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ABSTRACT 65 

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of 66 

lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and 67 

animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller 68 

lenses and microphthalmia in addition to cataract, suggesting Gja8 may play a role in both 69 

lens development and ocular growth.  70 

Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye 71 

anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known 72 

(p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn) and p.(Gly94Arg)) and two novel (p.(Phe70Leu) 73 

and p.(Val97Gly)) likely pathogenic variants in seven families. Five of these co-segregated 74 

with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an 75 

individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four 76 

missense variants of unknown or unlikely clinical significance were also identified. 77 

Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals 78 

identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular 79 

and/or extraocular findings. However, the exact genotype-phenotype correlation of these 80 

structural variants remains to be established.  81 

Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the 82 

importance of this gene in early eye development. 83 

Key words: Cataract, microphthalmia, coloboma, congenital aphakia, GJA8, Cx50 84 

  85 
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INTRODUCTION 86 

Anophthalmia (absent eye), microphthalmia (small eye) and coloboma (optic fissure closure 87 

defects), collectively referred to as AMC, form a spectrum of developmental eye disorders, 88 

with an overall estimated incidence of 6-13 per 100,000 births (Shah et al., 2011; Skalicky et 89 

al., 2013). AMC can occur alone or in combination with other ocular anomalies, such as early 90 

onset cataract and anterior segment dysgenesis (ASD). They are associated with extraocular 91 

features in just over half of cases (Shah et al., 2012) and can form part of a syndrome 92 

(Slavotinek, 2011). The etiology of AMC is characterised by marked genetic heterogeneity. 93 

This reflects the complexity underlying eye morphogenesis, a conserved process that requires 94 

a series of highly coordinated events, both at the molecular and the structural level, and is 95 

tightly regulated by a network of transcription factors, extracellular signaling molecules, cell-96 

cycle regulators and adhesion proteins (Reis and Semina, 2015). 97 

Connexins (Cxs) are a homogeneous family of transmembrane proteins with a crucial role in 98 

intercellular communication. They present a conserved topology, which consists of four 99 

transmembrane α-helices (TM1-TM4) joined by two extracellular loops (ECL1 and ECL2) 100 

and one cytoplasmic loop (ICL), flanked by a short cytoplasmic N-terminal domain (NT) and 101 

a long cytoplasmic and less conserved C-terminal domain (CT). Cxs oligomerise in 102 

hexameric complexes called connexons, and allow the transmembrane passage of ions and 103 

small solutes (≤1 kDa). Connexons can function independently as hemichannels (HCs) or 104 

they can dock with their counterparts on the juxtaposed cell to form a gap junction channel 105 

(GJC), enabling the direct exchange of small molecules. Given their role in cell-cell 106 

communication and tissue homeostasis, Cxs have been implicated in a variety of biological 107 

and pathological processes (Pfenniger et al., 2011; García et al., 2016), including myelin-108 

related diseases (Cx32 and Cx47), heart malformations and arrhythmia (Cx40), hearing loss 109 
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and skin disorders (Cx26, Cx30, Cx30.3 and Cx31), oculodentodigital dysplasia, a syndrome 110 

also involving microphthalmia, microcornea, cataract and/or spherophakia (Cx43), and early 111 

onset cataract (Cx46 and Cx50).  112 

As with AMC, developmental or early onset cataracts are a clinically heterogeneous group of 113 

disorders, presenting as isolated anomalies or part of a syndrome. More than 110 genes have 114 

been implicated in congenital cataracts (Gillespie et al., 2014), with mutations in Cxs 115 

accounting for around 16% of cases with a known genetic cause (Shiels and Hejtmancik, 116 

2017). Since the lens does not have any blood supply, it strongly depends on an extensive 117 

network of GJCs for the intercellular communications that are critical for its development and 118 

the maintenance of its transparency. The most abundant Cxs in the lens are Cx46 and Cx50, 119 

which can also form mixed hexamers. Cx46, encoded by GJA3, is expressed only in fiber 120 

cells, whereas Cx50, encoded by GJA8, is present throughout the lens.  121 

Genetic studies in mice have demonstrated that the homozygous knockout of either Gja3 or 122 

Gja8 leads to cataracts, but with important phenotypic differences. The deletion of Gja3 123 

causes severe progressive nuclear cataracts, but does not alter ocular growth (Gong et al., 124 

1997). In contrast, Gja8-null mice develop milder nuclear cataracts at an early postnatal age 125 

and exhibit significantly smaller lenses and microphthalmia (White et al., 1998; Rong et al., 126 

2002), indicating that the two Cxs have overlapping, but distinct functions. In addition, the 127 

targeted replacement of Gja8 with Gja3 (Cx50KI46 knockin mice) prevents the loss of 128 

crystalline solubility, but not the postnatal growth defect resulting from the Gja8 deletion 129 

(White, 2002), confirming the functional diversity of the two proteins and the involvement of 130 

Gja8 in the control of normal ocular growth. This is also supported by mouse lines carrying 131 

missense mutations in Gja8 (Steele et al., 1998; Graw et al., 2001; Chang et al., 2002; Xia et 132 

al., 2012; Berthoud et al., 2013) and by rabbit models with CRISPR-Cas9 mediated GJA8 133 

knockout (Yuan et al., 2016): both develop cataracts, microphthalmia and smaller lenses. 134 
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Moreover, severe cataracts and small lenses have also been observed in transgenic mice 135 

overexpressing Gja8 (Chung et al., 2007), indicating that any significant dysregulation of 136 

Gja8 could be deleterious for eye development.  137 

In humans, missense and frameshift mutations in GJA8 (OMIM 600897) have been 138 

associated with cataracts (Beyer et al., 2013; Yu et al., 2016). Rarely, the phenotype also 139 

includes additional ocular abnormalities, mainly microcornea and iris hypoplasia (Devi and 140 

Vijayalakshmi, 2006; Hansen et al., 2007; Hu et al., 2010; Sun et al., 2011; Prokudin et al., 141 

2014; Ma et al., 2016), but in a few cases also microphthalmia (Ma et al., 2016) and 142 

sclerocornea (Ma et al., 2018). Interestingly, defects in the formation of the lens have also 143 

been observed (Ma et al., 2018). The cataracts described in these individuals vary in both 144 

their location (e.g., nuclear, zonular, lamellar or total) and appearance (e.g., total, pulverulent 145 

or dense). The mutations are predominantly heterozygous and only few homozygous variants 146 

have been reported, all in consanguineous families (Ponnam et al., 2007; Schmidt et al., 2008 147 

Ponnam et al., 2013; Ma et al., 2016). These pathogenic variants lead to amino acid 148 

alterations distributed throughout the protein (Yu et al., 2016), although mostly localised 149 

between the domains TM1 and TM2. They are predicted to affect protein function through 150 

various mechanisms, such as by inducing misfolding and/or mislocalisation or by altering 151 

channel properties (Beyer et al., 2013). 152 

Copy number variants (CNVs) in the distal region of chromosome 1q21 and including GJA8 153 

are rare in the general population, but have recurrently been identified in individuals with a 154 

broad range of different clinical diagnoses (Brunetti-Pierri et al., 2008; Mefford et al., 2008; 155 

Stefansson et al., 2008 Bernier et al., 2016). These primarily include developmental delay, 156 

microcephaly and psychiatric disorders, although the enrichment of 1q21 CNVs in 157 

individuals with these disorders could partly be related to ascertainment bias. However, some 158 

cases also have eye anomalies, such as cataracts (Brunetti-Pierri et al., 2008; Mefford et al., 159 
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2008; Rosenfeld et al., 2012; Bernier et al., 2016; Ha et al., 2016), microphthalmia (Mefford 160 

et al., 2008) and coloboma (Brunetti-Pierri et al., 2008). Among the genes affected by these 161 

recurrent microdeletions/microduplications, GJA8 represents a strong candidate for the ocular 162 

anomalies described in some of the 1q21 CNV carriers. 163 

To investigate further the importance of GJA8 in human eye morphogenesis and provide a 164 

better understanding of the range of developmental ocular anomalies associated with 165 

mutations in this gene, we screened GJA8 in a cohort of 426 unrelated patients (304 UK, 121 166 

Spanish and 1 large French pedigree) with congenital eye anomalies in the AMC spectrum. 167 

Two novel and four known likely pathogenic sequence variants were identified in seven 168 

families, with one variant being present in two unrelated families. This expands the catalogue 169 

of GJA8 variants likely to be contributing to eye anomalies and the spectrum of phenotypes 170 

associated with this gene. Moreover, we also identified heterozygous 1q21 microdeletions 171 

including the gene GJA8 in five additional families, although the pathogenicity of these 172 

variants remains to be established.  173 
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MATERIALS AND METHODS 174 

Cohort description. 175 

A cohort of UK, Spanish and French families with AMC (Supplementary Table 1) was 176 

analysed for GJA8 variants. The UK families (n=304) were recruited as part of a national 177 

‘Genetics of Eye and Brain anomalies’ study, approved by the Cambridge East Ethics 178 

Committee (04/Q0104/129) and had not received a genetic diagnosis. Family 5 was also 179 

recruited into the Deciphering Developmental Disorders (DDD) Study, which has UK 180 

Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, 181 

and GEN/284/12 granted by the Republic of Ireland REC). The UK families consisted of 55 182 

probands with anophthalmia, 205 with microphthalmia and 44 with other anomalies within 183 

the AMC spectrum; 168 individuals were bilaterally affected and 160 had extra-ocular 184 

anomalies. The Spanish families (n=121) consisted of 6 individuals with anophthalmia, 42 185 

with microphthalmia and 73 with other anomalies within the AMC spectrum; 100 individuals 186 

were bilaterally affected and 41 had extra-ocular anomalies. They were consented for genetic 187 

studies approved by the Ethics Committee of the University Hospital Fundación Jiménez 188 

Díaz (FJD, Madrid, Spain) and according to the tenets of the Declaration of Helsinki. The 189 

four-generation French pedigree consisted of 15 individuals with congenital cataracts and 190 

microphthalmia and consented for the study during their clinical treatment.  191 

Identification of sequence and structural variants in GJA8. 192 

The human gene GJA8 presents one isoform (NM_005267.4), comprising of two exons, with 193 

the coding sequence (CDS) entirely contained within exon 2. Sequence variants in the CDS 194 

were detected using a combination of Next-Generation Sequencing (NGS) methods and 195 

direct sequencing: 35 patients were screened by whole exome sequencing (WES), 207 196 

patients using different targeted NGS panels of eye development genes including GJA8, and 197 

184 patients by Sanger sequencing, which was also used to validate NGS findings and check 198 
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family segregation. Additionally, CNV data was available for 188 of these patients: 151 199 

individuals (96 UK and 55 Spanish) had been assessed by array-based Comparative Genomic 200 

Hybridization (aCGH), with resolutions ranging from 44 kb to 244 kb, whereas for 37 201 

Spanish individuals, CNVs were detected from NGS data using a read depth comparison 202 

approach. A detailed description of the different methods can be found in the Supplementary 203 

Materials and Supplementary Table 1. The genomic coordinates of the sequence and 204 

structural variants are reported according to Build GRCh37/hg19. The allelic frequencies of 205 

the sequence mutations were obtained from the Genome Aggregation Database (gnomAD, 206 

http://gnomad.broadinstitute.org/) (Lek et al., 2016). For each variant of interest, amino acid 207 

conservation across species was visually inspected using the Vertebrate Multiz Alignment & 208 

Conservation (100 Species) track from the UCSC Genome Browser. Three conservation 209 

scores were annotated using the database dbNSFP v.3.3 (Liu et al., 2016), specifically the 210 

GERP++ Rejected Substitutions (RS) score (Davydov et al., 2010), phyloP 211 

100way_vertebrate score (Siepel et al., 2006) and phastCons 100way_vertebrate score (Siepel 212 

et al., 2005). Putative functional effects of amino acid substitutions were evaluated with the 213 

in silico tools SIFT (Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010).  214 

Validation of mosaicisms and CNVs. 215 

In order to assess potential mosaicism and independently validate aCGH findings, we 216 

developed Digital Droplet PCR (ddPCR) assays for the sequence variant in family 1 and three 217 

of the GJA8 microdeletions identified (families 12, 13 and 14) (Supplementary Materials). 218 

ddPCR assays were performed using a ddPCR QX200 System (Bio-Rad Laboratories). 219 

Primers and Taqman probes were specifically designed for the GJA8 variant p.(Thr39Arg) 220 

using a custom Applied Biosystems TaqMan SNP Genotyping Assay (Thermo Fisher 221 

Scientific). For CNV analysis, commercial Taqman Copy Number assays (Thermo Fisher 222 

Scientific) were used for exon 2 of GJA8 and a reference gene (human RNase P gene). 223 

http://gnomad.broadinstitute.org/
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RESULTS 224 

Point mutations identified in GJA8. 225 

Screening of the GJA8 coding region in our cohort of 426 individuals with AMC detected 10 226 

missense variants in 11 unrelated families (Tables 1 and 2). For each missense variant, the 227 

amino acid conservation across species is shown in the Supplementary Fig. 1. Taking into 228 

account the segregation patterns, the frequency of the variants in public databases of 229 

unaffected individuals (Table 2), in silico predictions of functional effects and previous 230 

reports from the literature (Table 2), as suggested by (Richards et al., 2015), six of these 231 

variants (p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), p.(Phe70Leu), p.(Gly94Arg) and 232 

p.(Val97Gly)) were considered likely causative, giving a frequency of 1.6% of independent 233 

individuals with AMC conditions (7/426) carrying likely pathogenic GJA8 sequence variants. 234 

In family 1 (Fig. 1a), the heterozygous variant p.(Thr39Arg) (NM_005267.4:c.116C>G) was 235 

identified in the male proband (III:1), who presented with bilateral microphthalmia, 236 

sclerocornea, cataracts and nystagmus, left secondary glaucoma and a grossly cupped 237 

atrophic disc (Fig. 1b). Extraocular anomalies were not observed. The Sanger sequencing 238 

profile was suggestive of mosaicism in his mother (II:2), who was diagnosed with early onset 239 

cataracts and right exotropia. Mosaicism was confirmed and quantified by ddPCR in blood 240 

samples, with an estimated fractional abundance of 25% for the mutated allele (Fig. 1c). The 241 

variant was absent in the maternal grandparents, suggesting that it arose as a de novo post-242 

zygotic event in the mother. The substitution of threonine 39, located in the TM1 domain, is 243 

predicted deleterious by Polyphen-2 and SIFT. Interestingly, the change p.(Thr39Arg) is 244 

absent in dbSNP147 and gnomAD, but has been previously described in a family with 245 

congenital cataracts, microcornea and iris hypoplasia (Sun et al., 2011). 246 

In family 2 (Fig. 1d), a four-generation pedigree with autosomal dominant congenital 247 

cataracts, we initially identified the variant p.(Trp45Leu) (NM_005267.4:c.134G>T) in the 248 
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proband III:2, who had a diagnosis of dense congenital cataracts, microphthalmia and 249 

nystagmus. Sanger sequencing was performed on five additional family members (four 250 

affected with the same clinical diagnosis and one unaffected) and showed that the variant co-251 

segregated with the ocular phenotype. The same amino acid substitution, predicted 252 

deleterious by Polyphen-2 and SIFT, has been previously described in another multi-253 

generation family including eleven individuals with autosomal dominant congenital cataracts 254 

(Mohebi et al., 2017). Moreover, a different missense variant affecting the same amino acid, 255 

p.(Trp45Ser) (NM_005267.4:c.134G>C, rs864309688), has been reported in a three 256 

generation family with bilateral congenital cataracts and microcornea (Vanita et al., 2008), in 257 

a sporadic case with bilateral anterior cortical/nuclear cataracts (Ma et al., 2016) and in a 258 

three generation family with paediatric cataracts (Javadiyan et al., 2017). Functional 259 

experiments showed that p.(Trp45Ser) inhibited the formation of functional intercellular 260 

channels or hemichannels and decreased the junctional conductance induced by wild-type 261 

Cx50 and Cx46, acting as dominant negative inhibitor (Tong et al., 2011). Tryptophan 45 is 262 

an evolutionary conserved residue located in the TM1 domain and its substitution with 263 

leucine or serine has not been observed in controls (gnomAD).  264 

In family 3 (Fig. 1e) and family 4 (Fig. 1f), we identified the variant p.(Asp51Asn) 265 

(NM_005267.4:c.151G>A; rs864309703), which affects a highly conserved amino acid 266 

located in the ECL1 domain. This change, predicted deleterious by Polyphen-2 and SIFT, has 267 

been previously reported in a patient with bilateral microphthalmia, congenital cataracts and 268 

sclerocornea (Ma et al., 2016; Ma et al., 2018). In family 3, the mutation occurred as a de 269 

novo event in the male proband, who presented with bilateral microphthalmia with associated 270 

cataracts, anterior segment dysgenesis and persistent pupillary membranes. Extraocular 271 

anomalies were not observed. In the three-generation family 4, the heterozygous variant was 272 

identified in both the proband (III:1) and her affected father (II:4). Head axial computed 273 
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tomography scanning of the proband at 29 years old showed borderline bilateral 274 

microphthalmia and enophthalmos (posterior displacement of the eye), although her ocular 275 

globes had a size of 20mm (right eye) and 18mm (left eye). At 32 years of age, the proband 276 

had no light perception on the right and light perception on the left. The right eye was 277 

phthisical, with no discernible anterior segment structures; the left eye had a corneal 278 

leukoma, cataract and corectopia. The father was diagnosed with bilateral microphthalmia 279 

and congenital cataracts. The paternal grandfather (I:1) and one of the paternal uncles (II:3), 280 

now deceased, were also affected. The mother (II:5) was affected by congenital glaucoma. 281 

However, the proband did not carry a mutation in any known congenital glaucoma-associated 282 

genes included in a custom targeted NGS panel containing 121 eye developmental genes, 9 of 283 

which are associated with congenital glaucoma. No extraocular anomalies were observed.  284 

In family 5 (Fig. 1g), the novel variant p.(Phe70Leu) (NM_005267.4:c.208T>C) was 285 

identified in the proband III:2, diagnosed with bilateral microphthalmia, congenital cataracts 286 

and secondary glaucoma. Segregation analysis showed that the mutation was a de novo event 287 

in the affected mother (II:2), who also had microphthalmia and cataracts. Phenylalanine 70 is 288 

a conserved amino acid located in the ECL1 domain, and its substitution is predicted to be 289 

deleterious by SIFT and Polyphen-2. 290 

In family 6 (Fig. 1h), we identified a missense variant p.(Gly94Arg) 291 

(NM_005267.4:c.280G>A) in a male proband of Chinese ethnicity (II:1) presenting with 292 

bilateral congenital aphakia (absence of the lens), corneal opacity, bilateral microphthalmia 293 

with iris and optic disc coloboma, and bilateral primary glaucoma. No extraocular anomalies 294 

were observed. No details of parental phenotype or DNA were available. Interestingly this 295 

change, predicted deleterious by SIFT and Polyphen-2 and located in the TM2 domain, is 296 

absent in gnomAD, but has been previously identified as a de novo event in a child with 297 

bilateral corneal opacification and microcornea, bilateral rudimentary lenses and bilateral 298 
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glaucoma (Ma et al., 2018).  299 

In family 7 (Fig. 1i), the female proband (II:1) carried a de novo variant p.(Val97Gly) 300 

(NM_005267.4:c.290T>G), predicted deleterious by SIFT and Polyphen-2 and located in the 301 

TM2 domain. This previously undescribed variant was identified by the DDD study 302 

(DECIPHER ID: 259194) and confirmed with Sanger sequencing. She had bilateral 303 

microphthalmia, anterior segment dysgenesis and dense cataracts, treated with lensectomies, 304 

and right secondary glaucoma, with no extraocular features.  305 

The significance of the other four variants identified in the screening (Supplementary Fig. 2) 306 

was considered ‘uncertain’ (p.(Leu292Gln)) or ‘unlikely to be pathogenic’ (p.(Leu7Met), 307 

p.(Asn220Asp) and p.(Gly333Arg)).  308 

A novel amino acid change, p.(Leu292Gln) (NM_005267.4:c.875T>A) was identified in a 309 

proband with bilateral mild cataracts and optic nerve coloboma associated with nystagmus, 310 

photophobia and small kidneys (family 8). The substitution of leucine 292, located in the CT 311 

domain, is predicted benign by SIFT, but deleterious by Polyphen-2. Sanger sequencing of 312 

PAX2 revealed that the proband II:3 also carried a novel heterozygous frameshift variant in 313 

this gene (NM_003987.2:c.529_530ins13, p.(Ala177Glyfs*8)), which introduces a premature 314 

stop codon in exon 5. Sanger sequencing excluded the maternal inheritance of both the GJA8 315 

and the PAX2 variants; paternal DNA was unavailable for segregation analysis. 316 

The GJA8 variant p.(Leu7Met) (NM_005267.4:c.19C>A; rs150441169), located in the N-317 

terminal domain and predicted deleterious by SIFT and Polyphen-2, was detected in a patient 318 

(II:1) with syndromic unilateral microphthalmia, and was inherited from his unaffected father 319 

(family 9). The family is of African ethnicity and the minor allele frequency (MAF) for the 320 

African/African-American population in gnomAD is 0.28%. Different substitutions of this 321 

amino acid have been described before as disease-causative mutations: p.(Leu7Pro) 322 

(NM_005267.4:c.20T>C) was identified in a family with inherited cataracts (Mackay et al., 323 
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2014) and p.(Leu7Gln) (NM_153465.1:c.20T>A) in a rat model with nuclear pulverulent 324 

cataracts and, in the case of homozygous rat mutants, microphthalmia with hypoplastic lens 325 

(Liska et al., 2008). However, in contrast with these previously reported variants, the 326 

frequency of the p.(Leu7Met) variant in unaffected individuals, in particular of African/Afro-327 

American ethnicity, suggests that the substitution with a methionine might be tolerated. 328 

The variant p.(Asn220Asp) (NM_005267.4:c.658A>G; rs138140155, gnomAD total-329 

MAF=0.24%) was identified in an individual with bilateral microphthalmia and chorioretinal 330 

colobomas involving the optic disc, as well as microcephaly associated with normal 331 

development and faltering growth (family 10) and was inherited from her unaffected father. 332 

This substitution of asparagine 220, located in the TM4 domain and predicted deleterious by 333 

SIFT and Polyphen-2, has been reported before in a proband with congenital cataract and 334 

microcornea (Ma et al., 2016) and in a three generation family with congenital cataracts and 335 

aphakic glaucoma (Kuo et al., 2017). However, in those families it did not co-segregate with 336 

the phenotype and therefore was classified as benign. This was also supported by functional 337 

experiments showing that this rare polymorphism did not abolish intercellular channel 338 

function (Kuo et al., 2017). 339 

The variant p.(Gly333Arg) (NM_005267.4:c.997G>C; rs587600450, gnomAD total-340 

MAF=0.009%) was observed in a proband with unilateral microphthalmia and chorioretinal 341 

coloboma involving the optic disc, and was inherited from her unaffected father (family 11). 342 

This heterozygous change occurs in the CT domain and is predicted as tolerated by both SIFT 343 

and Polyphen-2.  344 

1q21 copy number variants overlapping with GJA8. 345 

GJA8 is part of a complex genomic locus, 1q21.1-q21.2, characterised by the presence of 346 

numerous segmental duplications (SDs), which make the region susceptible to recurrent 347 

rearrangements. To investigate whether structural variants affecting GJA8 were present in our 348 
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cohort of families with AMC, we examined a subset of 188 unrelated individuals for whom 349 

copy number information was available from aCGH and/or NGS data. As such, the samples 350 

for which CNV data were generated were not chosen according to any selection criteria 351 

applied across the total cohort, and therefore they effectively represented a randomly-selected 352 

subset of independent AMC cases. This resulted in the identification of 1q21 microdeletions 353 

in five families (Fig. 2, Table 1).  354 

The first microdeletion was identified in a proband (family 12, Fig. 2b) with bilateral 355 

coloboma of the iris and choroid, mild dysmorphic features (broad forehead, narrow 356 

palpebral fissures, depressed nasal root and low set ears), scoliosis, genu valgum and 357 

gastroesophageal reflux. She had normal developmental milestones. This CNV, detected 358 

from the screening of a custom NGS panel of 121 eye development genes, was further 359 

confirmed by both aCGH and ddPCR (Supplementary Fig. 3). It spans approximately 2 Mb 360 

(chr1:145388977-147395401, Build GRCh37/hg19) and affects 40 RefSeq genes. 361 

Segregation analysis revealed that this structural variant arose as a de novo event in the 362 

proband.  363 

The second microdeletion was identified in a female proband with unilateral chorioretinal 364 

coloboma involving the optic disc, band keratopathy, cataract and secondary glaucoma 365 

without extraocular anomalies, and was inherited from her unaffected father (family 13, Fig. 366 

2b). The minimal deleted region (chr1:146155983-147824178, Build GRCh37/hg19) spans 367 

approximately 1.67 Mb and affects 24 RefSeq genes. To validate the microdeletion and test 368 

the hypothesis that the unaffected status of the father could be due to mosaicism, we 369 

performed a ddPCR assay. However, this experiment confirmed the full heterozygous status 370 

of the microdeletion in both individuals (Supplementary Fig. 3b).  371 

The third microdeletion was found in a female proband with extreme microphthalmia in the 372 

right eye and iris, chorioretinal coloboma in the left eye, cleft lip and palate, and neonatal 373 
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seizures (family 14, Fig. 2b). The minimal deleted region (chr1:146564743-147735011, Build 374 

GRCh37/hg19) spans approximately 1.17 Mb and affects 17 RefSeq genes. The presence of 375 

the CNV in the mother was excluded by ddPCR (Supplementary Fig. 3b). The father and 376 

other family members were unavailable for phenotypic and segregation analysis.  377 

The fourth microdeletion (chr1:146497694-147825519, Build GRCh37/hg19), spanning 378 

approximately 1.33 Mb and affecting 20 RefSeq genes, was identified in two independent 379 

families (families 15 and 16, Fig. 2b). In family 15, it occurred as a de novo event in a 380 

proband with bilateral iris and chorioretinal coloboma involving disc, and nystagmus, without 381 

extraocular anomalies. The presence of the CNV in the parents was excluded by aCGH. 382 

Clinical re-assessment of the family revealed that the father presented blue dot lens opacities 383 

and cavernous disc anomalies with a pit in the right eye and mild cavernous disc anomaly or 384 

pronounced optic cup in the left eye. In family 16, a three-generation pedigree with 385 

coloboma, the microdeletion was detected by aCGH in the proband (III:6), who showed 386 

bilateral chorioretinal coloboma and microphthalmia in the right eye associated with 387 

microcephaly and normal development, and in the affected father (II:5), who presented with 388 

microphthalmia and coloboma in the right eye. The cousin III:2 was also affected with 389 

unilateral iris and chorioretinal coloboma. However, segregation analysis could not be 390 

performed on this individual. 391 

The predicted boundaries of these CNVs indicated that these rearrangements belonged to 392 

different classes of 1q21 microdeletions. Recurrent 1q21 CNVs occur at four breakpoint 393 

regions (BP1-BP4), each corresponding to a large block of highly homologous SDs (Mefford 394 

et al., 2008). Further, the locus can be divided into two distinct regions: a proximal region 395 

included between BP2 and BP3 and a distal region, flanked by BP3 and BP4, which mediate 396 

the most recurrent CNVs of the 1q21 locus. While the microdeletions found in families 13-16 397 

were distal rearrangements occurring between BP3 and BP4 (class I), the microdeletion 398 
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detected in family 12 was flanked by the breakpoints BP2 and BP4 and extended from the 399 

proximal through to the distal region (class II). Despite their rarity in the general population, 400 

both types of 1q21 microdeletions appeared to be enriched in our AMC cohort. We compared 401 

the frequency of these CNVs in our cases with control individuals previously reported in the 402 

literature (Rosenfeld et al., 2012): BP3-BP4 microdeletions occurred in 4 out of 188 403 

individuals with AMC versus 12 out of 65282 controls (2.13% versus 0.02%, Fisher’s exact 404 

test p=1.17 x 10-7), whereas BP2-BP4 microdeletions occurred in 1 out of 188 individuals 405 

with AMC versus 1 out of 65927 controls (0.532% versus 0.002%, Fisher’s exact test 406 

p=0.0057).  407 

Taking into account all the 1q21 microdeletions identified in our cohort, the minimally 408 

deleted region spans approximately 830 kb (chr1:146564743-147395401, Build 409 

GRCh37/hg19) and includes 11 genes (NBPF19, NBPF13P, PRKAB2, CHD1L, PDIA3P1, 410 

FMO5, LINC00624, BCL9, ACP6, GJA5, GJA8). In addition to Gja8, a role in eye 411 

development has been shown also for Bcl9, a co-activator for β-catenin-mediated 412 

transcription in Wnt signaling (Bienz, 2005). A recent study has demonstrated that Bcl9 is 413 

also part of the Pax6-dependent regulatory circuit and contributes to mouse lens formation 414 

(Cantù et al., 2014). No other genes known to be relevant in eye development are present in 415 

the region. 416 

Sequence analysis of the coding region of GJA8 in the probands carrying 1q21 417 

microdeletions did not reveal any variant on the remaining allele. In family 12, no additional 418 

pathogenic variants were identified from the targeted NGS screening of 121 eye 419 

developmental genes. In family 13, the NGS targeted sequencing of 351 diagnostic genes for 420 

eye developmental anomalies in proband II:2 identified an in-frame deletion of 6bp in 421 

FOXC1 (NM_001453.2:c.1338_1343del, p.(Gly447_Gly448del)), maternally inherited. This 422 

rare variant (gnomAD total-MAF=0.06%) is reported as a multi-allelic SNP (rs572346201), 423 
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which occurs in a region coding for a poly-Glycine stretch. Although its clinical significance 424 

is unknown, due to the repetitive nature of this region, it is likely to represent a natural 425 

polymorphism.  426 

DISCUSSION 427 

Mutations in Cx50, encoded by GJA8, have been primarily linked to congenital and early 428 

onset cataract in humans and also animal models. However, recently in a small number of 429 

cases GJA8 mutations have also been associated with a broader phenotype which can include 430 

microphthalmia, sclerocornea and lens abnormalities (Ma et al., 2018).  431 

In this study, we have investigated the role of GJA8 in a cohort of 426 individuals with a 432 

wide range of developmental eye anomalies, and identified 16 families with AMC carrying 433 

genetic alterations of GJA8. These included six likely pathogenic sequence variants 434 

(p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), p.(Phe70Leu), p.(Gly94Arg) and p.(Val97Gly)) 435 

detected in seven unrelated families, four missense variants (p.(Leu7Met), p.(Asn220Asp), 436 

p.(Leu292Gln) and p.(Gly333Arg)) with uncertain or unlikely clinical significance and four 437 

heterozygous 1q21 microdeletions involving GJA8 detected in five unrelated families of 438 

uncertain significance.  439 

Segregation analyses were possible for five out of six likely pathogenic sequence variants and 440 

showed that these occurred either de novo or co-segregated with the disease in an autosomal 441 

dominant fashion. These variants were bioinformatically predicted damaging and have not 442 

been reported in unaffected individuals according to public databases. Interestingly, three of 443 

these changes (p.(Thr39Arg), p.(Trp45Leu) and p.(Asp51Asn)) have been previously 444 

described in families with cataracts (Sun et al., 2011; Ma et al., 2016; Javadiyan et al., 2017; 445 

Mohebi et al., 2017; Ma et al., 2018) and a fourth (p.(Gly94Arg)) in a proband with 446 

sclerocornea and lens abnormalities (Ma et al., 2018). Given the rarity of these variants, the 447 

identification of the same missense changes in unrelated affected individuals strongly 448 
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supports a causative relationship between these variants and eye developmental disorders. In 449 

particular, p.(Asp51Asn) had been reported as a de novo mutation in a patient with bilateral 450 

microphthalmia, congenital cataracts and sclerocornea (Ma et al., 2016). In the present study, 451 

the same variant was detected in two independent families with a similar phenotype, 452 

including microphthalmia, cataracts and other anterior chamber eye anomalies. This 453 

emerging genotype-phenotype correlation suggests that this amino acid substitution might 454 

have a severe effect on GJA8 function and supports the involvement of this protein in a 455 

broader range of eye developmental anomalies.  456 

Our identification of the variant p.(Gly94Arg) in another patient also aids genotype-457 

phenotype correlation for amino acid substitutions of this highly conserved residue. In our 458 

cohort, the change was identified in a case with bilateral corneal opacification, congenital 459 

aphakia and microphthalmia with iris and optic disc coloboma. The same variant has been 460 

previously reported as a de novo event in an individual diagnosed with bilateral corneal 461 

opacification, glaucoma, and rudimentary lenses (Ma et al., 2018). Interestingly, Ma et al. 462 

(2018) also described another variant affecting the same amino acid, p.(Gly94Glu), in a 463 

proband with total sclerocornea and cataractous disc-like lenses with microcornea. Mice 464 

models expressing heterozygous missense mutations (e.g. Cx50D47A, Cx50S50P, 465 

Cx50V64A and Cx50R205G) (Graw et al., 2001; Xia et al., 2006; Xia et al., 2012; Berthoud 466 

et al., 2013) or with complete Gja8 knockout (White et al., 1998; Rong et al., 2002) have 467 

shown that Gja8 is important for lens development. Therefore, the identification of glycine 94 468 

mutations in three individuals with lens abnormalities supports the hypothesis that this amino 469 

acid is particularly important for GJA8 to perform this role in eye development. Interestingly, 470 

the phenotype of bilateral aphakia associated with sclerocornea overlaps with that of 471 

individuals with biallelic mutations in FOXE3 (Iseri et al., 2009). Therefore, when screening 472 

patients with this phenotype, it is important to screen for variants in both FOXE3 and GJA8.  473 
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Multiple sequence alignment indicated that all likely pathogenic sequence variants identified 474 

in our cohort affected conserved residues (Supplementary Fig. 1) and were located within the 475 

N-terminal region of the protein (Fig. 3). Our findings are consistent with previous studies, 476 

since mutations associated with cataracts tend to cluster between TM1 and TM2 (Yu et al., 477 

2016). The transmembrane domains are thought to play an important role in oligomerisation 478 

and pore formation, while the ECL1 domain is important in the docking of two opposing HCs 479 

to form the GJCs. While these domains are evolutionarily conserved and present high 480 

homology among the members of the Cx family, the CT region is the most isotype-specific 481 

domain and contains motifs for regulatory kinases (Liu et al., 2011; Wang et al., 2013). In 482 

this region, we identified a novel missense change, p.(Leu292Gln), of unknown clinical 483 

significance. The variant was found in a proband (family 8) who also carried an insertion of 484 

13bp in PAX2 (NM_003987.2:c.529_530ins13, p.(Ala177Glyfs*8)). Heterozygous variants 485 

of PAX2 (MIM 167409) are identified in approximately half of the cases presenting with 486 

renal coloboma syndrome (Bower et al., 2012), also known as papillorenal syndrome (OMIM 487 

120330). Therefore, this novel PAX2 variant is likely to be responsible for optic nerve 488 

coloboma and kidney anomalies observed in the patient, but it is possible that the GJA8 489 

variant might lead to a subtle effect on the protein function and contribute to his mild cataract 490 

phenotype.  491 

By contrast, the three additional heterozygous variants p.(Leu7Met) (family 9), 492 

p.(Asn220Asp) (family 10) and p.(Gly333Arg) (family 11) were considered as likely benign. 493 

These were identified in individuals with AMC, but without cataracts, in unaffected parents 494 

either in this or previous studies (Ma et al., 2016; Kuo et al., 2017) and in controls 495 

(gnomAD).  496 

Human GJA8 maps to a structurally complex locus on chromosome 1q21.1-q21.2, with at 497 

least four large blocks of highly homologous SDs, which make it prone to nonallelic 498 
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homologous recombination (NAHR) (Mefford et al., 2008). As with other genomic loci 499 

subject to recurrent rearrangements (such as 15q11, 15q13, 16p11.2, 16p12.1, 16p13.11, 500 

17q12, 22q11.2) (Girirajan and Eichler, 2010; Stankiewicz and Lupski, 2010), 1q21 CNVs 501 

have been associated with a wide range of phenotypes including dysmorphic features, 502 

developmental delay, neuropsychiatric disorders, and cardiac and eye anomalies. The 503 

reported eye anomalies include cataracts (Brunetti-Pierri et al., 2008; Mefford et al., 2008; 504 

Rosenfeld et al., 2012; Bernier et al., 2016; Ha et al., 2016) and in a minority of cases more 505 

severe defects such as microphthalmia (Mefford et al., 2008) and coloboma (Brunetti-Pierri et 506 

al., 2008). 507 

The most common 1q21 CNVs occur between the breakpoints BP3 and BP4 (Fig. 2a), 508 

spanning ∼1.35 Mb (Mefford et al., 2008). This region contains only ∼800 kb of unique (i.e. 509 

nonduplicated) DNA sequence (Bernier et al., 2016) and includes at least 11 genes (NBPF19, 510 

NBPF13P, PRKAB2, CHD1L, PDIA3P1, FMO5, LINC00624, BCL9, ACP6, GJA5 and 511 

GJA8), which might contribute to different aspects of the disease manifestations observed. 512 

Alternatively, 1q21 CNVs can involve only the proximal region (BP2-BP3) or both the 513 

proximal and the distal region (BP1/BP2-BP4). Microdeletions of the proximal region have 514 

been reported to be a predisposing factor for Thrombocytopenia-absent radius (TAR) 515 

syndrome (Klopocki et al., 2007), together with sequence variants in the RBM8A gene. 516 

Within the distal region, a potential role in eye development has been shown for two of the 517 

genes, GJA8 and BCL9. A recent study has demonstrated that Bcl9 is a downstream effector 518 

of Pax6 during mouse lens development (Cantù et al., 2014). However, the role of BCL9 in 519 

human eye development has not yet been established. Given the involvement of GJA8 in both 520 

cataractogenesis and ocular growth, as previously described, this gene seems to be a good 521 

candidate for the ocular anomalies observed in some of the 1q21 CNV carriers.  522 
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In most cases, the 1q21 rearrangements are inherited. Their presence in unaffected parents 523 

has brought into question their pathogenic significance, but the analysis of large clinical and 524 

population cohorts has shown that 1q21 microdeletions/microduplications occur at 525 

significantly higher frequency in individuals with clinical diagnoses compared with controls 526 

(Brunetti-Pierri et al., 2008; Mefford et al., 2008; Rosenfeld et al., 2012; Bernier et al., 2016). 527 

In particular, the comparison of a large cohort of individuals with developmental delay, 528 

intellectual disability, dysmorphic features and congenital anomalies with previously 529 

published control cohorts showed that the frequency of BP2-BP4 deletions was 0.024% in 530 

cases (11/45744) versus 0.002% in controls (1/65927), whereas the frequency of BP3-BP4 531 

deletions was 0.285% in cases (86/30215) versus 0.018% in controls (12/65282) (Rosenfeld 532 

et al., 2012). This enrichment suggests that these CNVs might increase susceptibility to 533 

developmental anomalies with variable expressivity and incomplete penetrance, although the 534 

factors underlying their heterogeneous phenotypes remain unexplained. In this study, we 535 

identified four microdeletions in five families, three overlapping with the 536 

microdeletions/microduplications recurrently found between breakpoints BP3 and BP4 and 537 

one larger BP2-BP4 microdeletion encompassing both the proximal and the distal region. 538 

Given the rarity of these rearrangements, the presence of 1q21 microdeletions in our AMC 539 

cohort, with a frequency of 2.13% in AMC cases for BP3-BP4 microdeletions (p=1.17 x 10-7) 540 

and a frequency of 0.53% in AMC cases for BP2-BP4 microdeletions (p=0.0057), seems to 541 

support their role as a risk factor for developmental disorders, including eye anomalies. 542 

However, consistent with previous studies, the segregation pattern in families 13 and 15 543 

indicates that other genetic and/or environmental modifiers are likely to be important for the 544 

phenotypic outcome. Therefore, the exact genotype-phenotype correlation remains to be 545 

established.  546 
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Mouse models have shown that Gja8 copy number losses and point mutations act through 547 

different mechanisms and modes of inheritance. Deletions of the entire coding region of the 548 

gene cause cataracts and microphthalmia only when homozygous, indicating a recessive 549 

mode of inheritance (White et al., 1998; Rong et al., 2002). In contrast, mouse strains 550 

carrying pathogenic Gja8 missense mutations develop microphthalmia and cataracts in a 551 

dominant or semi-dominant fashion (Steele et al., 1998; Graw et al., 2001; Chang et al., 2002; 552 

Liska et al., 2008; Xia et al., 2012). Since Cxs function in hexameric complexes which can be 553 

homo- or heteromeric, it is possible that the impact of single amino acid substitutions may be 554 

more severe than the loss of one functional allele. Mutant Cx subunits can interfere with 555 

correct formation of the oligomeric complexes in a dominant negative manner and, since 556 

GJCs can be formed by different types of Cx subunits, this effect can also extend to the 557 

function of other Cxs. Functional and cellular studies have shown that point mutations can 558 

alter the activity of the human GJA8 protein in various ways (Beyer et al., 2013). For 559 

instance, pathogenic variants can cause misfolding, improper oligomerisation and/or 560 

trafficking defects, leading to a reduced number of functional channels on the membrane. 561 

Alternatively, the pathogenic variants could alter some physiological properties of the 562 

channels, such as permeability or conductance, or lead to the formation of HCs with new and 563 

aberrant functions. Therefore, a single base mutation can affect several aspects of the Cx 564 

function. This complexity may explain the phenotypic heterogeneity observed among the 565 

carriers of GJA8 variants, and also the difference in penetrance between sequence and copy 566 

number variations.  567 

Intra-familial phenotypic variability was also observed for the sequence variant identified in 568 

family 1 (p.(Thr39Arg)) possibly related to mosaicism. While the proband carrying the 569 

heterozygous change presented with bilateral cataracts and microphthalmia, his mother, who 570 

was 25% mosaic for this variant, had a milder phenotype of early onset cataracts. Therefore, 571 
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we hypothesize that the somatic mosaicism detected in the mother may explain her milder 572 

phenotype and that lower doses of aberrant GJA8 protein during eye development might be 573 

responsible for less severe phenotypic outcomes. In support of this, a recent study has 574 

reported a correlation between the severity of developmental eye abnormalities and somatic 575 

mosaicisms of Pax6 mutations in CRISPR/Cas9 genome-edited mouse embryos (Yasue et al., 576 

2017). 577 

In conclusion, this study expands our knowledge of the role of GJA8 in eye development, 578 

highlighting how genetic alterations of this gene are likely to give rise not only to early onset 579 

cataracts, but also to other developmental eye anomalies. The screening of GJA8 in 426 580 

individuals with AMC resulted in the identification of six likely pathogenic variants in seven 581 

families. In the six families where segregation analysis was possible, the variants co-582 

segregated with both early onset cataracts and microphthalmia. In one singleton case with 583 

aphakia and corneal opacification where no segregation analysis was possible, we identified 584 

the variant p.(Gly94Arg). This finding, in combination with two previously reported patients 585 

with lens development abnormalities and with variants affecting the same amino acid, 586 

highlights the importance of this specific residue in the function of GJA8 and suggests that 587 

GJA8 mutations can be responsible for phenotypes often associated with FOXE3 variants. 588 

The role of GJA8 microdeletions in AMC remains uncertain: the enrichment of rare 1q21 589 

microdeletions in our cohort seems to support their role as risk factors for developmental eye 590 

disorders. However, the incomplete segregation and the phenotypic variability of these 591 

variants indicate that other genetic and/or environmental factors might be of importance. In 592 

summary, these data expand the spectrum of human phenotypes associated with GJA8 593 

variants and the identification of specific mutations contributes to our understanding of their 594 

genotype-phenotype correlation. Therefore, this study demonstrates the importance of 595 

screening GJA8 in individuals with developmental eye anomalies.  596 
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FIGURE LEGENDS 828 

Fig. 1 GJA8 likely pathogenic sequence variants identified in 7 unrelated families with 829 

AMC. a. Pedigree of family 1. Sanger sequencing results showing the segregation of the 830 

missense variant p.(Thr39Arg) are presented. The chromatogram of individual II:2 is 831 

suggestive of mosaicism. b. Photographs of the affected individuals of family 1 showing 832 

intra-familial phenotypic variability. The mother (II:2, top) presented with a milder 833 

phenotype, which included right exotropia and normal sized eyes with bilateral 834 

pseudophakia. The proband (III:1, bottom) presented with right microphthalmia and complete 835 

corneal opacification on the left. c. Absolute quantification of the allele abundance for the 836 

variant c.116C>G; p.(Thr39Arg) in family 1. Digital Droplet PCR (ddPCR) assays were 837 

performed using a Taqman FAM-labeled probe for genotyping the mutant allele and a VIC-838 

labeled probe to detect the wild-type allele. On the left, 1-D fluorescence amplitude plot of 839 

droplets shows mutant allele detection in the FAM channel for the heterozygous carrier 840 

(III:1), the putative mosaic mother (II:2), a wild-type homozygous carrier (I:2) and no 841 

template control (NTC). FAM-positive droplets (blue), containing the mutant allele, exhibit 842 

increased fluorescence compared to negative droplets (grey). On the right, the fractional 843 

abundance of the mutated allele, represented in percentage, was calculated for the FAM-844 

positive droplets versus VIC-positive droplets (wild type allele), confirming the mosaicism of 845 

this variant in individual II:2. d. Pedigree of family 2. On the left, a representative sequence 846 

chromatogram shows the heterozygous missense variant p.(Trp45Leu). The genotype of the 847 

six individuals tested for the variant is indicated below each symbol. e-f. Pedigree of families 848 

3 and 4, both carrying the missense variant p.(Asp51Asn). The sequence chromatograms 849 

show that the variant occurred de novo in family 3. N/A, genotype not available. In family 4, 850 

representative sequence chromatogram showing the p.(Asp51Asn) and pedigree indicating 851 

the inheritance of affected status and of the variant. For family 4, fully filled symbols 852 
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represent individuals affected with congenital cataracts and microphthalmia, but without 853 

glaucoma, quarter filled symbols represent individuals with congenital glaucoma. g. Pedigree 854 

of family 5 and sequence chromatograms showing the missense variant p.(Phe70Leu). h. 855 

Pedigree of family 6. The adopted child carries the missense variant p.(Gly94Arg). i. 856 

Pedigree of family 7. Sanger sequencing results show that the missense variant p.(Val97Gly) 857 

arose de novo in the child II:1 858 

Fig. 2 GJA8 structural variants identified in 5 unrelated families with AMC. a. Modified 859 

schematic from the UCSC Genome Browser (NCBI Build GRCh37/hg19). Partial ideogram 860 

of the chromosome bands 1q21.1-q21.2 and the multiple blocks of highly homologous 861 

segmental duplications (SD) present in this region are shown. SD, reported under the UCSC 862 

track 'Duplications of >1000 Bases of Non-RepeatMasked Sequence', are stretches of DNA 863 

of at least 1 kb in length, sharing a sequence identity of at least 90% with another genomic 864 

region on the same or on a different chromosome (inter- or intra-chromosomal SD). The 865 

colours indicate different levels of similarity between duplications (grey: 90-98% similarity, 866 

yellow: 98-99% similarity, orange: greater than 99% similarity). The breakpoint regions 867 

(BP2, BP3 and BP4) overlapping with these SD clusters are represented by green bars. The 868 

genomic locations of the 1q21 deletions identified in this study are represented by red bars 869 

and indicated with family identifiers. RefSeq Genes are indicated by dark-blue rectangular 870 

bars. For genes with multiple isoforms, the bars represent the coordinates of the maximal 871 

region among the isoforms. b. Pedigrees of the families carrying heterozygous 1q21 deletions 872 

Fig. 3 GJA8 mutation spectrum. Schematic of GJA8 showing the protein domains 873 

according to UniProt (entry ID: P48165). Above: previously published mutations are shown. 874 

Below: the missense variants identified in our cohort are indicated: red indicates likely 875 

pathogenic, blue, likely benign and grey, unknown clinical significance. NT, N-terminal 876 
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domain; TM, transmembrane domain; ECL, extracellular loop; ICL, cytoplasmic loop; CT, 877 

C-terminal domain 878 


