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Abstract. Artificial Intelligence (AI) is potentially useful for cost effec-
tive diabetes self-management. One research priority for the development
of robust and beneficial AI concerns the use of formal verification tech-
niques to model such self-modifying systems. In the context of diabetes,
formal methods may also have a role in fostering trust in the technology
as well as facilitating dialogue between a multidisciplinary team to deter-
mine system requirements in a precise way. In this paper we show how the
formal modelling language Event-B can be used to capture safety-critical
constraints associated with AI systems for diabetes management.

1 Introduction

Most people with Type 1 Diabetes (T1D) have to perform complex insulin dose
calculations several times a day. The computations must consider multiple fac-
tors and can occur in a variety of contexts that might affect cognitive load.
Adaptive solutions that use artificial intelligence (AI) to replace this human
decision-making are emerging [5, 6], but the application of such technology to
safety-critical healthcare problems is often met with high levels of resistance
[4]. Individuals are concerned about loss of control and question whether the
perceived risk is outweighed by the potential benefit.

Such systems must therefore behave robustly and deliver the intended bene-
fits consistently in order to foster trust. Some computer science research priorities
that have been identified towards this goal include formal verification and vali-
dation [7]. Although features of AI systems, such as nondeterminism, can make
them difficult to verify, it should be possible to build them from individual com-
ponents that have been proved correct. Additionally, they might be used within
the confines of a deterministic safety systems that have been formally verified.

Another dimension is introduced by the user interface of AI systems. Tools
exist to support the formal design and analysis of human-machine interfaces,
including the behaviour of objects such as buttons and keyboards [3]. Such tech-
nologies can be used to give a lightweight, formal analysis of the safety require-
ments of the interface. They may therefore have a role in facilitating dialogue
between a multidisciplinary team, which could include clinicians and computer
scientists, in evolving a common understanding of these requirements in a precise
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way. In this paper we present a simplified formal specification of part of a T1D
bolus recommender system in an attempt to show how some properties might be
expressed. This might form part of a model that a trustworthy AI system must
guarantee not to violate.

2 Formal Specification

Event-B is a formal modelling language developed by Jean-Raymond Abrial as an
evolution of the B-Method [1]. The purpose of modelling with Event-B is to prove
that a model will work prior to implementation and for early identification of
problems with the system requirements. The Rodin Platform is an Eclipse-based
integrated development environment (IDE) for Event-B modelling. It has an
associated repository of resources to aid existing and new users of the platform,
including a plug-in to integrate ProB into the IDE, which provides a method
to systematically check the model for errors through animation. Other plug-ins
include automated code generation from the Event-B specification and external
provers to assist the automatic proofs. For example, the Atelier B prover plug-in
was used in the work described below.

An Event-B model is validated through the successful discharge of proof
obligations, which imply that the invariants and type declarations of the model
are not violated by any aspect of the model. For example, if a variable x has type
N1, the assignment of 0 to x would fail to discharge the proof obligation created
by x ∈ N1 since x must be greater than or equal to 1. A key feature of the Event-
B language is its incremental modelling process through refinement. Refinement
allows gradual development of the specification starting at an abstract level,
which can then be refined to include new functionality and gradually move the
model towards the concrete implementation.

2.1 Event-B Specification of T1D System Constraints

The specification begins with an abstract specification of the system, focussing
on the constraints of the system variables. Figure 1 provides an extract of the
variables and invariants that includes the maximum bolus dose, and upper and
lower target blood glucose ranges. A full specification of the variables and in-
variants is included in [2]. Event-B is limited to natural and integer numerical
types, which presents a problem when decimal values are required. To overcome
this, all natural numbers or integers in the specification are represented through
multiplication by the power of 10, allowing precision to one decimal place (e.g.
5.5 is represented as 55). Comments in the specification will be used help to
reinforce this representation.

The types of maxBolus, targetRangeUpper and targetRangeLower are de-
fined in Figure 1 as natural number (N). This invariant alone implies that the
value of these variables must be greater than or equal to 0, and that negative
values are not permitted. inv2 states that maxBolus is restricted to a maxi-
mum bolus value of 50.0 and inv7 ensures that the target range is non-empty.
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MACHINE t1dm m0
VARIABLES

maxBolus Maximum bolus dose limit
targetRangeUpper Target blood glucose range upper value
targetRangeLower Target blood glucose range lower value

INVARIANTS
inv1 : maxBolus ∈ N
inv2 : maxBolus ≤ 500

The maximum bolus dose must be in the range [0.0,50.0] IU
inv3 : targetRangeUpper ∈ N
inv4 : targetRangeUpper ≥ 55 ∧ targetRangeUpper ≤ 150

Target blood glucose range upper value must be in the range [5.5,15.0]
inv5 : targetRangeLower ∈ N
inv6 : targetRangeLower ≥ 30 ∧ targetRangeLower ≤ 80

Target blood glucose range upper value must be in the range [3.0,8.0]
inv7 : targetRangeLower ≤ targetRangeUpper

Target blood glucose range upper value must be in the range [3.0,8.0]

Fig. 1. Extract of machine variables and invariants

Both of the invariants for maxBolus state that 0 ≤ maxBolus ≤ 50 insulin
units. Additionally, the invariants for targetRangeUpper and targetRangeLower
also define the constraints: 5.5 ≤ targetRangeUpper ≤ 15.0 mmol/L, and
3.0 ≤ targetRangeLower ≤ 8.0 mmol/L. These invariants prevent the vari-
ables from breaching the constraints imposed by the Accu-Chek R© Aviva Expert
blood glucose meter.

MACHINE t1dm m0
EVENTS
Event bolusCalc =̂

Bolus calculator event for instances where s is > 0 and < maxBolus
any

s
s is the parameter of bolus suggestion

where
grd1 : s ∈ N
grd2 : s ≤ maxBolus

The bolus solution suggestion is ≤ maxBolus
then

act1 : bolusSuggestion := s
Sets the bolus suggestion value to parameter s

end

Fig. 2. Abstract bolus calculation event

An abstract event for the bolus suggestion bolusCalc is described by Figure 2.
One parameter is specified for the event, the bolus suggestion s. The event has
two guards which check that parameter s is a natural number and that s is less
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than or equal to the maximum bolus dose maxBolus:

bolusSuggestion ∈ N ∧ bolusSuggestion ≤ maxBolus

The bolusCalc event does not satisfy the requirements of the application alone
as it is possible that the bolus suggestion may be negative or greater than the
maximum bolus dose. In these circumstances, the bolus dose should be set to 0
and the maxBolus respectively. To model this, two new events are added to the
model to allow for these circumstances bolusCalcNeg and bolucCalcMax. These
events are shown in Fig. 3.

MACHINE t1dm m0
EVENTS
Event bolusCalcNeg =̂

Bolus calculator event for instances where s is < 0
any

s
s is the parameter of bolus suggestion

where
grd1 : s ∈ Z
grd2 : s < 0

The bolus solution suggestion is < 0
then

act1 : bolusSuggestion := 0
Sets the bolus suggestion to 0 as negative values are not permitted

end
Event bolusCalcMax =̂

Bolus calculator event for instances where s is > maxBolus
any

s
s is the parameter of bolus suggestion

where
grd1 : s ∈ N
grd2 : s > maxBolus

The bolus solution suggestion is > the maximum bolus dose
then

act1 : bolusSuggestion := maxBolus
Sets the bolus suggestion to maxBolus as values > maxBolus are not
permitted

end

Fig. 3. Additional abstract bolus calculation events

At present, the model does not include the computation to be performed
to determine the bolus dose, but instead defines the abstract events required.
This abstract model can now be refined into a more concrete one. In [2] it is
refined to include a case base and deterministic bolus calculator. All proofs are
automatically discharged by the prover and animation with ProB indicates that
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the events are only activated by parameters which satisfy the guards. The same
technique could be applied to the refinement for a nondeterministic calculator
including AI.

3 Conclusion

This short example illustrates how critical safety constraints of a T1D bolus cal-
culator involving AI can be captured formally. We believe that the construction
of a validated, definitive core task model for the T1D individual and associated
recommender system, verified using formal techniques, should be a research pri-
ority for artificial intelligence in diabetes. However, there are more difficult chal-
lenges related to the ability to verify AI systems that modify themselves, possibly
repeatedly, over time. It is not yet known whether straightforward verification
tools can be applied to this broader setting [7].

Acknowledgments

This work has received funding from the EU Horizon 2020 research and innova-
tion programme under grant agreement No 689810.

References

1. Abrial, J.R., Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge
University Press (2005)

2. Brown, D.: Temporal Case-based Reasoning for Insulin Decision Support. Ph.D. the-
sis, Department of Computing and Communication Technologies, Oxford Brookes
University (2015)

3. Fayollas, C., Martinie, C., Palanque, P., Masci, P., Harrison, M.D., Campos, J.C.,
e Silva, S.R.: Evaluation of Formal IDEs for Human-machine Interface Design and
Analysis: the case of CIRCUS and PVSio-web. In: Dubois, C., Masci, P., Méry,
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