
TCPSpeaker: Clean and Dirty Sides of the Same Slate

Dan Levin Harald Schioeberg Ruben Merz Cigdem Sengul

Deutsche Telekom Laboratories, Germany

{dan,harald}@net.t-labs.tu-berlin.de {ruben.merz,cigdem.sengul}@telekom.de

ABSTRACT

As new approaches toward clean-slate network transport
continue to emerge in the wireless domain and beyond, so
grows the difficulty of conducting reproducible, head-to-head
evaluation and comparison of such protocols against one an-
other. The challenge alone of clean-slate transport proto-
col deployment onto end-user systems makes evaluation on
existing networks with real user traffic impractical. To ad-
dress these challenges, we present TCPSpeaker, a transport-
protocol translator designed to enable clean-slate transport
to run and be evaluated in today’s networks. Built on
the Click Modular Router, TCPSpeaker is a tool to enable
clean-slate transport approaches and evaluation in apples-
to-apples fashion, on existing networks with live, real end-
user generated traffic. We present the design and implemen-
tation of our tool, highlighting an initial use case along with
a performance evaluation.

1. MOTIVATION AND RELATED WORK
The performance and fairness problems of TCP in wireless

mesh networks (WMNs) are well known [1, 2]. Approaches
to solve them fall roughly into two classes: (i) those which
maintain legacy TCP compatibility, and (ii) clean-slate pro-
tocols which redefine WMN transport, breaking TCP com-
patibility. Clean-slate approaches such as block-switched
and cross-layer transport protocols [3, 4] break the end-to-
end principle, using intermediate WMN nodes for intelligent
caching and pacing and show significant throughput and
flow fairness improvements. Clean-slate approaches how-
ever, exclude TCP-speaking clients from the network and as
such, their practical impact as well as live-network evalua-
tion potential is severely limited.
We believe that the strengths of these two approaches may

be exploited by uniting them. We propose TCPSpeaker,
a transport-protocol translator to “bridge” TCP flows en-
tering and leaving the WMN at its edges. TCPSpeaker
differs from other split-TCP approaches [2], as it does not
merely “split” TCP flows into multiple segments, but rather,
enables the removal of TCP entirely from the WMN. To
the WMN users, TCPSpeaker presents a transparent, fully
TCP-compliant interface. Inside the WMN, TCPSpeaker
introduces the freedom to swap in and out, entirely new
transport protocol more suited to the WMNs, furthermore,
enabling the direct apples-to-apples evaluation and compar-
ison of such approaches.
Although originally motivated by problems encountered

in the wireless domain, we believe TCPSpeaker will prove
useful well beyond the scope of WMNs, allowing any clean-

Figure 1: Use Case: TCPSpeaker-to-L4 pairs at the
edges of a WMN translating intercepted TCP flows.

slate transport to interact with legacy TCP end-hosts. We
have released our TCPSpeaker implementation1 under a free
license as a fully-functional Click element [5]. We next place
TCPSpeaker into context of related work, followed by dis-
cussion of the uniqueness of our design and implementation.
We present evaluate its performance and behavior as an in-
terface to TCP, and close by identifying open questions and
directions for further work.

2. UNIQUENESS OF APPROACH
The primary design goal of TCPSpeaker is to act as an

interface between TCP and a semantically equivalent intra-
WMN transport protocol, which we will call L4. L4 is se-
mantically equivalent to TCP if it is: bi-directional, connection-
oriented, in-order, reliable bytestream with multiplexing,
and flow-control. TCPSpeaker operates together with L4,
with which it is paired back-to-back on the same node.
Two separate back-to-back pairs operate at each edge of
the WMN where TCP traffic enters/exits. Figure 1 depicts
TCP traffic entering the WMN, where it is intercepted by
a TCPSpeaker (1) and then passed to an L4 translator (2).
The traffic then moves through the WMN until it is inter-
cepted at the gateway, where it is converted from L4 (3)
back into TCP (4), at which point it leaves the WMN. For
evaluation and development purposes, TCPSpeaker may be
paired back-to-back with another TCPSpeaker, effectively
translating from TCP to TCP in the fashion of a split-TCP
proxy.

2.1 Flow Dispatching and Handling
TCPSpeaker handles TCP traffic on a per-flow basis, where

a flow is made up of TCP segments of a bi-directional TCP

1git clone git://bowl.net.t-labs.tu-berlin.de/click.git

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220157962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2: Above: The full TCPSpeaker component-
level architecture. Below: higher-level layers of
two back-to-back TCPSpeakers, paired on the same
host.

connection sharing the same entry and exit nodes of the
wireless network. This is crucial for preserving the connection-
oriented nature of TCP on both edges of the WMN. To
achieve per-flow handling, TCPSpeaker features a layered
architecture given in Figure 2. As a TCP flow is inter-
cepted by one of the paired TCPSpeakers, it is dispatched
to its appropriate flow-handler. The flow-handler translates
the incoming stateful TCP flow to a stateless intermediate
bytestream, which is fed directly to the paired L4 (or TCPS-
peaker) protocol translator where its respective intra-WMN
state is kept. This stateful-to-stateless-to-stateful transition
is implemented via a zero-copy, intra-process communica-
tion, safeguarding the stateless bytestream in all but the
most extreme scenarios of total node failure.
For per-flow TCP-to-L4 semantics (i.e, flow-control) TCP-

Speaker provides an interface for throttling the data rate to
its paired L4 neighbor and vice-versa. The throttling is re-
alized by inspection of the free space in its neighbor’s OUT
queue. A TCPSpeaker will only push data to its neighbor
when its neighbor is able to send that data itself, which
allows a flow-control mechanism similar to backpressure.

2.2 Preserving Macroscopic Behavior
To preserve outward TCP compatibility, the TCPSpeaker

preserves the macroscopic behavior of TCP with end-to-end
flow control and outward in-order, reliable transport robust
against packet loss and reordering. TCPSpeaker also en-
sures throughput fairness across multiple flows under its
control. In the event of total node failure, a curious sce-
nario arises, as some data which has been ACKed to the
sender may fail to reach its destination. However, in prac-
tice, this limitation should prove to be manageable since the
backpressure mechanism limits the amount of data which
could be lost to the bandwidth-delay product of the WMN.
Additionally, an ACK only means that the segment was re-
ceived by TCP and does not guarantee processing by the

Figure 3: Click Element class heirarchy

application. Nevertheless, the delivery guarantee issue of
the TCPSpeaker under this condition merits future investi-
gation.

2.3 TCPSpeaker as a Click Element
We implemented TCPSpeaker as a Click element, whose

class structure is given by 3. Our implementation allows
us to run the same code-base on any system running Linux
(among other platforms), in either user-space, kernel-space,
or even within ns-2, with no code-level modifications. With
only minor modifications to ensure memory position-independent
code, we run and evaluate TCPSpeaker on the Gateworks
Avila (an ARM architecture embedded device capable of
running Linux), the chosen wireless hardware platform of
the BOWL testbed [6].

3. RESULTS AND CONTRIBUTION
To prove that TCPSpeaker implementation is usable in its

intended role, we show that its performance and macroscopic
behavior closely match those of the native system TCP im-
plementation. The metrics of our evaluation are throughput
and RTT under conditions of packet loss and reordering, and
flow-fairness [7] under simultaneous multiple flows.

3.1 Experimental Design
We design a series of experiments based on the topology

given in Figure 4. All experiments use the same traffic gen-
erator, traffic sink, and traffic shaper for packet loss and
reordering. These roles are filled by servers Loadgen 1, 2
and 3, respectively. Servers Loadgen 1 and 2 run the Linux
2.6.18-6 kernel on a VIA Nehemiah x86-compatible proces-
sor running at 1 GHz with 512 Mbytes of RAM. Loadgen 3

runs a slightly newer 2.6.28-17 kernel. As our system un-
der test running the Click TCPSpeaker, we use the Gate-
works Avila GW 2348-4 network platforms. Each Avila runs
the Linux 2.6.26.8 kernel on an Intel IXP425 XScale CPU
running at 533MHz with 64Mbytes of addressable SDRAM.
This system is the host Avila 2 in the figure. As two TCP-
Speakers run back-to-back on Avila 2, our measurement re-
sults reflect two separate TCP connections, measured from
side A and B in Figure 4.

In our preliminary experiments, we establish TCP con-
nections and transfer 20 MBytes of data from Loadgen 1 to
Loadgen 2 between which, a pair of TCPSpeakers intercept
and translate each TCP connection from TCP to TCP (ef-
fectively operating as a split-TCP proxy). We subject the
flows to varying conditions of packet loss and reordering via
our shaper. We also establish varying numbers of simultane-
ous concurrent flows, and measure the per-flow throughput
and RTT characteristics on both sides of the TCPSpeakers.

Figure 4: Preliminary experimental setup.

Table 1: Median throughput normalized to 0%
Packet Loss Case vs. % Packet Loss.

% Loss TCPS A TCPS B Kernel
0.1 96.9 96.9 102

1 77.4 78.0 69.7

5 5.97 5.95 6.3

We then compare our measurements to those with the Linux
kernel TCP Reno.

3.2 Preliminary Results
Our results show that TCPSpeaker macroscopic behav-

ior is comparable to the Linux Kernel TCP implementation
and within acceptable and practically usable bounds. TCP-
Speaker responds resiliently on both sides of the split con-
nection to both packet loss (see Table 1) and reordering. For
instance, under 10% packet reordering, TCPSpeaker Side A
exhibits a median 92.5% of in-order throughput while side
B exhibits median 52.5%. This reflects the need for buffer
gaps introduced by out-of-order packets to be filled from
side A before the data can be passed to side B. By compar-
ison, the Linux kernel TCP Reno implementation exhibits
roughly 24% median throughput under the same 10% packet
reordering conditions.
Our measurements show that TCPSpeaker contributes

positively to per-flow fairness since the flow-scheduling and
backpressure mechanisms of the paired TCPSpeakers result
in a more equal distribution of network bandwidth capacity
to flows. This can be seen as a reduction in unfairness as
flows pass from side A to side B of our network (see Figure
5).
In summary, our measurements show that TCPSpeaker (i)

exhibits operational correctness and macroscopic behavior of
Linux Kernel TCP (ii) is performant and robust to loss and
reordering and (iii) is fair.

3.3 Outlook
TCPSpeaker enables clean-slate transport protocols to sup-

port use and evaluation with legacy TCP end-hosts. Despite
a rigorous development process, areas of implementation re-
main for further optimization and refinement. An appealing
feature for future inclusion in the TCPSpeaker is support
for the selective ACK option. Recent efforts on Click with
unpatched Linux kernel may also offer crucial performance
gains, bringing the TCPSpeaker head-to-head with the per-
formance of the kernel TCP implementation. TCPSpeaker
also raises significant questions at a protocol-design level. It

5 Flows A B 15 Flows A B 25 Flows A B

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

U
n

fa
ir
n

e
s
s

TCPSpeaker

5 Flows 15 Flows 25Flows

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

U
n

fa
ir
n

e
s
s

Kernel TCP

Figure 5: TCPSpeaker (top) vs. Kernel TCP
RENO (bottom): Unfairness with varying number
of flows. TCPSpeaker improves fairness of its trans-
lated flows.

remains to be seen to what extent we impact upper-layer
protocols which may receive ACKs for data that is never
delivered.

4. REFERENCES
[1] P. Z. Z. Fu, H. Luo, “The impact of multihop wireless

channel on TCP performance,” IEEE Trans. Mobile
Comput., vol. 4, no. 2, 2005.

[2] S. Kopparty, S. Krishnamurthy, M. Faloutsos, and
S. Tripathi, “Split TCP for mobile ad hoc networks,”
”UC Riverside”, Tech. Rep., 2002.

[3] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani,
“Block-switched networks: a new paradigm for wireless
transport,” in NSDI, 2009, pp. 423–436.

[4] K. Sundaresan, V. Anantharaman, H.-Y. Hsieh, and
R. Sivakumar, “ATP: a reliable transport protocol for
ad-hoc networks,” in MobiHoc, 2003, pp. 64–75.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” ACM Trans.
Comput. Syst., vol. 18, no. 3, pp. 263–297, 2000.

[6] R. Merz, H. Schiberg, and C. Sengul, “Design of a
configurable wireless network testbed with live traffic,”
in TridentCom, May 2010.

[7] R. Jain, The Art of Computer Systems Performance
Analysis. John Wiley and Sons, 1991.

