts

include connecting to servers and databases (or accessing files)

and querying databases (or reading files). Combining these

with the state server XML-RPC functions provided by the

Bowlmap framework, it becomes possible to write scripts that

serve different visualization needs. Fig. 2 shows an example.

Following our previous example, this Python script adds nodes

to a Google maps layer, which can be in two states: “on” or

“off”. The script first lays the background as Google maps

satellite view (i.e., “set gmaps layer”), then scopes the view

to the current network range (i.e., “set map view”), and finally

specifies the underlying vector layer (i.e., “set vector layer”,

1

#Comment: Set state server & database connection

3stateserver= xmlrpclib.ServerProxy([URL])

query = [SQL query node location & state]

5db_connection = psycopg2.connect([conn_string])

7#Comment: initialize map view and layers

stateserver.set_gmaps_layer(’gsat’, ’Google S’,

9’G_SATELLITE_MAP’)

stateserver.set_map_view([x1],[y1],[x2],[y2])

11stateserver.set_vector_layer(’nodes’, ’Nodes’)

13#Comment: icons for nodes

stateserver.set_image(’node_on’,[image_URL], ’on’)

15stateserver.set_image(’node_off’,[image_URL], ’off’)

17#Comment: try querying the database

while main_loop:

19try:

result = mpslib.query(db_connection, query)

21except: [error handling code]

23#Comment: Go over query result

for index in range(len(result)):

25row = result[index]

node = row[’node’]

27coords = [float(obj[’lon’]), float(obj[’lat’])]

if (int(obj[’state’]) == 1):

29image = ’node_on’

else:

31image = ’node_off’

#Comment: add node with image and coords to nodes

layer

33stateserver.set_icon(node,node,image,20,’nodes’,

coords)

Fig. 2. Example code listing for adding nodes to a map.

“nodes” layer) (Lines 7-11) 1 The script next assigns two

different images to represent the “on” and “off” states (Lines

12-15). Then, in the main loop, it attempts to connect and

query the database (Lines 17-23) and if successful, for each

row in the query result, the corresponding icon based on the

node state is set on the map (Lines 23-33).

B. Reducing Bandwidth Use via Incremental Updates

As explained in the previous section, the measurement

postprocessing scripts update the map information using an

XML-RPC interface to the state server. In our implementation,

the state server maintains this information as a directed acyclic

graph (DAG), where each node of the DAG is a part of the map

description, timestamped based on its update time. To reduce

the communication overhead, the state server keeps track of

the last update time the map information sent to each client and

sends only the changes from this time on. This information is

compiled by traversing the DAG and including only the nodes

since the last client update. This partial DAG is sent to the

client as a JSON object. If nothing has changed since its last

update, a client would receive an empty JSON object.

Fig. 3 shows an example JSON object returned by the state

server, and the resulting map objects to be displayed on the

1To learn which XMLRPC functions to use for different actions, such as
setting the view, the developers can query the state server for a list of available
functions and the signatures of these functions.



Fig. 3. An example JSON object sent to a client with client id. The end
result is node icons, connected with a red line.

client browser (the figure contains only a subset of the edges

for the sake of simplicity of illustration). Note that while

measurement tools and postprocessing script must be written

by the Bowlmap user, from this point on, the user does not

need to know how the state server maintains the network state.

The partial DAG sent to the client in a JSON object contains

three types of child nodes (see Fig. 3). The client-id contains

the identifier assigned by the server to the client. At first, the

client receives the entire map, but for the next queries uses this

identifier to receive only the updates. Under client-id, there are

two subgraphs: The deleted and updated. Both updated and

deleted, subgraphs contain the actual elements to be deleted

or added/modified (respectively) on the client map such as

layers, features, and auxiliary information. The features node

contains objects to be drawn on the map. The auxiliary node

contains general and repetitious information such as attributes

and styles. For instance, both “icon1” and “icon2” have a

“style2” and “image1”. Using a DAG representation, we are

able to represent the repetitious information such as icon

images in a more compact manner and save from bandwidth.

Otherwise, for instance, if we had n nodes, we would have sent

this image information n times. Note that our solution may

increase the processing complexity at the server and client

sides, which both need to walk through this DAG to create

and process the JSON object, respectively. In Section III-C,

we show that indeed our object representation leads to high

savings in bandwidth, while the delay for displaying objects

remains reasonably low.

III. PERFORMANCE EVALUATION

The effectiveness of visualization is dependent on the ap-

plication, the data and the user [3]. To evaluate Bowlmap’s

effectiveness, we evaluate the following [3]:

• Effective summarization and high dimensionality: To

monitor and debug the network state with several different

components, it is necessary provide an overview of the

current situation and visualize several types of informa-

tion together almost real-time.

• Flexibility: Testbeds undergo several changes. Hence,

flexibility is essential to extend the visualization to cap-

ture these changes. Furthermore, it is highly desirable that

Fig. 4. Bowlmap visualizing the link quality among nodes in the BOWL
network. The green nodes are running experimental software, and the red
nodes are running our default configuration. The nodes with crossed-over
icons are off. The color of the lines represent the connectivity quality: green
being the highest quality, and gray represents no connection. The lines are bi-
colored, each part representing the connectivity quality in a given direction.
Hence, it is possible to view asymmetric links as well as the connectivity
quality distribution over all links.

the framework can be configured for entirely different set-

ups.

• Scalability: As a web-based visualization tool, Bowlmap

needs to maintain low client response times, which in turn

requires low bandwidth usage and short times to process

and visualize the map data.

A. Effective Summarization and High Dimensionality

In this section, we show examples from the BOWL wire-

less mesh testbed. Fig. 4 shows an example visualization of

BOWL based on its connectivity quality among different nodes

(measured by accounting of beacon frame receptions). Using

Bowlmap the answers to the questions that system adminis-

trators daily ask to manage their networks are summarized

in one map: How is each node performing and how is the

network doing overall? What are the critical nodes and links,

removal of which, partitions the network? What faults are

present, and where are they located? The effect of fixes are also

immediately visible, for instance, when nodes are displayed

with their correct icons.

Next, we describe a small example to show how Bowlmap

is able to bring together different types of information. The

main goal in this example is to monitor the operation of

a resource allocation controller in the BOWL network. The

resource allocation controller assigns the modulation rate and

transmission power on a per link basis. Its main goal is to

maintain the throughput performance comparable to the case
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Fig. 5. An example scenario where both PHY layer statistics and the
power/rate assignments are visualized to debug a resource control algorithm.

with the maximum transmission power. Fig. 5 depicts an

example: the sender eb-roof-1-avila transmits to two receivers,

tel-roof-1-avila and a-roof-1-avila. The link color corresponds

to transmit-power-level on the sender side, where maximum

is shown with red, medium power with yellow, and minimum

with green. The thickness of the link stands for the modulation

rate on the sender side, the thicker the line the higher the

chosen modulation rate. In this set-up, we see that the link

from eb-roof-1-avila to tel-roof-1-avila (Link 1) has a red

color, and it is less thick compared to the link to a-roof-1-

avila (Link 2). This confirms that Link 1 requires a higher

transmit power and a lower modulation rate compared to

Link 2. Furthermore, to monitor the environmental conditions

during the experiments, the measurement postprocessing script

sends different PHY layer information (like the noise level, the

airtime utilization of the radio interfaces and received signal

strength indicator (RSSI)) as constantly updated time series

graphs to the state server (see Fig. 5). Without Bowlmap, this

experiment can only be performed by opening several terminal

windows displaying output of several different measurement

scripts for noise, airtime utilization, and RSSI, and tcpdump

for each node, which becomes significantly hard to follow as

the number of nodes increases.

B. Flexibility

In this section, we give 3 examples to show the flexibility

of Bowlmap.

1) Visualizing a new wireless set-up: We used the Bowlmap

to monitor user associations to the newly deployed BOWL

access points (APs) during the IMC 2011 conference, for

which the BOWL team provided the Internet access. Thanks to

the browser-based operation, we could display the map in any

web-enabled phone. Fig. 6(a) shows a screenshot taken from

an Iphone, which shows how many clients (the green dots

in the figure) are attached to different APs (the AP icons).

Furthermore, by clicking on the AP icons, we get additional

information including the IP address, ssid of the AP as well

as the channel and the frequency the AP is operating.

2) Visualizing a mobile network trace: We used the traces

from multi-hop mobile wireless network in the MANIAC

(a) Iphone screenshot showing
the number of users connected to
BOWL APs in IMC 2011.

(b) A screenshot of Bowlmap visualizing an
OpenFlow network.

Fig. 6. Bowlmap used in different scenarios.

challenge 2 in the CRAWDAD website [4] (see Fig. 7). In

this example, the measurement post-processing script uses a

snapshot of the network topology from the topology traces

collected between 25-11-2007 and 26-11-2007, and computes

the closeness centrality of each node to understand the nodes

that play an important role in terms of routing. Essentially,

closeness centrality indicates how many adjacent routes a node

has, how well it is interconnected with other nodes in the

network. We noticed that the topology included disconnected

nodes, and computed the modified closeness centrality as

C(v) =
∑

w∈V−{v}

1
d(v,w) , where d is the distance between

nodes v and w, calculated using Dijkstra’s shortest path

algorithms [5]. In the figure, the node with the maximum

closeness value is placed in the center, and the other nodes

are randomly placed around this node. The distance to the

center node is calculated based on the normalized closeness

value (with respect to the node with maximum closeness):

the smaller the normalized closeness, the farther away the

node is from the center. The radius of the circles around each

wireless node as well as its grey-scale value also visually show

the normalized closeness value. Clicking on nodes displays

additional information about absolute as well as normalized

values. Hence, through Bowlmap, we could understand how

the nodes are connected to each other in the network (even if

we did not have node location information).

3) Visualizing an Openflow network from scratch: The final

example is the OpenFlow study by the OpenFlow project

team in T-Labs. The team set up their own Bowlmap (with

its own state server) in a couple of hours to validate the

operation of an OpenFlow switch. In an Openflow network,

the controller decides how to forward each packet of a flow,

if the Openflow switch does not already have a rule for this

flow. In their study, the network was created in Mininet [6]

and using Open vSwitch [7]. For their case, the flows are

depicted by connecting the nodes that report to be carrying

2http://www.maniacchallenge.org



Fig. 7. Closeness centrality of wireless nodes in MANIAC challenge.
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Fig. 8. The update time as the number of nodes increases. The results show
that the update time increases linearly and is around 2 s for 10,000 nodes.

the same flow by a line with the same color. The thickness of

the line indicates the bandwidth of the flow. Fig. 6(b) shows an

example topology with two routers, one OpenFlow switch, one

OpenFlow controller, and several hosts. Using the Bowlmap,

it was validated that the OpenFlow switch indeed forwards the

packets of flow B-E directly, as the rule for how to handle

this flow is already installed. For the other two flows with

no rules, the packets are first forwarded to the controller.

The least-bandwidth consuming flow was B-E and hence, its

corresponding line is the thinnest.

C. Scalability

In this section, we evaluate scalability in terms of:

• Network size: How long do map updates take when we

have 10,000 nodes?

• Network dynamics: How many map updates are required

to represent the BOWL network on average?

• Time: How do the update sizes change when we visual-

izing clients in a long-term measurement study [8]?

To show the scalability in terms on network size, we

artificially generated a varying number of new nodes at each

3 s interval for a total time of ≈ 10 mins. We started by

adding first 10 nodes until we reached 100 nodes, then started

adding 100 nodes until we reached a 1000 and so on. At each

update, a full update was sent, which included the “name”,

“location”, “position”, and “image identifier” of all nodes. The

time of retrieving an update includes all delays that occur from

Fig. 9. The size and duration of incremental updates at the client. At (1),
the first node updates are received, which is ≈ 10 K and requires ≈ 0.8 s to
be shown on the map. At (2), the OLSR updates start being received, and the
size of the updates increases to a few KB s with a display time of ≈ 200 ms.

the time the update is requested to the time the objects can

be visualized in the browser. These include: generating the

update tree and the JSON object, querying the CGI script

(which is typically around 50 ms) and HTTP GET Request

and Response for retrieving the JSON object. There was no

network delay, as we performed this study on the local host.

The Fig. 8 shows that the update time indeed increases linearly

as the number of nodes increases and reaches to ≈ 2 s for

10,000 nodes. Even though this delay could be noticeable by

the client, it still is a worst case delay, since, in a typical

network, node states and locations do not change significantly

to result in full updates.

To understand the scalability in terms of network dynamics,

we used the client side logs from the BOWL network, where

OLSR was running as the default routing protocol and the

post-processing measurement scripts visualized the OLSR

topology, which changes continuously. Fig. 9 shows the size

of the updates and how much time each update takes. The

first non-empty update is received at the 68th update when

nodes are added on the map (marked as (1) in Fig. 9). This

is a 10 K update, which takes around 0.8 s. Starting from

171th update, the OLSR connectivity information is added to

the map (marked as (2) in Fig. 9). From this point on, the size

of the incremental updates rise to a few KBs and the duration

of updates also slightly increases but stays always less than

200 ms with a few outliers. These results show that Bowlmap

maintains an acceptable update time [9], [10].

Finally, to understand the scalability in time, we use traces

from Dartmouth campus measurements, which span approx-

imately September 2005-October 2006. For this case, we

estimate the overhead of displaying clients associations to the

APs deployed using the information available in the syslog

traces [8]. We assumed a minimal client object, which is

represented by an icon and a line that connects to an AP

icon. By choosing minimum-sized icon identifiers and names,

we limit the size of this object to 300 B. When no updates

happen on the map, an empty object of 144 B is sent back to

the requester. We evaluate the CDF of the update sizes at 2 s

intervals when incremental or full updates are used. Fig. 10
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Fig. 10. The CDF of the update sizes for incremental and full updates of
visualizing clients associated with APs deployed in the Dartmouth campus
between September 2005-October 2006 [8]. We assumed a minimal client
object of size 300 B, where an empty update is 144 B.

shows, since the full updates always receive the full list of

client icons, 50% of the updates are larger than 30 KB, with

the maximum update size of 60 KB. However, 85% of the time

there is no change in the Dartmouth network, which results

in mostly empty updates for the incremental update case. For

the rest of the time, the incremental update size has a long tail

from 200 B to 6700 B. These results show that incremental

updates successfully maintain low bandwidth overhead, which

is essential for scalability of the Bowlmap.

IV. RELATED WORK

The importance of visualization has already been shown

for operating systems, where, for instance, visual aids of CPU

usage or memory consumption improve configuration manage-

ment and debugging [11]. A similar emphasis is presented for

network visualizations in [12], which proposes a scatter and

phase plot animation tool, SPLAT, for mining and visualizing

internet measurements, which have both temporal and spatial

component.

In the wireless domain, visualization is mainly used to

represent the wireless signal quality. For instance, Wiviz [13]

monitors a wireless environment, scanning different channels

and creates a self-organizing map of nodes in the vicinity.

Wireless Network Visualization project [14] merges a point

data file produced by wardriving using the Netstumbler [15]

software and a high-resolution black and white aerial pho-

tography of the same area. The closest to our work is

SCUBA [16], which proposes a “focus and context” visualiza-

tion framework for diagnosing the mesh networks. In contrast

to our web-based implementation, the SCUBA visualization

engine is a standalone Java application. The application is able

to visualize mesh networks from a route, a link and a client

context, with the goal of pinpointing problems with more in-

depth information using these context switches.

In this paper, we focused on a framework that enables live

visualization of network data. Our main aim was to create a

visualization framework, that caters to different user needs and

is modular enough to support different types of network data

representations. While our case studies mainly use network

graphs, we do not exclude the possibility of using different

graph visualization methods [17], [18], [19]. Essentially, the

measurement post-processing scripts can communicate any

type of visualization to the state server, which in turn creates

the object to be displayed on the client side.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Bowlmap as a flexible tool to

visualize measurements with low communication overhead.

We showed that Bowlmap can be used in many different

scenarios to provide intuitive monitoring and debugging. For

future work, we plan to support animations and add the func-

tionality to replay live measurements. Furthermore, we aim to

provide a more interactive interface, which allows triggering

measurements through the map interface (e.g., starting a traffic

flow by just clicking on a node and dragging the mouse to the

destination node on the map).
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[1] R. Merz, H. Schiöberg, and C. Sengul, “Design of a configurable
wireless network testbed with live traffic,” in TridentCom, May 2010.
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