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Abstract

The A-classification of multigerm singularities is discussed, based on the
theory of complete transversals. An A-classification of r-multigerms from the
plane to 3-space of A-codimension ≤ 6 − r is carried out and the bifurcation
geometry of these singularities analysed. This work has applications to the
study of two-dimensional spatial motions, giving local models for the singu-
larities which appear on general trajectories of rigid body motions from the
plane to 3-space. In addition, our classification is extensive enough to give
the full list of simple multigerm singularities from the plane to 3-space.

∗The second author was supported by the EPSRC grants GR/J28162, GR/L33948 and
GR/L17245; computational work was supported by grant GR/H59855.



1 Introduction

In theoretical singularity theory one usually concentrates on strictly local phenom-
ena (monogerms). However, in applications there is often no reason to restrict to
such cases, it is just as important to consider the semi-local singularities (multi-
germs). We consider two main objectives in this paper. Firstly to give an account
of how certain techniques from singularity theory apply in the case of multigerms.
Although multigerms have been considered in previous articles there are few works
which have them as their central concern. We show how various familiar techniques
for monogerms carry over to concrete examples. In addition we describe new, ef-
ficient and general techniques for the classification of multigerms. Specifically, we
describe how the method of Complete Transversals developed in the recent article
by Bruce, du Plessis and the second author [2] may be applied to the case of multi-
germ classification. This work demonstrated that typical calculations required in
the classification process may be carried out using a computer and subsequently a
specialist classification package called Transversal was written by the second au-
thor [9]. The present work involved writing and using an extension of this package
which deals with multigerms.

Our second objective is to apply these techniques to an important case: the
classification and bifurcation of multigerm singularities R2, S → R3, 0. Although
some listing has been undertaken by Mond [12] and Goryunov [7] ours is the first
systematic classification of multigerm singularities. Our aim is to give a compre-
hensive and extensive list which is suitable as a reference for future applications.
We also give a detailed description of the bifurcation geometry which, in the case of
semi-local surface singularities in three-space, is rich and can be presented graph-
ically. A comprehensive series of pictures, analysed with the help of a specialist
computer graphics package, is given.

The following problem from theoretical kinematics provided our primary moti-
vation: describe the geometry associated to singularities of trajectories for general
rigid body motions of the plane and space, with various degrees of freedom. Some
work has been carried out in this area by Gibson and the first author. In partic-
ular [4] in which a theorem relating classical singularity theory to this problem is
proved; [5] in which this theory is applied to planar motions; and [6] which describes
the geometry associated with singularities of trajectories in 3-space with 2 degrees
of freedom and a single branch. The main theorem from [4] enables us to decide
which singularities will appear generically on trajectories of rigid body motions by
giving restrictions on the possible codimension of such singularities. The results
from this paper, together with those for the monogerm case [6], give us the local
models describing the geometry of trajectories of rigid body motions with 2 degrees
of freedom in 3-space, thus providing a mathematical foundation for future analysis.

Classifications of the type presented in this paper are of importance in singularity
theory also. For example, it is natural to ask how Mond’s topological study of
A-finite monogerms [13] extends to the multigerm case. To extend the work of
Goryunov [7] on local invariants of mappings of surfaces into three-space to higher
order invariants, one needs a classification of multigerms up to a corresponding
higher codimension. A classification list such as ours thus provides basic results
which are needed for a variety of future avenues of research.

Our list of singularities based on codimension appears in Table 2. Further calcu-
lations gave us the full list of simple singularities; see Table 1. These represent our
main results on multigerm classification and are summarised in Theorems 2 and 1
following. The classification techniques are described in Section 2; Section 3 pro-
vides the details of the classification and notation used; finally Section 4 describes
the bifurcation geometry.

Some of the results in this paper appeared in the first author’s Ph.D. thesis [8].
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The results are verified and then considerably extended in this paper using the
computer classification package Transversal. Since writing this paper it has been
brought to our attention that a similar project is currently under investigation
by Atique, Mond and Ruas [1]. However, their main concern is with the simple
singularities and they use a completely different classification scheme, more suited to
identifying series rather than a complete stratification of the jet-space with respect
to codimension. In classifications of this nature we cannot hope to describe all of the
details, indeed Section 3 is mainly a summary of our findings. It is therefore worth
pointing out that parts of our list have been reproduced and verified using different
techniques in the aforementioned work. The two projects therefore serve as a useful
check on their common results. They only overlap in parts of the classification and
here our work predates theirs; the other parts of the two articles address different
applications.

Theorem 1. Table 1 lists, up to A-equivalence, all simple multigerms R2, S →
R3, 0 of multiplicity greater than 1. The simple monogerms were classified by Mond
in [12], these are also shown.

Theorem 2. Table 2 lists all multigerms R2, S → R3, 0 (and multigerm strata
where moduli feature) which can be local models for the singularities appearing on
the trajectories of rigid body motions from the plane to space. Explicitly, we list all
r-multigerms satisfying A-codimension(strata) ≤ 6 − r. The table is divided into
sections according to the multiplicity r = 2, . . . , 6 of the multigerm. The column
marked ‘Det’ gives the determinacy degree and restrictions on any moduli. Moduli
are denoted by a, b or ai and when moduli feature the A-codimension refers to the
A-codimension of a member of the stratum. (For the classification of monogerms
we refer the reader to Mond’s Table 1, p.337 in [12]. Those monogerms relevant to
the kinematics problem were analysed in [6].)

The column labelled ‘Ref’ in Tables 1 and 2 references the ‘case number’ which
deals with the multigerm in Sections 3.1 to 3.5. The ± signs appearing in the
normal forms in Table 2 represent distinct types. In Table 1 the notation is used
as a convenient method of representing the whole series: here the ± signs represent
distinct types depending on the parity of the exponent k.

Acknowledgements. We would like to thank Professor J.W. Bruce and Dr. C.G.
Gibson for helpful discussions and Dr. R.J. Morris whose computer package LSMP,
The Liverpool Surface Modelling Package [14], was used to investigate the unfolding
spaces in Section 4. We would also like to thank the referee for making several useful
suggestions which we have incorporated. The second author was supported by the
EPSRC grants GR/J28162, GR/L33948 and GR/L17245; computational work was
supported by grant GR/H59855.
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Name Normal Form Det Ae-cod Ref
A0 (immersion) (x, y, 0) 1 0 –
S0 (cross-cap) (x, y2, xy) 2 0 –
S±

k (x, y2, y3 ± xk+1y) k + 2 k –
B±

k (x, y2, x2y ± y2k+1), k ≥ 2 2k + 1 k –
C±

k (x, y2, xy3 ± xky), k ≥ 3 k + 1 k –
F4 (x, y2, x3y + y5) 5 4 –
Hk (x, xy + y3k−1, y3), k ≥ 2 3k − 1 k –
A2

0 (x, y, 0; 0, X, Y ) 1 0 1
A2

0|A±
k (x, y, 0; X, Y, X2 ± Y k+1) k + 1 k 2

A2
0|D±

k (x, y, 0; X, Y, X2Y ± Y k−1), k ≥ 4 k − 1 k 2
A2

0|E6 (x, y, 0; X, Y, X3 + Y 4) 4 6 2
A2

0|E7 (x, y, 0; X, Y, X3 + XY 3) 4 7 2
A2

0|E8 (x, y, 0; X, Y, X3 + Y 5) 5 8 2
(A0S0)k (x, y, 0; Y 2, XY + Y 2k+1, X) 2k + 1 k 3.1
A0S

±
k (x, y, 0; Y 3 ± Xk+1Y, Y 2, X) k + 2 k + 1 3.2.1/2

A0S0|A±
k (x, y, 0; X, XY, Y 2 ± Xk+1) k + 1 k + 1 4

(A0S0|A∞)k (x, y, 0; X, Y 2, XY + Y 2k), k ≥ 2 2k k + 1 4
A3

0 (x, y, 0; X, 0, Y ; 0, x̄, ȳ) 1 0 1
A3

0|Ak (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ + x̄k+1) k + 1 k 2
(A2

0|A±
k )(A0) (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2 ± ȳk+1) k + 1 k + 1 3.1/2

(A2
0|A∞)(A0)|Ak (x, y, 0; X, 0, Y ; x̄, ȳ, x̄ȳ + x̄k+1), k ≥ 2 k + 1 k + 1 3.3

(A2
0|A2)(A0)|A2 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ2 + x̄3) 3 4 3.4

A4
0 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄) 1 1 1

(A3
0|Ak)(A0) (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄k+1) k + 1 k + 1 2

k ≥ 1 unless otherwise stated.

Table 1: Simple Multigerms R2, S → R3, 0.
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Name Normal Form Det A-cod Ref
A2

0 (x, y, 0; 0, X, Y ) 1 0 1
A2

0|A±
1 (x, y, 0; X, Y, X2 ± Y 2) 2 2 2

A2
0|A2 (x, y, 0; X, Y, X2 + Y 3) 3 3 2

A2
0|A±

3 (x, y, 0; X, Y, X2 ± Y 4) 4 4 2
(A0S0)1 (x, y, 0; Y 2, XY + Y 3, X) 3 2 3.1
(A0S0)2 (x, y, 0; Y 2, XY + Y 5, X) 5 3 3.1
(A0S0)3 (x, y, 0; Y 2, XY + Y 7, X) 7 4 3.1
A0S

±
1 (x, y, 0; Y 3 ± X2Y, Y 2, X) 3 3 3.2.1

A0S2 (x, y, 0; Y 3 + X3Y, Y 2, X) 4 4 3.2.2
A0B2 (x, y, 0; X2Y + XY 3 + aY 5, Y 2, X) 5, a �= 0, 1

4 5 3.2.3
A0H2 (x, y, 0; Y 3 + Y 4, XY + Y 4 + aY 5, X) 5, a �= 1 5 3.3
A0S0|A±

1 (x, y, 0; X, XY, Y 2 ± X2) 2 3 4
A0S0|A2 (x, y, 0; X, XY, Y 2 + X3) 3 4 4
A0S1|A±

1 (x, y, 0; X, Y 3 + aX2Y, Y 2 ± X2) 3, a �= 0,±1† 5 4
(A0S0|A∞)2 (x, y, 0; X, Y 2, XY + Y 4) 4 4 4
S0S0 (x, xy + y3, y2; XY + aY 3, X, Y 2) 3, a �= 0 5 5
A3

0 (x, y, 0; X, 0, Y ; 0, x̄, ȳ) 1 0 1
A3

0|A1 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ + x̄2) 2 1 2
A3

0|A2 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ + x̄3) 3 2 2
A3

0|A3 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ + x̄4) 4 3 2
(A2

0|A±
1 )(A0) (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2 ± ȳ2) 2 2 3.1

(A2
0|A2)(A0) (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2 + ȳ3) 3 3 3.2

(A2
0|A∞)(A0)|A2 (x, y, 0; X, 0, Y ; x̄, ȳ, x̄ȳ + x̄3) 3 3 3.3

A2
0S0|A1 (x, y, 0; X, 0, Y ; x̄ȳ + aȳ3, x̄, x̄ + ȳ2) 3, a �= 0, 1 3 4

A2
0S0|A1(0)± (x, y, 0; X, 0, Y ; x̄ȳ ± ȳ5, x̄, x̄ + ȳ2) 5 3 4

A2
0S0|A1(1)± (x, y, 0; X, 0, Y ; x̄ȳ + ȳ3 ± ȳ5, x̄, x̄ + ȳ2) 5 3 4

A2
0S

±
1 |A1 (x, y, 0; X, 0, Y ; ȳ3 ± x̄2ȳ, x̄, x̄ + ȳ2) 3 3 4

A2
0S0|A2 (x, y, 0; X, 0, Y ; ȳ2, x̄, x̄ + x̄ȳ + ȳ3) 3 3 4

(A0S0|A±
1 )(A0)1 (x, y, 0; X, 0, Y ; x̄ȳ + ȳ3, x̄, ȳ2 ± x̄2) 3 3 5

A4
0 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄) 1 0 1

(A3
0|A1)(A0) (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2) 2 1 2

(A3
0|A2)(A0) (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄3) 3 2 2

(A2
0|A1)(A2

0) (x, y, 0; X, 0, Y ; 0, x̄, ȳ; 2, a �= 0, 1
4 3 3

X̄, Ȳ , Ȳ 2 + X̄Ȳ + aX̄2)
A5

0 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; 1‡ 2 1
x̃, ỹ, ax̃ + bỹ)

(A3
0|A1)(A2

0) (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2; 2, a �= 0, 1 2 2
x̃, ỹ, x̃ + aỹ)

A6
0 (x, y, 0; X, 0, Y ; x̄2, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; (††) 6 –

x̃, ỹ, a1x̃ + a2ỹ + a3x̃
2;

X̃, Ỹ , a4X̃ + a5Ỹ + a6X̃
2)

(†) Here a �= ±1 is respective of the sign of the X2 coefficient.
(‡) 1-determined provided a, b, a− 1, b − 1, a − b �= 0.
(††) finitely-determined for generic values of the ai; see Section 3.5.

Table 2: r-multigerms satisfying A-codimension(strata) ≤ 6 − r.
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2 Multigerms: Preliminaries and Techniques

We refer to the survey article of Wall [15], for background singularity theory. A few
further remarks concerning multigerms will be helpful. Given S ⊂ Rn and T ⊂ Rp,
a multigerm f : Rn, S → Rp, T will mean an equivalence class of C∞ mappings
f̃ : U → Rp, where U is an open neighbourhood of S in Rn and f̃(S) ⊂ T , with two
representatives deemed to be equivalent if they agree on an open neighbourhood of
S. In the special case S = {0} ⊂ Rn, T = {0} ⊂ Rp we call such germs monogerms.
The notion of A-equivalence extends to multigerms in the obvious way.

The ring of function germs f : Rn, 0 → R is denoted En; this is a local ring with
maximal ideal Mn consisting of those germs f with f(0) = 0. The En-module of
monogerms f : Rn, 0 → Rp is denoted E(n, p); the submodule consisting of those
germs f with f(0) = 0 is given by MnE(n, p).

We will be interested in multigerms for which S is of finite cardinality, S =
{x1, . . . , xr} say, and T = {0}. The set of all multigerms f : Rn, S → Rp, 0 is then
isomorphic to the direct sum of r copies of MnE(n, p). This realisation is far easier
to work with and from now on such r-multigerms will be denoted (f1; . . . ; fr), where
fi : Rn, 0 → Rp, 0. (Note that ⊕r

1MnE(n, p) is a finitely generated ⊕r
1En-module,

where scalar multiplication is given by (λ1; . . . ; λr) ·(f1; . . . ; fr) = (λ1f1; . . . ; λrfr).)
The integer r is called the multiplicity of the multigerm, and the fi its branches. In
this notation A-equivalence of multigerms can be defined as follows: (f1; . . . ; fr) ∼A
(g1; . . . ; gr) if there exists germs of diffeomorphisms h1, . . . , hr : Rn, 0 → Rn, 0 and
H : Rp, 0 → Rp, 0 such that

(f1; . . . ; fr) = (H ◦ g1 ◦ h1; . . . ; H ◦ gr ◦ hr).

As in the monogerm case, this equivalence may be induced by the natural action of
the group A = (⊕r

1R) ⊕ L.

Remarks 1.

(i) In the source we are free to change coordinates about each base point inde-
pendently of the associated branch, whereas in the target the same coordinate
change must be applied to each branch.

(ii) Strictly speaking the order of branches is irrelevant so we are really working
with the quotient of ⊕r

1MnE(n, p) under the natural action of the permutation
group S(r) as well as that of A.

Let (x1, . . . , xn) denote coordinates on Rn; {e1, . . . , ep} denote the standard
basis vectors on Rp (considered as monogerms Rn, 0 → Rp); and let f be the
multigerm (f1; . . . ; fr). The tangent space to the orbit A·f is given via the standard
technique of considering paths in A through the identity. We find that, in coordinate
form, LA · f = LR · f + LL · f where

LR · f = Mn

(
∂f1

∂x1
, . . . ,

∂f1

∂xn

)
⊕ · · · ⊕Mn

(
∂fr

∂x1
, . . . ,

∂fr

∂xn

)
,(1)

LL · f = (f1; . . . ; fr)
∗ (Mp) · {(e1; . . . ; e1) , . . . , (ep; . . . ; ep)} .

Given u ∈ Mp, (f1; . . . ; fr)∗(u) is defined to be (f∗
1 (u); . . . ; f∗

r (u)), and we therefore
have explicitly:

(f1; . . . ; fr)∗(u) · (ei; . . . ; ei) = (f∗
1 (u)ei; . . . ; f∗

r (u)ei).

Note the restricted form of the left tangent space in comparison with the right
tangent space which is the direct sum of each of the individual right tangent spaces
LR · fi. This is related to point (i) of the preceding remark.
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2.1 Classification Techniques

We will use the standard philosophy of reducing all classifications to calculations
in jet-spaces. The problem is then one of Lie groups acting on affine spaces and
techniques such as Mather’s Lemma [11, Lemma 3.1], and Complete Transversals [2],
may be applied. The technical details are merely a generalisation of those from the
familiar monogerm case. We will just state the results which provide the machinery
behind the classification. From the discussion above and the analogy with the
standard monogerm case, the notation used should be clear. It will suffice to use
one of the more elementary of the complete transversal theorems presented in [2],
namely the use of A-equivalences whose 1-jet is the identity.

The standard k-jet-space MnE(n, p)/Mk+1
n E(n, p) is denoted Jk(n, p). Since we

choose to represent the space of all r-multigerms as ⊕r
1MnE(n, p), the corresponding

multijet space can then be realised as ⊕r
1J

k(n, p). Let Rk be the normal subgroup
of R consisting of those germs whose k-jet is equal to that of the identity; and
similarly for L. We consider the (multi) k-jet-groups (⊕r

1R/Rk) ⊕ (L/Lk) and
(⊕r

1R1/Rk) ⊕ (L1/Lk) denoted rJ
kA and rJ

kA1 respectively (or simply JkA and
JkA1 for short). These are Lie groups and act on the affine space ⊕r

1J
k(n, p); see

[10, Section 7]. Let Hk denote the image of ⊕r
1Mk

nE(n, p) in ⊕r
1J

k(n, p), the vector
subspace of ⊕r

1J
k(n, p) consisting of the homogeneous jets of degree k.

Theorem 3. Let f be a multigerm Rn, S → Rp, 0. If T ⊂ Hk+1 is a vector
subspace of Hk+1 such that

Hk+1 ⊂ T + L(rJ
k+1A1) · jkf

then every (k + 1)-jet F with jkF = jkf is in the same rJ
k+1A1-orbit as some

(k + 1)-jet of the form jkf + t, for some t ∈ T .

For determinacy and complete transversal calculations we must work with the
tangent space LA1, or more precisely the Lie algebra L(rJ

kA1). This is just the
projection of LA1 into the jet-space and, in coordinate form, LA1 is given by the
expressions (1) above, only now the maximal ideals Mn and Mp are raised to the
power of 2.

Theorem 3 allows us to classify jets with respect to rJ
kA1-equivalence (and

therefore rJ
kA-equivalence) inductively at the jet level. This provides an A-classi-

fication of finitely determined multigerms. From [10], a multigerm f is finitely
determined if and only if it has finite A-codimension (or equivalently finite Ae-
codimension). Applying the methods of [3] (or indeed Theorem 3 above) we obtain
the following determinacy criterion.

Theorem 4. A multigerm f of multiplicity r is k-determined if

⊕r
1Mk+1

n E(n, p) ⊂ LA1 · f.

To make this suitable for implementation on a computer we need to reduce it to a
question in some appropriate jet-space.

Corollary 5. A multigerm f of multiplicity r is k-determined if

⊕r
1Mk+1

n E(n, p) ⊂ LA1 · f + f∗(Mp)(⊕r
1Mk+1

n E(n, p)) + ⊕r
1M2k+2

n E(n, p).

Remarks 2. Corollary 5 follows from [3, Lemma 2.6], extended to the multi-
germ case. The proof is similar to the original, only now we work with the finitely
generated ⊕r

1En-module ⊕r
1E(n, p) and the Ep-module structure is induced via the

ring homomorphism (f1; . . . ; fr)∗ : Ep → ⊕r
1En. The technical tools needed in this

6



(and many of the other standard results, such as the determinacy and unfolding
theorems) are Nakayama’s lemma and The Preparation Theorem and both hold
in this setting. Note that the foundational work of Mather applied to the case of
multigerms; for example, see [10] for the determinacy theorems and The Preparation
Theorem.

2.2 Codimension Restrictions

We now return to the specific case of multigerms R2, S → R3, 0. From [6] the
condition for a stratum of the jet space rJ

k(2, 3) to be relevant to the kinematics
problem is that it must have A-codimension ≤ 6 − r, where r is the number of
branches (multiplicity) of the multigerm. This tells us immediately that we need
look for multigerms with at most 6 branches. In Section 3 we classify r-germs
with these conditions in mind, stopping when we have found all of the relevant
strata. The following proposition helps rule out many of the initial branches of the
classification tree on codimension grounds.

Proposition 6. Let f be the multigerm (g1; . . . ; gr; h1; . . . ; hs) of multiplicity
r + s. Consider the associated multigerms g = (g1; . . . ; gr) and h = (h1; . . . ; hs) of
multiplicity r and s respectively. Then

A-codim(f) ≥ A-codim(g) + A-codim(h).

Proof. From the definition of the A tangent space given in equations (1) we see
that there is a natural inclusion LA · f → LA · g ⊕LA · h. Thus, there is a natural
surjection

⊕r+s
1 MnE(n, p)/LA · f → ⊕r+s

1 MnE(n, p)/(LA · g ⊕ LA · h)
∼= (⊕r

1MnE(n, p)/LA · g) ⊕ (⊕s
1MnE(n, p)/LA · h).

Looking at the real dimension of these spaces we obtain the result.

Corollary 7. Let f be the multigerm (f1; . . . ; fr) then

A-codim(f) ≥
r∑

i=1

A-codim(fi).

(The codimension referred to on the right hand side of the above inequality is, of
course, the standard A-codimension of a monogerm fi.)

We make the following preliminary observations. For monogerms R2, 0 → R3, 0
the possible 1-jets are (x, y, 0), (x, 0, 0) and (0, 0, 0) of J1A-codimension 0, 2 and
6, respectively. Therefore none of the multigerms we are interested in can have a
branch with zero 1-jet. In the cases r = 3 and r = 4 at most one branch cannot be
immersive. In the cases r = 5 and r = 6 all branches must be immersive. Further
restrictions on the classification of r-multigerms transpire once the classification of
(r − 1)-multigerms has been achieved.

Since the JkA-codimension is increasing with k we achieve the bounds on codi-
mension using inductive classification at the jet-level. More precisely, given a multi-
germ f , the natural projection π : (Jk+1A) · jk+1f → (JkA) · jkf from the Jk+1A
orbit of f to the JkA orbit of f , is surjective. Therefore π−1((JkA) · jkf) is a sub-
manifold of Jk+1(n, p) with codimension equal to the codimension of (JkA) · jkf in
Jk(n, p). But π−1((JkA) · jkf) ⊃ (Jk+1A) · jk+1f and we have the following well
known result: JkA-codim(f) ≤ Jk+1A-codim(f). Finally, if f is k-A-determined
then, by the determinacy theorems of [3], there exists some unipotent subgroup G
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of A such that ⊕r
1Mk+1

n E(n, p) ⊂ LG ·f , and in particular ⊕r
1Mk+1

n E(n, p) ⊂ LA·f .
It then follows that JkA-codim(f) = A-codim(f).

Thus, it is natural to work with A-codimension at the jet-level. In Section 4 we
study the geometry of our multigerms via versal unfoldings. The following relation
between A- and Ae-codimension is useful.

Proposition 8. Let f : Rn, S → Rp, 0 be an A-finite multigerm of multiplicity
r. If f is not stable then the following relation holds: Ae-codim = A-codim + r(p−
n) − p.

A proof appears in the unpublished notes of Wilson [16] and, in the case r = 1, in
the survey article of Wall [15, p.510]. We remark that our codimension restrictions
A-codim ≤ 6 − r are therefore equivalent to the single condition Ae-codim ≤ 3 for
all multigerms under consideration.

3 Classification

In this section we describe the classification of multigerms up to the codimension
restrictions discussed in Section 2.2. The results are summarised in Theorem 2. By
taking the classification further we obtain series which provide us with the full list
of simple multigerms given in Theorem 1. To give full details of the calculations
would extend the paper, whose main concern is obtaining a stratification of the jet-
space with respect to codimension, by a significant length. We provide a summary
of the classification process which should act as a suitable guide for anyone keen
enough to repeat any parts of the calculation! However, for brevity, the full details
are omitted.

We name the multigerms by exploiting existing notation in a systematic way.
The notation of Mond is used to describe each branch of the multigerm (A0 will
represent an immersed branch). In addition, if the branches intersect in a non-
transverse manner then the contact type of their intersection is appended (follow-
ing the symbol | ). For example, the bigerm consisting of 2-transverse sheets is
denoted A0A0, whereas the case of 2-sheets intersecting with A±

k -contact is denoted
A0A0|A±

k (shortened to A2
0 and A2

0|A±
k , respectively). For trigerms the contact type

applies to all three branches of the trigerm (in all of our examples this is the contact
of the third branch with the intersection curve of the first two) unless brackets dic-
tate otherwise. Thus, A3

0 represents the transverse triple point and A3
0|Ak denotes

the case where two sheets intersect transversely and the third makes (k + 1)-order
contact with their intersection curve (specifically, the contact map is Ak, (y, xk+1)
in this case). When two sheets intersect with A±

k -contact (as a bigerm) and the
third sheet is transverse to both we use the notation (A2

0|A±
k )(A0)|A1. The final A1

refers to the contact type of all three branches, but since this is the least degenerate
case (contact to order A1 or higher is inevitable) we drop this A1 to simplify the
notation. The full notation is required to distinguish higher contact types such as
(A2

0|A2)(A0)|A2. Finally, in a few cases the branch and contact type are enough to
describe only a stem. A subscript is therefore appended to the notation describing
the whole series. The transverse intersection of a sheet and a cross-cap (A0S0)k

and A∞ intersection (A0S0|A∞)k are examples of this kind.
The rest of this section will summarise the details of the classification. We will

describe the stratification of the low degree jet-spaces but, for brevity, describe how
the classification proceeds only along a few selected branches. We will adhere to the
following conventions. Coordinates in the source will be denoted (x, y) (extending
this to (X, Y ), (x̄, ȳ), etc., to help distinguish each branch); while coordinates in
the target will be denoted (u, v, w). We will use the term complete transversal to
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mean the affine space f + T (and occasionally just give a basis for T ) referred to
in Theorem 3. At each given jet-level Jk we will summarise all the relevant jets in
the form of a table, listing the jets in order of increasing JkA-codimension. The
columns of the table contain: a numeric label for future reference to the jet; the jet
itself; the JkA-codimension of the jet; and finally comments — for example, the
symbol # will be used to indicate the jet is ruled out of further consideration on
codimension grounds.

As mentioned above, for brevity we present a summary of the classification and,
as such, only provide a guide to the reader on how to produce the list of singu-
larities in Table 1. In particular, in most cases it is a straightforward matter to
identify adjacencies which prove that a jet is non-simple. For example, in Sec-
tion 3.1 (bigerms), Case 3.2.4 deforms to 3.2.3, all of whose germs are found to be
modular. Such considerations are implicit at several stages of the classification of
the simple multigerms. However, for completeness we mention the slightly more
involved Case 4 (from Section 3.1 also). It is not entirely clear from the details
describing this case that all of the simples are captured. In particular, the 2-jet
(x, y, 0; X, Y 2, X2), of A-codimension 5, must be considered further. It turns out
that the jets lying over this case are modular families and the following series.

A0S
±
k |A2 (x, y, 0; X, Y 2, X2 + Y 3 ± Xk+1Y )

k ≥ 1, (k + 2)-determined, A-codim = k + 4.

Adjacencies with A0S1|A±
1 confirm that all members of this series are non-simple,

thus completing the treatment of this case. Finally, we remark that to prove the
singularities in Table 1 are simple one only has to establish a set of all possible
adjacencies, and not the more difficult task of identifying which adjacencies actually
exist.

3.1 Classification of Bigerms

Here we classify bigerms with A-codimension ≤ 4. Recall that no such bigerm can
have a branch with zero 1-jet. Up to A-equivalence the possible 1-jets are as follows.

1-jet J1A-codim
1 (x, y, 0; 0, X, Y ) 0 1-det
2 (x, y, 0; X, Y, 0) 2
3 (x, y, 0; 0, 0, X) 2
4 (x, y, 0; X, 0, 0) 3
5 (x, 0, 0; 0, X, 0) 4
6 (x, 0, 0; X, 0, 0) 6 #

Case 2 The bigerm can be written in the form (x, y, 0; X, Y, φ(X, Y )). For such
bigerms we refer to φ as the separation function and have the following result.

Theorem 9 ([12], Thm. 7.2) Bigerms of immersions are classified for A by
the K-classes of the separation function φ(X, Y ). The Ae-codimension (which equals
the A-codimension − 1) of the bigerm is given by the Ke-codimension of φ.

Using this we find that the bigerms of immersions with A-codimension ≤ 4 are
A2

0|A±
1 , A2

0|A2 and A2
0|A±

3 . So the first part of the stratification of ⊕2
1J

k(2, 3) is
given by the first four entries in Table 2. We also obtain the simple series A2

0|A±
k ,

A2
0|D±

k , A2
0|E6, A2

0|E7 and A2
0|E8 in Table 1. The contact type of the two branches

is just the K-class of the separation function and appears in the notation.
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Case 3 A 2-transversal is (x, y, 0; aY 2+bXY, cY 2+dXY, X). Here we will describe
the diffeomorphic changes of coordinates in the source and target which reduce
the above family to four possible non-A-equivalent 2-jets. Calculating the J2A-
codimension for each verifies that these represent four distinct orbits.

First suppose a �= 0. We can scale a to equal 1 and then remove the cY 2 term
via the coordinate change v �→ v − cu. This leaves us with j2f = (x, y − cx, 0; Y 2 +
bXY, (d − cb)XY, X), but using a change of coordinates y �→ y + cx in the source
of the first branch gives j2f = (x, y, 0; Y 2 + bXY, (d − cb)XY, X). Now we can
write Y 2 + bXY as (Y + bX/2)2 − b2X2/4, and change coordinates in the source
of the second branch via Y �→ Y − bX/2 to get j2f = (x, y, 0; Y 2 − b2X2/4, (d −
bc)XY − (d− bc)bX2/2, X). (This is known as completing the square, a special case
of the Tschirnhaus transformation.) But we can change coordinates in the target
via u �→ u + b2w2/4 and v �→ v + (d − bc)bw2/2 (which will not affect the first
branch) to get j2f = (x, y, 0; Y 2, (d − bc)XY, X). Then either d − bc is zero, or it
can be scaled to equal 1.

By symmetry, a similar argument holds if c �= 0. Finally, consider a = c = 0.
If b �= 0 we can scale it to be 1 and then use the target change of coordinates
v �→ v − du followed by a change of coordinates in the source of the first branch to
get j2f = (x, y, 0; XY, 0, X). If b = 0 but d �= 0 we arrive at the same 2-jet, leaving
the final possibility: a = b = c = d = 0.

In summary, the possible 2-jets are as follows.

2-jet J2A-codim
3.1 (x, y, 0; Y 2, XY, X) 2
3.2 (x, y, 0; 0, Y 2, X) 3
3.3 (x, y, 0; 0, XY, X) 4
3.4 (x, y, 0; 0, 0, X) 6 #

Case 3.1 For this case we appeal to the following theorem. This gives the series
(A0S0)k and corresponding entries in Table 2.

Theorem 10 ([12], Thm. 7.5) (i) The bigerm (x, y, 0; Y 2, XY + Y 2k+1, X)
is (2k + 1)-determined and of Ae-codimension k, where k ≥ 1.

(ii) Any finitely determined bigerm consisting of an immersion and a cross-cap,
meeting transversely, is equivalent to one of the germs defined in (i).

Case 3.2 A 3-transversal is (x, y, 0; aY 3 + bX2Y, Y 2, X) and after further simpli-
fication similar to that above we obtain the following 3-jets.

3-jet J3A-codim
3.2.1 (x, y, 0; Y 3 ± X2Y, Y 2, X) 3 3-det
3.2.2 (x, y, 0; Y 3, Y 2, X) 4
3.2.3 (x, y, 0; X2Y, Y 2, X) 4
3.2.4 (x, y, 0; 0, Y 2, X) 5 #

Case 3.2.2 Further calculations give the series A0S
±
k .

Case 3.2.3 First note that the critical sets of the second branch of 3.2.2 and
3.2.3 are not diffeomorphic, so that these multigerms are not A-equivalent. A 4-
transversal is (x, y, 0; X2Y +aXY 3, Y 2, X) and we may reduce this to the following
two cases.
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4-jet J4A-codim
(x, y, 0; X2Y + XY 3, Y 2, X) 4
(x, y, 0; X2Y, Y 2, X) 5 #

Continuing with the first, a 5-transversal is (x, y, 0; X2Y + XY 3 + aY 5, Y 2, X);
denote this family fa. We find that the J5A-codimension is 5 for all values of
a, and that (0, 0, 0; 0, Y 5, 0) /∈ L(J5A) · fa. So a is a genuine modulus and the
codimension of the stratum is 4. Further, fa is 5-determined for a �= 0, 1

4 and this
provides the first unimodular family in our classification. The exceptional cases are
of codimension at least 5 and can be discarded.

Case 3.3 Returning now to the 2-jets, a 3-transversal for (x, y, 0; 0, XY, X) is
fa,b,c = (x, y, 0; aY 3 + bXY 2, XY + cY 3, X). Direct computation of L(J3A) · fa,b,c

shows that if a = 0 then the J3A-codimension is at least 5. We can therefore
ignore this case and assume that (after scaling) a = 1. We then apply Mather’s
Lemma and see that the family fb,c = (x, y, 0; Y 3 + bXY 2, XY + cY 3, X) is trivial
in b and c. Specifically, we show that the J3A-codimension of fb,c is 4 and that the
vectors tangent to this family, (0, 0, 0; XY 2, 0, 0) and (0, 0, 0; 0, Y 3, 0), are contained
in L(J3A) · fb,c for all values of b and c. Thus we have one J3A-orbit to consider,
namely (x, y, 0; Y 3, XY, X).

Continuing, a 4-transversal is (x, y, 0; Y 3 + aY 4, XY + bY 4, X) and this family
has J4A-codimension ≤ 4 only if a �= 0 and b �= 0. We can therefore assume that
(after scaling) a and b are equal to 1, giving (x, y, 0; Y 3 + Y 4, XY + Y 4, X).

A 5-transversal is (x, y, 0; Y 3 + Y 4, XY + Y 4 + aY 5, X). Here a is a modulus
and each member of the family is 5-determined and of J5A-codimension 5 provided
a �= 1. The codimension of the whole stratum is 4.

Case 4 The classification of branches over this 1-jet follows similar arguments to
those for Case 3; we will just add the following observations. A 2-transversal is
(x, y, 0; X, aY 2 + bXY, cY 2 + dXY + eX2). After further simplification we obtain
four 2-jets of A-codimension ≤ 4 which, in turn, give rise to the types A0S0|A±

1

through to (A0S0|A∞)2 and the series A0S0|A±
k and (A0S0|A∞)k in Tables 2 and 1.

(See the remarks at the end of the introduction to Section 3 also.)

Case 5 A 2-transversal is (x, ay2+bxy, cy2+dxy; eY 2+fXY, X, gY 2+hXY ). We
find there is only one orbit of J2A-codimension ≤ 4, namely (x, xy, y2; XY, X, Y 2).
On continuing the classification, the only relevant case to arise from this jet is
type S0S0. This completes the classification of the bigerms.

3.2 Classification of Trigerms

We know that a trigerm of A-codimension ≤ 3 must have at least two immersed
branches and that no branch can have zero 1-jet. Certainly we can have three
transverse immersions: this is Case 1 below. Now let us suppose that the first two
branches are immersions. The possibilities are (x, y, 0; X, 0, Y ) and (x, y, 0; X, Y, 0).
Direct computation shows there are nine trigerms having two immersed branches,
those of A-codimension ≤ 3 are as follows.

1-jet J1A-codim
1 (x, y, 0; X, 0, Y ; 0, x̄, ȳ) 0 1-det
2 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ) 1
3 (x, y, 0; X, 0, Y ; x̄, ȳ, 0) 2
4 (x, y, 0; X, 0, Y ; 0, x̄, x̄) 2
5 (x, y, 0; X, 0, Y ; 0, x̄, 0) 3
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Case 2 Further calculations give the series A3
0|Ak.

Case 3 A 2-transversal is (x, y, 0; X, 0, Y ; x̄, ȳ, aȳ2 + bx̄ȳ + cx̄2). We will show
how to apply elementary coordinate changes to reduce this family to five non-J3A-
equivalent 3-jets.

First suppose c �= 0, scale it to equal 1 and then complete the square in the last
component to give (x, y, 0; X, 0, Y ; x̄+αȳ, ȳ, x̄2+βȳ2) for some α and β. Now change
coordinates via u �→ u−αv to get (x−αy, y, 0; X, 0, Y ; x̄, ȳ, x̄2+βȳ2). Then a change
in the source coordinates (x, y) and (x̄, ȳ) gives the 2-jet (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2±ȳ2)
or (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2).

If c = 0 but b �= 0 then we can write the 2-jet as (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ(x̄+αȳ)).
Changing the source coordinates (x̄, ȳ) gives (x, y, 0; X, 0, Y ; x̄−αȳ, ȳ, ȳx̄). As before
we can then reduce to give (x, y, 0; X, 0, Y ; x̄, ȳ, x̄ȳ).

Finally, c = b = 0 gives the remaining two cases. The complete stratification is
as follows.

2-jet J2A-codim
3.1 (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2 ± ȳ2) 2 2-det
3.2 (x, y, 0; X, 0, Y ; x̄, ȳ, x̄2) 3
3.3 (x, y, 0; X, 0, Y ; x̄, ȳ, x̄ȳ) 3
3.4 (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ2) 4 #
3.5 (x, y, 0; X, 0, Y ; x̄, ȳ, 0) 5 #

Case 3.2 Further calculations give the series (A2
0|A±

k )(A0).

Case 3.3 Further calculations give the series (A2
0|A∞)(A0)|Ak. (Note that we

specify k ≥ 2 in this series because for k = 1 the resulting multigerm is A-equivalent
to Case 3.1.)

Case 3.4 Although this case is ruled out on codimension grounds, we must
consider it further to complete the list of simple multigerms. A 3-transversal is
(x, y, 0; X, 0, Y ; x̄, ȳ, ȳ2 + ax̄2ȳ + bx̄3). If b �= 0 then, applying Mather’s Lemma, we
can reduce it to equal 1 and also find that the family in a is trivial. The resulting
jet (A2

0|A2)(A0)|A2 is 3-determined of A-codimension 4. The case b = 0 gives rise
to non-simples and is not considered further.

Case 4 A 2-transversal is (x, y, 0; X, 0, Y ; aȳ2 + bx̄ȳ, x̄, x̄ + cȳ2 + dx̄ȳ). Using
arguments similar to those of previous examples we find that there are three 2-
jets of A-codimension ≤ 3 which, in turn, give rise to the types A2

0S0|A1 through
to A2

0S0|A2 in Table 2.

Case 5 A 2-transversal is (x, y, 0; X, 0, Y ; aȳ2 + bx̄ȳ, x̄, cȳ2 + dx̄ȳ + ex̄2). The
only orbit with J2A-codimension ≤ 3 is found to be (x, y, 0; X, 0, Y ; x̄ȳ, x̄, ȳ2 ± x̄2).
Further calculations give the following series. (We remark that the members of this
series are non-simple.) The case k = 1 provides the final trigerm in Table 2 and our
classification of trigerms is complete.

(A0S0|A±
1 )(A0)k (x, y, 0; X, 0, Y ; x̄ȳ + ȳ2k+1, x̄, ȳ2 ± x̄2)

k ≥ 1, (2k + 1)-determined, A-codim = k + 2.
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3.3 Classification of Four-germs

We need to consider 4-germs with A-codimension ≤ 2. We know that any 4-germ
(f1; f2; f3; f4) relevant to our problem must have at least three immersed branches
and can assume that these are f1, f2 and f3; in addition, f4 cannot have zero 1-
jet. If f4 is immersed then (f1; f2; f3) can be any of the trigerms (1), (2) or (3) in
Section 3.2. However, direct computation shows there are two 4-germs of type (2),
each of A-codimension 3, and two 4-germs of type (3), each of A-codimension 4;
the remaining germs being equivalent to those obtained from type (1). Therefore
the only relevant case is type (1) and we obtain the following.

1-jet J1A-codim
1 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ) 0 1-det
2 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ) 1
3 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , 0) 2

Finally, if f4 is A-equivalent to (x, 0, 0) then, from Proposition 6, (f1; f2; f3) must
be A-equivalent to the trigerm (1). However, the only 4-germ of this type is found
to be (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, 0, 0), having A-codimension 4.

Case 2 Further calculations give the series (A3
0|Ak)(A0).

Case 3 A 2-transversal is (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , aȲ 2 + bX̄Ȳ + cX̄2). Us-
ing elementary coordinate changes and Mather’s lemma we obtain only one 2-jet
relevant to our problem, namely (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ 2 + X̄Ȳ + cX̄2)

The coefficient c is a genuine modulus and the whole stratum has codimension
2. If c �= 0, 1

4 the 4-germ is 2-determined. (The isolated cases c = 0 and c = 1
4 are

ruled out, being of too high a codimension.)

3.4 Classification of Five-germs

We need to consider 5-germs with A-codimension ≤ 1. From Proposition 6, all
branches must be immersed and the 4-germ formed by the first four branches (say)
must be of type (1) or (2) in Section 3.3. We find that there are five cases, with
two having A-codimension ≤ 1.

1-jet J1A-codim
1 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; x̃, ỹ, ax̃ + bỹ) 2 1-det
2 (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ; x̃, ỹ, x̃ + bỹ) 2

Case 1 This is a bimodular family and the codimension of the stratum is 0. We
find that the 5-germ is 1-determined provided a, b, a − 1, b − 1, a − b �= 0.

Case 2 Provided b �= 0, 1, a 2-transversal is (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ +
aX̄2; x̃, ỹ, x̃+ bỹ). We take the stratum as b �= 0, 1 from now on. Applying Mather’s
Lemma to the family in a we can reduce the above family to the following two
unimodular strata.

2-jet J2A-cod
(x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ + X̄2; x̃, ỹ, x̃ + bỹ) 2 2-det (b �= 0, 1)
(x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ ; x̃, ỹ, x̃ + bỹ) 3 #
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3.5 Classification of Six-germs

We need to consider 6-germs with A-codimension = 0. From Proposition 6, the
5-germ formed by the first five branches (say) must be of type (1) in Section 3.4.
Ignoring several exceptional cases (which we may do on codimension grounds) we
find that the J1A-stratum of 6-germs we need to consider is given by

(x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ; x̃, ỹ, a1x̃ + a2ỹ; X̃, Ỹ , a3X̃ + a4Ỹ ).

For generic ai a 2-transversal is (spanned by) {(x̄2, 0, 0), (0, 0, x̃2), (0, 0, X̃2)}. The
resulting family is 6-modular and with a little work can be reduced to the form

(x, y, 0; X, 0, Y ; x̄2, x̄, ȳ; X̄, Ȳ , X̄ + Ȳ ;
x̃, ỹ, a1x̃ + a2ỹ + a3x̃

2; X̃, Ỹ , a4X̃ + a5Ỹ + a6X̃
2).

A generic representative of this family has J2A-codimension 6 and the stratum
therefore has codimension 0 and contributes to our list of singularities. We do
not determine the exceptional values for the moduli in this family. Computer cal-
culations indicate that the defining equations for the corresponding varieties are
extremely complicated and likely to be of little practical use. Instead we attempt
to show that the family is finitely-determined for generic ai. Computer calcula-
tions verify that for a fixed value of the moduli (say, (a1, . . . , a6) = (2, 3, 1, 1, 5, 4),
chosen following a preliminary investigation of the exceptional values) the 6-germ
is 2-determined. (Note, the calculation using fixed moduli is computationally far
less intensive.) Since finite-determinacy is an open condition the conclusion follows.
In addition, should we need to consider a specific example in applications then we
have a member of the family whose exact determinacy degree (2) is known.

4 Bifurcation Geometry

In this section we analyse the bifurcation geometry of the multigerms appearing in
Table 2. Versal unfoldings are calculated using the computer package Transversal
(unfolding parameters being denoted by a, ai, b and c). We describe each bifur-
cation set via its stratification into the five components (denoted by B1, . . . ,B5)
corresponding to the Ae-codimension 1 degenerations. In many cases this is accom-
panied by diagrams of the bifurcation set and the transitions which occur in the
multigerm as one passes through the bifurcation set. This analysis was carried out
in real time using the computer package LSMP [14] but, of course, it is not always
possible to reproduce faithful representations of the computer pictures. For exam-
ple, in some cases it is more informative to show the transitions in the intersections
curves of the branches. In addition, such analysis is meaningless for cases where the
normal form contains moduli. Here a topological treatment is needed but we do not
consider such issues as they would extend the article substantially. We stop at an
algebraic description of the bifurcation sets and summarise the types of transitions
exhibited; the geometry is notably more complex for the non-simples. The bigerm
A0H2 and the 6-germ A6

0 are the only cases we omit completely. The algebraic de-
scription of both is extremely complicated (in the former case due to the algebraic
form of the double point curve D2(f2)). A more practical approach would be to
remove the moduli via topological methods at the outset.

There are five degenerations of Ae-codimension 1, characterised as follows. The
strata B1, . . . ,B5 of the bifurcation set B are given by taking the closure of the
corresponding sets.

B±
1 . fusion/birth of two cross-caps via ‘bubbles’ (B+

1 ) or ‘cones’ (B−
1 ). This is a

single branch phenomenon which occurs when one branch of the multigerm
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is adjacent to the monogerm S±
1 , [12]. Conditions come directly from the

calculations for monogerms carried out in [6].

B±
2 . non-transverse double points: elliptic (B+

2 ) or hyperbolic (B−
2 ). These occur

when two smooth branches intersect and have a common tangent plane at the
point in question. See A2

0|A±
1 below.

B3. cross-cap/immersion intersections. These occur when a smooth branch inter-
sects a cross-cap transversally. Precisely (for codimension 1 and not higher
degenerations) we require the immersion is transverse to both the cross-cap’s
tangent line and double point curve, and that we have the least degenerate
form of cross-cap, namely one with quadratic double point curve. See (A0S0)1
below (the double point curve being given by X + Y 2 = 0).

B4. non-transverse triple points. These occur when two smooth branches intersect
transversally, and a third smooth branch makes a tangential intersection with
this curve of double points. See A3

0|A1 below.

B5. transverse quadruple points. These occur when four smooth branches intersect.
Precisely (for codimension 1 and not higher degenerations) we require each
pair of branches to intersect transversally, with the remaining two branches
intersecting this curve of double points transversally. See A4

0 below.

Figure 4.1 shows stable perturbations of these five types close to the bifurcation
point.

Figure 4.1 here.

In the examples below the strata are often given by standard discriminants. For
example, discriminants of xk+1 + ak−1x

k−1 + · · ·+ a1x+ a0 (Ak) and discriminants
of xk+1 + akxk + · · · + a1x + a0. The latter cases are diffeomorphic to the product
of the corresponding Ak discriminant with a line; for example, the parabola and
the ‘twisted-cuspidal-edge surface’ for k = 1 and k = 2, respectively; see bigerms
A0S0|A±

1 and A0S0|A2 and Figures 4.13 – 4.15. By ‘discriminant of p(x)’ we will
implicitly mean real discriminant and denote this by ∆(p(x)), that is the hypersur-
face given by eliminating x from p(x) = 0 and dp/dx = 0 for real x. For example,
with p(x) = x2k + ak−1x

2k−2 + · · ·a1x
2 + a0 this imposes further restrictions and

gives the ‘half-parabola’ (a2
1 − 4a0 = 0, a1 ≤ 0) and the ‘half twisted-cuspidal-edge’

for k = 2 and k = 3, respectively. See bigerms (A0S0)2 and (A0S0)3 and Figures 4.8
and 4.9.

It is informative to calculate the bifurcation sets for general series of simple
singularities where possible. As the calculations are routine we give the proofs in
several cases and state the remaining ones. Table 3 summarises these results for
all of the simple singularities appearing in Table 2. The remaining non-simples are
discussed as individual cases below.

4.1 Bifurcation of the Simple Bigerms

Series A2
0|A±

k

This represents the intersection of two immersed sheets. An Ae-versal unfolding is
given by (f1; f2) = (x, y, 0; X, Y, p(X, Y )) where p(X, Y ) = X2±Y k+1+ak−1Y

k−1+
· · ·+a1Y +a0 defines the intersection curve of f1 and f2 and their contact type. The
only non-empty stratum of B is B2 which is given by the discriminant of p(0, Y ).

The proof is similar to that of case (A0S0)k, which we take as as our main
example. The bigerms A2

0|A±
1 are the archetypes of the non-transverse elliptic and

hyperbolic double points, respectively types B+
2 , and B−

2 . One may distinguish
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B+
2 and B−

2 points geometrically by the intersection curve of f1 and f2 as this
identifies the order of contact of the branches. Note that p is a versal unfolding of
the intersection curve, which in the general case is of type Ak, as suggested by the
computer pictures.

Figures 4.2–4.6 here.

Series (A0S0)k

This represents the transverse intersection of a sheet and a cross-cap. An Ae-
versal unfolding is given by (f1; f2) = (x, y, 0; Y 2, Y p(X, Y ), X) where p(X, Y ) =
X + Y 2k + ak−1Y

2k−2 + · · · + a1Y
2 + a0 defines D2(f2). The non-empty strata of

B are B3 and B4, given by a0 = 0 and the discriminant of p(0, Y ), respectively.

Proof. The versal unfolding is calculated using the standard unfolding theorem
extended to the multigerm case. The details are routine and omitted. We will
need to consider the multilocal behaviour of each branch, in particular determine
its double point set in the source. The following remarks are useful in many other
cases as well. Given a monogerm f : R2, 0 → R3, 0 we define the source double
point set D2(f) to be the closure of the set (x1, y1) ∈ R2 such that there exists
(x2, y2) ∈ R2 with (x1, y1) �= (x2, y2) and f(x1, y1) = f(x2, y2). (Strictly speaking,
D2(f) is a set germ defined via representatives of the germ f .) Given a monogerm
f with 2-jet j2f = (x, y2, 0) we can write f in the form (x, y2, yp(x, y)) where p is
even in y, that is p(x, y) = p̃(x, y2) for some p̃; see [12]. In this case we can calculate
D2(f) from first principles: we require x1 = x2, y1 = −y2 �= 0 and p(x1, y1) = 0.
Taking the closure of such {(x1, y1)} we see that D2(f) is given by p(x, y) = 0. This
applies to many of the cases we have to consider and can be extended to the other
cases using similar arguments.

B1 stratum: since neither branch is more degenerate than a cross-cap it cannot
deform (be adjacent) to an S1 singularity. The B1 stratum is therefore empty.

B2 stratum: the two branches intersect when X = 0. However, since

df2 =

⎛
⎝ 0 2Y

Y ∂p/∂X p + Y ∂p/∂Y

1 0

⎞
⎠

one sees that the two branches are never tangential. Likewise one sees that a
point (X1, Y1) on D2(f2) and its corresponding point (X1,−Y1) never give rise to
a tangential intersection in the image. Thus B2 is empty.

B3 stratum: this type of degeneracy (or worse) can only occur when both
branches intersect and f2 has a cross-cap at the intersection point. Respectively,
X = 0 and, from the expression for df2: Y = 0, p(X, Y ) = 0. That is, p(0, 0) = 0
and B3 is just {a0 = 0}.

B4 stratum: triple points can only occur when the image of f1 intersects the
image of D2(f2). Now f1 intersects f2 when X = 0. D2(f2) is given by p(X, Y ) = 0
with tangent space (at a given point (X, Y )) given by the kernel of dp. This is
spanned by (−∂p/∂Y, 1) and so the tangent to the intersection curve in the target
is spanned by the image of this vector under df2. Therefore f2(D2) intersects f1

tangentially precisely when X = 0 and p = ∂p/∂Y = 0. Thus B4 is given by the
discriminant of p(0, Y ).

B5 stratum: since there are no quadruple points this stratum is empty.

The bigerm (A0S0)1 is the archetype of the degeneration type B3. Note that
in the calculation of B4 = ∆(p(0, Y )) we can assume that Y �= 0 so that (X, Y )
is a proper double point (otherwise (X, Y ) is a cross-cap point and the condition
for instability is a0 = 0, as found for the B3 stratum) allowing us to eliminate Y .
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Thus, for (A0S0)2, B4 is the half-parabola {(a, b) : a2
1 − 4a0 = 0, a1 ≤ 0}, and for

(A0S0)3 it is the half twisted-cuspidal-edge. Note that the intersection curve of f1

and f2 in the target is given parametrically as the plane curve (Y 2, Y p(0, Y ), 0), a
versal unfolding of the planar cusp (t2, t2k+1). The bifurcation geometry of (A0S0)1,
(A0S0)2 and (A0S0)3 therefore coincides with, respectively, that of the cusp (t2, t3),
rhamphoid cusp (t2, t5) and higher rhamphoid cusp (t2, t7), as suggested by the
computer pictures.

Figures 4.7–4.9 here.

Series A0S
±
k

An Ae-versal unfolding is (f1; f2) = (x, y, a; Y p(X, Y ), Y 2, X) where p(X, Y ) =
Y 2 ± Xk+1 + bk−1X

k−1 + · · · + b1X + b0 defines D2(f2). The non-empty strata of
B are B1 and B3, given by the discriminant of p(X, 0) and p(a, 0) = 0, respectively.

Proof. The proof follows similar arguments to that of case (A0S0)k. We will just
remark on the following. The B3 and B4 strata are calculated as before. For the B3

stratum: the intersection condition is X = a; the conditions for f2 to be singular are
Y = 0, p(X, Y ) = 0. B4 stratum: again the intersection condition is X = a; D2(f2)
is given by p(X, Y ) = 0 with the tangency condition being Y = 0. However, proper
double points are given by p(X, Y ) = 0 with Y �= 0, whereas the isolated double
points with Y = 0 have multiplicity 2 and coincide with cross-caps points. (This
behaviour was noted above.) Thus, B3 is given by p(a, 0) = 0 while B4 is empty.
These observations provide a convenient method for calculating the B1 stratum.

B1 stratum: here f2 is more degenerate than a cross-cap so we should expect it
to deform to an S1 singularity. Cross-cap points (in fact, any singular points) are
given by Y = 0, p(X, Y ) = 0. Such points therefore lie on the double point curve
D2(f2) and coalesce to form an S1 point when p(X, 0) has a repeated root. Thus,
B1 is given by the discriminant of p(X, 0).

Note that the intersection curve of f1 and f2 is given parametrically as a versal
unfolding of the standard planar cusp (t2, t3). For example, the bifurcation set for
A0S2 consists of a cuspidal edge meeting the cusp catastrophe surface tangentially.
Points on the cusp catastrophe surface correspond to a cross-cap point (which ap-
pears in the unfolding of S2) intersecting a sheet, and in this situation the two
branches f1, f2 always meet in a cusp. Inside the cuspidal edge S2 deforms into
three cross-cap points so there are three occasions where the sheet f1 can meet f2

in a cusp as one varies a. Whereas outside the cuspidal edge only one cross-cap
appears and there is only one occasion where f1 intersects f2 in a cusp.

Figures 4.10–4.12 here.

Series A0S0|A±
k

This represents a sheet and cross-cap intersecting tangentially. An Ae-versal un-
folding is given by (f1; f2) = (x, y, 0; X, XY, p(X, Y )) where p(X, Y ) = Y 2±Xk+1+
akXk + · · · + a1X + a0. The non-empty strata of B are B2 and B3, given by the
discriminant of p(X, 0) and a0 = 0, respectively.

Proof. The proof follows similar arguments to that of case (A0S0)k. The same
argument shows that D2(f2) is given by X = 0, with Y �= 0 required for proper
double points.

With a little work one can show that the intersection curve of the branches is
given by y2 ± xk+3 + akxk+2 + · · · + a1x

3 + a0x
2 = 0 (minus the origin in the

case where it is an isolated point). This is a (non-versal) unfolding of an Ak+2

18



singularity and exhibits the expected transitions. (In the case k = 2 we only show
the intersection curve, and do so for sections {c = constant} of the cuspidal edge
for clarity.)

Figures 4.13–4.15 here.

Series (A0S0|A∞)k

This represents the most degenerate type of sheet/cross-cap intersection, where
the sheet is tangential to both the cross-cap and its double point curve. An Ae-
versal unfolding is given by (f1; f2) = (x, y, 0; X, Y 2, p(X, Y )) where p(X, Y ) =
XY +Y 2k + ak−1Y

2k−2 + · · ·+ a1Y
2 + a0 + bX . The non-empty strata of B are B2,

B3 and B4, given by p(0, b) = 0, a0 = 0 and the discriminant of p(0, Y ), respectively.
We remark that D2(f2) is again given by X = 0. The geometry for type

(A0S0|A∞)2 is complicated and we do not try to depict the transitions. The bi-
furcation set consists of a higher degree version of the cusp catastrophe surface, a
plane, and a half-parabola edge, corresponding to the three components B2, B3 and
B4 respectively.

Figure 4.16 here.

4.2 Bifurcation of the Non-simple Bigerms

For each case we can incorporate the modulus a as an unfolding parameter. We use
the notation ā to highlight the fact that ā is a modulus in the original germ.

Type A0B2

An Ae-versal unfolding is (f1; f2) = (x, y, 0; Y p(X, Y ), Y 2, X) where p(X, Y ) =
X2 +XY 2 + āY 4 + bY 2 + cX + d defines D2(f2) and ā �= 0, 1

4 . Singular points of f2

are given by Y = p(X, Y ) = 0, so B1 points are characterised by the requirement
that such points on D2(f2) coalesce, the strata being defined by ∆(p(X, 0)), that is
c2 − 4d = 0. Although f1 and f2 are never tangential we can obtain non-transverse
double points from a point (X, Y ) on D2(f2) and its partner (X,−Y ). This be-
haviour has not been exhibited thus far. Such adjacencies are noted in the work of
Mond [12], where it is stated that the Bk series (x, y2, x2y±y2k+1) is adjacent to the
bigerm A2

0|A±
k−1. In the present scenario f2 is A-equivalent to B2 and the adjacency

with A2
0|A±

1 provides B2 type tangencies. It turns out that the B2 stratum is given
by eliminating X and Y from p = ∂p/∂X = ∂p/∂Y = 0, giving the hypersurface
(2b− c)2 + (1− 4ā)(4d− c2) = 0 with the constraint (1− 4ā)(2b− c) ≥ 0. B3 points
occur when f1 meets a singular point of f2. The requirement is simply p(0, 0) = 0
so the stratum is given by d = 0. B4 points occur when f1 intersects f2(D2(f2))
tangentially, the stratum is found to be given by ∆(p(0, Y )), that is 4ād − b2 = 0
with āb ≤ 0. Finally, B5 is empty.

Type A0S1|A±
1

An Ae-versal unfolding is (f1; f2) = (x, y, 0; X, Y p(X, Y ), Y 2 ± X2 + d) where
p(X, Y ) = Y 2 + āX2 + bX + c defines D2(f2) and ā �= 0,±1. Singular points of f2

are given by Y = p(X, Y ) = 0, so B1 is defined by ∆(p(X, 0)), that is b2 − 4āc = 0.
B2 points occur when f1 and f2 are tangential, the stratum is shown to be given
by d = 0. Combining the conditions for f1 to meet a singular point of f2, we find
that B3 is given by eliminating X from ±X2 + d = āX2 + bX + c = 0, giving
ā2d2 + c2 ± (b2d− 2ācd) = 0 with b2 − 4āc ≥ 0 and d ≤ 0 (+ case), d ≥ 0 (− case).
B4 points occur when f1 meets f2(D2(f2)) tangentially, the stratum is found to be
b2 + 4(c − d)(±1 − ā) = 0. B5 is empty.
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Type S0S0

An Ae-versal unfolding is (f1; f2) = (x, yp(x, y), y2; Y q(X, Y ), X, Y 2 + d) where
p(x, y) = x + y2 + b defines D2(f1), q(X, Y ) = X + āY 2 + c defines D2(f2) and
ā �= 0. Neither branch is more degenerate than a cross-cap so B1 is empty. B2 points
occur when f1 and f2 are tangential and a little work shows that the stratum is
d = 0. B3 has two components given by f2 meeting a singular point of f1, and
vice-versa. These components are given by eliminating Y from āY 3 + cY + b =
Y 2 + d = 0 giving b2 + d(c − ād)2 = 0, and y from y3 + by + c = y2 − d = 0
giving c2 − d(b + d)2 = 0, respectively. B4 has two components given by f2 meeting
f1(D2(f1)) tangentially, and vice-versa. These are both unimodular families of
‘twisted-cuspidal-edge surfaces’ given by the discriminants of the polynomials āY 3+
Y 2 + cY + d and y3 + āy2 + by + c− ād. Another feature with this example is that
a point (x, y) ∈ D2(f1) can meet a point (X, Y ) ∈ D2(f2) in the target which,
together with their partners, gives rise to a quadruple point in the target space.
This bigerm is found to have non-empty B5 stratum given by āb − ād − c = 0 with
b, āc ≤ 0.

4.3 Bifurcation of Trigerms

The calculations are again routine and the case (A0S0|A±
1 )(A0)1 serves as our main

example. We discuss this next and then summarise the remaining cases.

Type (A0S0|A±
1 )(A0)1

This trigerm consists of two immersions and a cross-cap. An Ae-versal unfolding is
given by (f1; f2; f3) = (x, y, 0; X, 0, Y ; ȳp(x̄, ȳ), x̄, ȳ2 ± x̄2 + cx̄ + b) where p(x̄, ȳ) =
x̄ + ȳ2 + a defines D2(f3). The non-empty strata of B are B2 which is given by
c2 ∓ 4b = 0, B3 which has two components given by a(±a2 − ac + b) = 0, B4 given
by b = 0, and B5 given by a − b = 0 with a ≤ 0. It is a simple exercise to sketch
the bifurcation set or reproduce it on a computer. However, it has five separate
components and the resulting picture is not particularly easy to interpret. We will
encounter similar problems with some of the other higher multigerms and in such
cases will omit the corresponding diagrams.

Proof. The versal unfolding calculation is routine and the fact that p defines
D2(f3) follows from the arguments in case (A0S0)k.

B1 stratum: since no branch is more degenerate than a cross-cap the B1 stratum
is empty.

B2 stratum: one sees that only f1 and f3 can form a tangential intersection.
The condition for intersection is ȳ2 ± x̄2 + cx̄ + b = 0. Now

df3 =

⎛
⎝ ȳ x̄ + 3ȳ2 + a

1 0
±2x̄ + c 2ȳ

⎞
⎠

so f1 and f3 intersect tangentially if, in addition, ±2x̄ + c = 0 and ȳ = 0. B2 is
therefore given by the discriminant of ±x̄2 + cx̄ + b.

B3 stratum: this type of degeneracy (or worse) occurs when f1 or f2 intersects
a singular point of f3. The latter is given by ȳ = 0, x̄ = −a. Combining with the
respective intersection conditions, ȳ2 ± x̄2 + cx̄ + b = 0 and x̄ = 0, we obtain the
corresponding two components of the strata.

B4 stratum: triple points occur when all three branches intersect or when one
of the immersed branches meets a point of D2(f3) in the target. This gives three
possible components to B4 which we will consider in turn. (i): f1 and f2 meet in
the target in the u-axis. f3 intersects this curve when x̄ = 0 and ȳ2 + b = 0 and
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tangency is a linear dependence condition on the vectors formed by the columns of
df3 and (1, 0, 0), that is ȳ = 0. The resulting component is therefore given by b = 0.
(ii): f1 intersects f3 when ȳ2 ± x̄2 + cx̄ + b = 0. D2(f3) is given by p(x̄, ȳ) = 0 with
tangent space (at a given point (x̄, ȳ)) given by the kernel of dp. This is spanned
by (−2ȳ, 1) and the required tangency condition, that df3(Ker dp) lies in the (u, v)-
plane, comes out as ±2x̄ȳ + cȳ − ȳ = 0. For proper D2 points ȳ �= 0 and this
reduces to x̄ = ±(1 − c)/2. However, we are interested in semilocal phenomena,
that is for all (a, b, c) ∈ B in a sufficiently small neighbourhood of the origin, the
corresponding points (x̄, ȳ) must lie in a given (albeit arbitrary) neighbourhood of
(0, 0). This is clearly not the case so we can rule out the above behaviour and this
component of the stratum is empty. (iii): similarly the intersection condition for
f2 and f3 is x̄ = 0 with tangency condition ȳ = 0. However, such points on D2(f3)
are not proper, but cross-cap points. (Indeed, substituting these conditions into
p(x̄, ȳ) = 0 gives a = 0, which is one component of the B3 stratum found above.)
This component of the strata is therefore empty.

B5 stratum: quadruple points occur when f1 and f2 intersect a point of D2(f3)
in the target. As already stated, all three branches meet when x̄ = 0 and ȳ2 +b = 0.
The condition for (x̄, ȳ) to lie on D2(f3) then becomes ȳ2 + a = 0 and B5 is given
by a = b, both being non-positive.

Series A3
0|Ak

An Ae-versal unfolding is given by (f1; f2; f3) = (x, y, 0; X, 0, Y ; x̄, ȳ, ȳ+p(x̄)) where
p(x̄) = x̄k+1 + ak−1x̄

k−1 + · · · + a1x̄ + a0. The only non-empty stratum of B is B4

which is given by the discriminant of p(x̄).
The trigerm A3

0|A1 is the archetype of the non-transverse triple point, type B4.
Note that p is versally unfolded. Thus for trigerm A3

0|A2, B4 is given by the A2 cusp
discriminant; observe that for (a, b) inside the cusp the trigerm has two ‘bubbles’,
which degenerate to one bubble on the bifurcation set and then disappear.

Figures 4.17–4.19 here.

Series (A2
0|A±

k )(A0)
An Ae-versal unfolding is given by (f1; f2; f3) = (x, y, 0; X, 0, Y ; x̄, ȳ + a, x̄2 + p(ȳ))
where p(ȳ) = ±ȳk+1 + bk−1ȳ

k−1 + · · ·+ b1ȳ + b0. The non-empty strata of B are B2

and B4 which are given by the discriminant of p(ȳ) and p(−a) = 0, respectively.

Figures 4.20–4.22 here.

Series (A2
0|A∞)(A0)|Ak

An Ae-versal unfolding is given by (f1; f2; f3) = (x, y, 0; X, 0, Y ; x̄, ȳ, x̄ȳ + p(x̄))
where p(x̄) = x̄k+1 + akx̄k + · · ·+ a1x̄ + a0. The non-empty strata of B are B2 and
B4, given by a0 = 0 and by the discriminant of p(x̄), respectively.

Figure 4.23 here.

We now consider the remaining non-simple trigerms.

Types A2
0S0|A1, A2

0S0|A1(0)±, A2
0S0|A1(1)±

These trigerms consists of two immersions meeting a cross-cap. For brevity, we
will consider all the cases simultaneously. Note that A2

0S0|A1 is a unimodular
family (with a �= 0, 1), the remaining cases arising from the exceptional values of
the modulus. In all cases a, b, c denote the unfolding parameters and for A2

0S0|A1

we take the modulus as an unfolding parameter (denoting it by ā). An Ae-versal
unfolding is given by (x, y, 0; X, 0, Y ; ȳp(x̄, ȳ), x̄, x̄ + ȳ2 + c) where p defines D2(f3)
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and is given by x̄ + āȳ2 + b, x̄± ȳ4 + aȳ2 + b, and x̄± ȳ4 + (1 + a)ȳ2 + b for each of
the respective cases. We summarise the findings.

For A2
0S0|A1 the B1 and B2 strata are empty; B3 has two components which are

given by f1 meeting a singular point of f3 (b − c = 0) and likewise for f2 (b = 0).
B4 points are given by the intersection curve of f1 and f2 meeting f3 tangentially,
the stratum being given by c = 0. (The other possible scenarios of f1 or f2 meeting
D2(f3) tangentially do not occur.) Finally, B5 points occur where f1 and f2 meet
D2(f3), the condition being āc − b = 0 with c ≤ 0.

For A2
0S0|A1(0)± the B4 stratum has the extra component 4b ∓ a2 with a ≤ 0

(+ case) and a ≥ 0 (− case), due to tangency of f2 and D2(f3) in the target; and
B5 takes the form ±c2 − ac + b = 0 with c ≤ 0.

Similarly, A2
0S0|A1(1)± follows A2

0S0|A1 only B4 has the extra component ±a2−
4b + 4c = 0 with a ≤ 0 (+ case) and a ≥ 0 (− case), due to tangency of f1 and
D2(f3) in the target; and B5 takes the form ±c2 − ac + b − c = 0 with c ≤ 0.

Type A2
0S

±
1 |A1

The trigerm consists of two immersions meeting an S±
1 singularity. An Ae-versal

unfolding is given by (x, y, 0; X, 0, Y ; ȳp(x̄, ȳ), x̄, x̄+ ȳ2+c) where p(x̄, ȳ) = ȳ2± x̄2+
bx̄+ a defines D2(f3). The B1 stratum is defined by ∆(p(x̄, 0)), that is b2 ∓ 4a = 0;
B2 is empty. B3 has two components, ±c2 − bc + a = 0 and a = 0, which occur
for the same geometrical reasons as in case A2

0S0|A1 above. Similarly, B4 and B5

points occur as in case A2
0S0|A1, the strata being given by c = 0 and a− c = 0 with

a ≤ 0, respectively.

Type A2
0S0|A2

This trigerm consists of two immersions and a cross-cap meeting with A2 contact.
An Ae-versal unfolding is given by (x, y, 0; X, 0, Y ; ȳ2, x̄, x̄ + x̄ȳ + ȳ3 + cȳ2 + bȳ + a)
and p(x̄, ȳ) = x̄ + ȳ2 + b defines D2(f3). For the same reasons as in case A2

0S0|A1,
we find that the B1 and B2 strata are empty, the two components of B3 are a−b = 0
and b = 0; B4 is the ‘twisted-cuspidal-edge surface’ ∆(ȳ3 + cȳ2 + bȳ + a); and B5 is
given by a − bc = 0 with b ≤ 0.

4.4 Bifurcation of Higher Multigerms

Type A4
0 and Series (A3

0|Ak)(A0)
An Ae-versal unfolding of (A3

0|Ak)(A0) is given by (f1; f2; f3; f4) = (x, y, 0; X, 0, Y ;
0, x̄, ȳ; X̄ + a, Ȳ , Ȳ + p(X̄)) where p(X̄) = X̄k+1 + bk−1X̄

k−1 + · · ·+ b1X̄ + b0. The
non-empty strata of B are B4 and B5 which are given by the discriminant of p(X̄)
and p(−a) = 0, respectively. Note that these results also apply to the case A4

0 (this
case could be included as part of the above series but, by definition, we prefer not
to).

Proof. Fortunately, all of the 4-germs that we must consider have non-singular
branches. This simplifies matters as the B1 and B3 strata are immediately empty,
as are all of the D2 curves. Now

df4 =

⎛
⎝ 1 0

0 1
∂p/∂X̄ 1

⎞
⎠

and clearly no two of the branches can intersect tangentially, so B2 is empty. The
intersection curves of each pair of branches fi, fj with i, j ≤ 3 are the three coordi-
nate axes. Tangency of an axis with f4 is a determinant condition involving df4 and
one sees that only the u-axis (the intersection curve of f1 and f2) can intersect f4
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tangentially and this requires that ∂p/∂X̄ = 0. Intersection requires, in addition,
that Ȳ , p(X̄) = 0 and B4 is therefore given by the discriminant of p. Finally, all
four branches intersect, necessarily at the origin in R3, when p(−a) = 0, and this
determines B5.

Type (A2
0|A1)(A2

0)
An Ae-versal unfolding is given by (f1; f2; f3; f4) = (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄ +
d, Ȳ , Ȳ 2 + X̄Ȳ + āX̄2 + bX̄ + c). Using similar arguments to those above we find
that the bifurcation set for this unimodular family is made up as follows. The B2

stratum is given by (1− 4ā)c+ b2 = 0 due to tangency of the f1 and f4 sheets. The
B4 stratum has two components given by b2−4āc = 0 and (4ā−1)d2−4bd+4c = 0
due to tangency of f4 with the intersection curves of f1, f2 and f1, f3, respectively.
Finally B5 is given by ād2 − bd + c = 0.

Finally, we deal with the 5-germs. Again, B1, B3, and all D2 curves are empty.

Type A5
0

The 5-germ consists of 5-planes going through the origin and forms a bimodular fam-
ily. An Ae-versal unfolding is (f1; f2; f3; f4; f5) = (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , X̄ +
Ȳ + d; x̃, ỹ, āx̃ + b̄ỹ + c). The only non-empty stratum of B is B5. This has five
components given by (c−d)(b̄d− c)(ād− c)cd = 0 corresponding to the intersection
of f1, . . . , f̂i, . . . , f5 where i = 1, . . . , 5 (and f̂i denotes the omission of fi from this
list), respectively. (Degeneracies of type B2 and B4 occur only for exceptional val-
ues of the moduli. For example, tangency of f5 with the intersection curve of f1, f4

occurs when ā − b̄ = 0 and ād − c = 0. But such points are exceptional points on
the B5 component formed by the intersection of f1, f2, f4, f5.)

Type (A3
0|A1)(A2

0)
Again, we have 5-planes going through the origin, only this time the fourth branch
meets the intersection curve of the first two branches tangentially. An Ae-versal
unfolding is given by (f1; f2; f3; f4; f5) = (x, y, 0; X, 0, Y ; 0, x̄, ȳ; X̄, Ȳ , Ȳ +X̄2+cX̄+
d; x̃, ỹ, x̃ + āỹ + b). The only non-empty strata of B are B4 and B5. We obtain non-
transverse triple points from tangencies of f4 with the intersection curve of f1, f2,
and from tangencies of f5 with the intersection curves f1, f4 and f2, f4. The three
respective components of B4 are given by(

c2 − 4d
)(

(āc − 1)2 − 4ā(ād − b)
)(

(c − 1)2 − 4(b − d)
)

= 0.

Finally, the five components which go to make up B5 are given by

(b − d)(ād − b)(b2 − bc + d)bd = 0.
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