

WWW.BROOKES.AC.UK/GO/RADAR

RADAR
Research Archive and Digital Asset Repository

Liu, D, Zhu, H and Bayley, I

Transformation of Algebraic Specifications into Ontological Semantic Descriptions of Web Services.

Liu, D, Zhu, H and Bayley, I (2014) Transformation of Algebraic Specifications into Ontological Semantic Descriptions of Web
Services. International Journal of Services Computing, 2 (1). pp. 58-71.

This version is available: https://radar.brookes.ac.uk/radar/items/21127aba-fde4-47d6-8fab-d4cff1babe9f/1/

Available on RADAR: February 2016
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for
personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted
extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed
in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the published version of the journal article.

https://radar.brookes.ac.uk/radar/items/21127aba-fde4-47d6-8fab-d4cff1babe9f/1/

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

TRANSFORMATION	 OF	 ALGEBRAIC	 SPECIFICATIONS	 INTO	
ONTOLOGICAL	 SEMANTIC	 DESCRIPTIONS	 OF	 WEB	 SERVICES	 	

Dongmei	 Liu	
School	 of	 Computer	 Science	 and	 Engineering	 	
Nanjing	 University	 of	 Science	 and	 Technology	

Nanjing,	 210094,	 P.R.	 China	
dmliukz@njust.edu.cn	

Hong	 Zhu	 and	 Ian	 Bayley	
Dept	 of	 Computing	 and	 Communication	 Technologies	 	

Oxford	 Brookes	 University	
Oxford	 OX33	 1HX,	 UK	

hzhu,	 ibayley	 @brookes.ac.uk	
Abstract	
The	 accurate	 description	 of	 service	 semantics	 plays	 a	 crucial	 role	 in	 service	 discovery,	 composition	 and	 interaction.	
Most	 work	 in	 this	 area	 has	 been	 focused	 on	 ontological	 descriptions,	 which	 are	 searchable	 and	 machine-‐
understandable.	 However,	 they	 do	 not	 define	 service	 functionality	 in	 a	 verifiable	 and	 testable	 manner.	 In	 contrast,	
formal	 specification	 techniques,	 having	 evolved	 over	 the	 past	 30	 years,	 can	 define	 semantics	 in	 such	 a	 manner,	 but	
they	 have	 not	 yet	 been	 widely	 applied	 to	 service	 computing	 because	 the	 specifications	 produced	 are	 not	 searchable.	
There	 is	 a	 huge	 gap	 between	 these	 two	 methods	 of	 semantics	 description.	 This	 paper	 bridges	 the	 gap	 by	 advancing	 a	
transformation	 technique.	 It	 specifies	 services	 formally	 in	 an	 algebraic	 specification	 language,	 and	 then,	 extracts	 an	
ontological	 description	 of	 domain	 knowledge	 and	 service	 semantics	 as	 profiles	 in	 an	 ontology	 description	 language	
such	 as	 OWL-‐S.	 This	 brings	 the	 desired	 searchability	 benefits.	 The	 paper	 presents	 a	 prototype	 tool	 for	 performing	 this	
transformation	 and	 reports	 a	 case	 study	 to	 demonstrate	 the	 feasibility	 of	 our	 approach.	 	
Keywords:	 	 Web	 services,	 Formal	 semantics,	 Algebraic	 specification,	 Ontology,	 OWL-‐S	 	
__	

1 INTRODUCTION	
The advent of Web Services technology has greatly

influenced the uptake and use of the paradigm of service-
oriented computing. In this paradigm, services are
autonomous, platform-independent and distributed
computational entities (Papazoglou, 2012). Various
techniques have been advanced to enable automated
discovery, execution, composition and interoperation of
services at runtime. Such techniques heavily depend on
accurate descriptions of the semantics of services (Singh &
Huhns, 2005). Ideally, such descriptions should be:
• Comprehensible as published documentation for

developers of software that use the services.
• Abstract, hiding design and implementation detail to

protect the vendor’s intellectual property, and for other
reasons.

• Searchable at run-time, since dynamic search and
composition unlocks the full power of service-oriented
computing. Services must be described with an
interface syntax and specified with a functional
semantics. Both must be machine understandable.

• Testable at run-time since dynamic composition delays
integration testing until then, when the service has
already been deployed. Services must be highly
reliable, and correct with respect to their semantic
descriptions. Both providers and requesters must be
able to verify this.

However, as we shall see in the next subsection, no
existing technique satisfies all of these requirements at once.
This paper integrates existing techniques in an attempt to do
so.

1.1 EXISTING	 WORK	 AND	 THE	 OPEN	 PROBLEM	
Existing techniques for semantics descriptions of

services are divided into two categories: ontology-based
approach and formal method based approach. The former,
comprising the majority of research, uses a vocabulary
defined in application domain ontologies to annotate
services; while the latter uses mathematical notations to
formally define the functions of the software system.

Semantic Web Services have been proposed, and
advanced, in the context of Big Web Services (i.e. those
based on WSDL, SOAP and UDDI, etc.). They describe
services using metadata based on domain ontologies
(Mallraith, Son, & Zeng, 2001). OWL-S was the first major
ontology definition language for this purpose (Martin & al.,
2004). It provides a set of constructs for describing the
properties and capabilities of Web Services in a machine-
readable format. Formal methods were applied to provide a
precise mathematical meaning in a formal ontology.

An alternative approach is the Web Service Modelling
Ontology (WSMO) proposed by De Bruijn et al. (2005), a
conceptual model that uses the Web Services Modelling
Language (WSML) (Bruijn & et al., 2006).

As well as Big Web Services, work has also been carried
out on how to specify the semantics of RESTful web
services (Richardson & Ruby, 2007), such as,
MicroWSMO/hRESTS (Kopecky, Gomadam, & Vitvar,
2008), WADL (Hadley, 2006) and SA-REST (Lathem,
Gomadam, & Sheth, 2007).

This	 paper	 is	 an	 extended	 and	 revised	 version	 of	 the	 conference	
paper	 (Liu,	 Zhu,	 &	 Bayley,	 2013b)	 presented	 at	 the	 IEEE	 20th	
International	 Conference	 on	 Web	 Services	 (ICWS	 2013).	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

The above mentioned works all take the same approach
to specifying the semantics of services. A vocabulary is
defined in an application domain ontology to give the
meanings of the input and output parameters, as well as the
functions of the services. Such descriptions are easy for
human developers to understand and efficient for computers
to process. However, they cannot provide a verifiable and
testable definition of a service's function, because any
ontology is limited to stereotypes formed from the
relationship between the concepts and their instances.

Formal methods, which we consider as an alternative to
the ontological approach, have been developed over the past
40 years to define the semantics of software systems in
mathematical notations. One such formal method, algebraic
specification was first proposed in the 1970s as an
implementation-independent specification technique for
defining the semantics of abstract data types (Ehrich, 1982;
Goguen et al., 1977). Over these years, it has been advanced
to specify concurrent systems, state-based systems and
software components, all based on solid foundations of the
mathematical theories of behavioural algebras (Goguen &
Malcolm, 2000) and co-algebras (Bonchi & Montanari,
2008; Cirstea, 1997, 2002; Rutten, 2000).

Algebraic specifications are at a very high level of
abstraction. They are independent of any implementation
details. One attractive feature they have is that they can be
used directly in automated software testing (Chen et al.,
1998; Chen, Tse, & Chen, 2001; Gaudel & Gall, 2008;
Kong, Zhu, & Zhou, 2007; Yu et al., 2008). This feature is
particularly important for service engineering, because,
when services compose together dynamically, testing must
be performed automatically on-the-fly.

The algebraic method has been applied to service-
oriented software by extending and combining the
behavioural algebra and co-algebra techniques. Zhu and Yu
(2010) originally applied the algebraic specification
language CASOCC to define traditional software entities,
such as abstract data types, classes and components (Kong,
Zhu, & Zhou, 2007; Yu et al., 2008). They then extended
the language to form CASSOC-WS and applied that to Big
Web Services (Zhu & Yu, 2010). They developed a tool that
can automatically generate the signatures of algebraic
specifications from WSDL descriptions of Big Web
Services. More recently, CASOCC-WS was also applied to
RESTful web services. A tool was developed for it that
performs syntax level consistency checking (Liu, Zhu, &
Bayley, 2012), and a case study was conducted applying
CASOCC-WS to a real industrial system, GoGrid (Liu, Zhu,
& Bayley, 2013a). Based on these works, a new algebraic
formal specification language called SOFIA was proposed
to improve the practical usability of algebraic specification
languages when applied to services (Zhu, Liu, & Bayley,
2013; Liu,	 Zhu	 &	 Bayley,	 2014).

However, algebraic specifications, do not directly
support efficient searching on services, and nor do other
formal methods. This weakness has hampered their adoption

for services because such searching is crucial for service-
oriented computing. Service semantics must be specified in
a testable and verifiable way and these specifications must
be searchable.

In summary, with a vocabulary defined in an application
domain ontology as annotation, we can create searchable
and comprehensible descriptions. With the mathematical
notations of formal methods, on the other hand, we can
create descriptions that are testable and verifiable. Each
approach has its strengths and weaknesses. The problem is
how can we benefit from both strengths?

1.2 PROPOSED	 APPROACH	 AND	 MAIN	 CONTRIBUTIONS	
To bridge the gap between algebraic specification and

ontological descriptions, this paper proposes a
transformational approach. Algebraic specifications are
written for services and then transformed with the support of
an automated tool into an ontology-based semantics
description, thereby conferring onto formal specifications
the machine-readability and human-understandability
benefits of ontologies.

The main contributions of the paper are three-fold.
First, we propose a framework to solve the problem

stated in the previous subsection. The semantics of a service
and its domain knowledge are both described in a formal
specification language. The domain knowledge is
automatically transformed into a domain ontology, while the
semantics is transformed into an ontology-based service
description.

Second, we present the details of these two
transformations in the form of transformation rules. We also
report their implementation in an automated tool.

Finally, we demonstrate the feasibility of our solution
with a case study of an actual industrial system called
GoGrid. It is a RESTful web service interface to an
Infrastructure-as-a-Service (IaaS).

To our knowledge, the only similar work that has ever
been reported in the literature is (Doell & Dosch, 2005),
where traditional algebraic specification signatures are
transformed into object-oriented class signatures. However,
such traditional signatures cannot be used for specifying
services; we will see why in the next section. A further
problem is that the language is not modularized enough to
separate the definition of domain knowledge from the
specification of service functional semantics. This makes
the two transformations much more complicated, if not
impossible. For example, when transforming an operation
into a method, it is unclear which class to put it into. Our
approach overcomes this difficulty by associating only one
sort with each modular unit of specification.

1.3 STRUCTURE	 OF	 THE	 PAPER	
The remainder of the paper is organised as follows.

Section 2 defines preliminary mathematical notions and the
notations of algebraic/co-algebraic specification. It also

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

briefly introduces the specification language SOFIA.
Section 3 presents the mapping rules that translate algebraic
specifications into ontologies and the rules that extract the
ontological descriptions of the service semantics. Section 4
describes the prototype tool TrS2O that implements both
sets of rules for the SOFIA language. It represents the
resulting ontology and service semantics in OWL and
OWL-S profiles. Section 5 reports the case study of the
GoGrid API. Section 6 concludes the paper with a
discussion of future work.

2 PRELIMINARIES	
In this section, we define preliminary mathematical

notions and notations. We also briefly introduce the SOFIA
language.

2.1 ALGEBRAIC	 STRUCTURES	
We regard a service-oriented system as consisting of a

collection of units. Each unit has a unique identifier, which
is called the sort name. We recognise two different ways in
which one unit can be constructed from another, extension
and usage, as follows:

(1) A unit can be extended with additional elements, in a
manner similar to the inheritance relation of object-
orientation. The notation 𝑠 ⊳ 𝑠′ means that s extends s’, i.e.
s inherits all the operations and axioms defined in s’.

(2) A unit can use another unit, e.g. as a component,
operation parameter or operation result, just like the
association relation of object-orientation. Such usage is
denoted by the notation 𝑠 ≻ 𝑠′, which means that s uses s’.

As in (Zhu, 2003), we assume that the specification of a
software system is well-structured in the following sense.
1) Each type of software entity has a corresponding

specification unit with a unique sort name.
2) Each type of real-world entity involved in the software

system is specified by a corresponding specification
unit with a unique sort name.

3) The same is also true for each real-world concept.
4) Any extension or usage relationship between

specification units has a corresponding relationship
between real-world counterparts and vice versa.

Together, a set of specification units, extension relation
and usage relation comprise a system signature, defined
formally as follows.

Definition 1. (System Signature) A system signature is an
ordered pair 𝑆𝑝,𝛴 , where 𝑆𝑝 = 𝑆,≻,⊳ is a set S of sorts
with two binary relations on S denoted by ≻ and ⊳, and
𝛴 = 𝛴!|𝑠 ∈ 𝑆 is a collection of unit signatures, with 𝛴!
denoting the unit signature for sort s.

Every kind of software entity, whether it is an abstract
data type, a class, a component or, as here, a service, must
define a set of typed operators. The syntactic aspect of an

operator is determined by its domain, its co-domain and its
identifier. This is specified in the following form.

𝑜𝑝: (𝑠!, 𝑠!,… , 𝑠!) → (𝑠′!, 𝑠′!,… , 𝑠′!)
where op is the identifier of the operator, (𝑠!, 𝑠!,… , 𝑠!), 𝑛 ≥
0, are the domain sorts, and (𝑠′!, 𝑠′!,… , 𝑠′!), 𝑘 > 0, are the
co-domain sorts.

We allow an operator to have more than one domain sort
and more than one co-domain sort at the same time. This is
the main difference between our theory and that used for
algebraic specifications, which require a single sort co-
domain, and that used for co-algebraic specifications, which
require a single sort domain. These restrictions are too tight
to specify services so they are relaxed in our theory. This
allows us, for example, to give a BookTicket operator for an
online ticket booking service a signature like this:

BookTicket:	 DATE,	 NAT,	 BOOKING	 -‐>	 MESSAGE,	 BOOKING	
Here, DATE is the date of the performance, NAT is the number
of tickets wanted, MESSAGE is the response to the requester.
BOOKING represents the state of the online booking services.
It occurs in both the domain and the co-domain so that the
original state can be taken as input and the modified state
can be produced as output.

We now define the notion of unit signature to represent
the structure of software units as follows. Let X be a finite
set of symbols. We write X* to denote the set of finite
sequences of the symbols in X. In the sequel, we use Ws to
denote 𝑥 ∈ 𝑆|𝑠 ≻ 𝑥 ∨ 𝑥 = 𝑠 ∗ .

Definition 2. (Unit Signature) Given a system signature
(Sp, Σ), the unit signature Σ! ∈ Σ for a sort s ∈ S consists
of a finite family of disjoint sets Σ!,!!! indexed by pairs of
units (𝑤,𝑤′) with 𝑤,𝑤′ ∈ 𝑊! . Each element 𝜑 in set Σ!,!!!
is an operator symbol of type 𝑤 → 𝑤′ , where w is the
domain type and w’ the co-domain type of the operator.

Such operators can be classified as constants, attributes,
and general operations as follows.
(1) 𝜑 is a constant, if 𝑤 = ∅,𝑤′ = (𝑠),
(2) 𝜑 is an attribute, if 𝑤 = (𝑠),𝑤′ = (𝑠′) and 𝑠 ≻ 𝑠′,
(3) Otherwise, 𝜑 is a general operation.

In the sequel, we will write Σ!! , Σ!! , and Σ!! for the
subsets of Σ! that contain the constants, the attributes and
the general operations, respectively.

The semantics of the operators are defined by axioms
that describe the properties that these functions must satisfy.
An axiom consists of a number of universally quantified
variables and a list of conditional equations.

Let (Sp, Σ) be a given system signature and 𝑠 ∈ 𝑆 be any
given sort. We define the notion of valid terms that can be
used in the specification unit of sort s as s-terms. Each s-
term is also typed. Each 𝑤 ∈ 𝑊! is a type in unit s.
Formally, we have the following definition.

Definition 3. (Term) For a unit 𝑠 ∈ 𝑆, the set 𝑇! of valid
terms in s, called s-terms, is a family of disjoint sets
𝑇!!|𝑤 ∈ 𝑊!, 𝑠 ∈ 𝑆 . Here, each 𝑇!! is the set of s-terms of

type w, and is inductively defined as follows.

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

(1) x is an s-term of type w, if 𝑥 ∈ 𝑉!!, where 𝑉!! is the set of
variables in s of type w.

(2) For each (𝑜𝑝:∅ → 𝑠) ∈ Σ!! , op is an s-term of type s.
(3) For each (𝑜𝑝: 𝑠 → 𝑠′) ∈ Σ!!, 𝑜𝑝(𝑡) is a s-term of type s’,

if t is an s-term of type s.
(4) For each (𝑜𝑝:𝑤 → 𝑤′) ∈ Σ!! , 𝑜𝑝(𝑡) is an s-term of type

w’, if t is an s-term of type w.
(5)

 𝜏!, 𝜏!,… , 𝜏! is an s-term of type w, if 𝜏! is an s-term of
type 𝑠!, for 𝑖 = 1,2,… , 𝑛 ,	 where 𝑤 = (𝑠!, 𝑠!,… , 𝑠!) .	 	

(6) 𝜏#𝑘

is an s-term of type 𝑠!, if 𝜏

is an s-term of type

(𝑠!, 𝑠!,… , 𝑠!), and 0<k≤n is a natural number.
An equation in specification unit s has the form τ = τ′,

where τ and τ′ are s-terms of the same type. A conditional
equation in specification unit s has the form

τ = τ′, if 𝑐! = 𝑑!,… , 𝑐! = 𝑑! ,
where τ and τ′ are s-terms of the same type, 𝑐! and 𝑑! are s-
terms of type si such that 𝑠 ≻ 𝑠! ∨ 𝑠! = 𝑠 for all 𝑖 =
1,2,… , 𝑛 , 𝑐! = 𝑑!,… , 𝑐! = 𝑑! are the conditions.

An axiom in the specification unit s is a conditional or
unconditional equation E with all variables in the equation
universally quantified at the outermost.

A specification unit consists of a unit signature and a set
of axioms.

Definition 4. (Specification) A specification is a triple
𝑆𝑝, Σ,𝐴𝑥 , where

(1) 𝑆𝑝 = 𝑆,≻,⊳ , S is finite set of sorts, ⊳ and ≻ are the
extends and uses relations on S, respectively;

(2) Σ = Σ!|𝑠 ∈ 𝑆 is a set of unit signatures indexed by s;
(3) 𝐴𝑥 = 𝐴𝑥!|𝑠 ∈ 𝑆 is a finite collection of axiom sets

indexed by s;
(4) for all s and 𝑠′ ∈ 𝑆 , 𝑠 ⊳ 𝑠′ implies that Σ!! ⊆ Σ!

and 𝐴𝑥!! ⊆ 𝐴𝑥!.
For each 𝑠 ∈ 𝑆, (Σ!,𝐴𝑥!) is called the specification unit

for sort s.
Note that, by Definition 2, a specification consists of a

system signature 𝑆𝑝, Σ , and a collection Ax of axiom sets.

2.2 SEMANTICS	 OF	 ALGEBRAIC	 SPECIFICATION	
We now define the semantics of algebraic specifications

by defining what it means for an implementation to be
correct with respect to a specification. In general, an
implementation of a specification is a mathematical
structure that realises the operators in the signature and
satisfies the axioms.

Definition 5. (Algebra) Given a system signature 𝑆𝑝, Σ , a
𝑆𝑝, Σ -algebra Γ is a mathematical structure (A,F) that

consists of a collection 𝐴 = 𝐴!|𝑠 ∈ 𝑆 of sets indexed by s,
and a collection F of functions indexed by (𝑤,𝑤′) , where
𝑤,𝑤′ ∈ 𝑊!, 𝑠 ∈ 𝑆 such that for each operator 𝜑: 𝑤 → 𝑤′,
the function 𝑓! ∈ 𝐹 has domain Aw and co-domain Aw’,
where 𝐴! = 𝐴!!×𝐴!!×…×𝐴!! , when 𝑢 = (𝑠!, 𝑠!,… , 𝑠!) .

The evaluation of a term in an algebra depends on the
values assigned to the variables that occur in the term. Such

an assignment 𝛼 of variables 𝑉!, 𝑠 ∈ 𝑆, in an algebra Γ is a
function from 𝑉! to 𝐴!.

Definition 6. (Evaluation of terms in an algebra) Given an
assignment 𝛼 , the evaluation of a term 𝜏 in an (𝑆𝑝, Σ)-
algebra Γ = (𝐴,𝐹) , written 𝐸𝑣𝑎!(𝜏), is defined as follows.
(1) 𝐸𝑣𝑎!(𝑣) = 𝛼(𝑣) ;
(2) 𝐸𝑣𝑎!(𝜑(𝜏)) = 𝑓!,!(𝐸𝑣𝑎!(𝜏)) ;
(3) 𝐸𝑣𝑎!(𝜏!, 𝜏!,… , 𝜏!) =
 𝐸𝑣𝑎!(𝜏!),𝐸𝑣𝑎!(𝜏!),… ,𝐸𝑣𝑎!(𝜏!) ;
(4) 𝐸𝑣𝑎!(𝜏#𝑘) = 𝑒! , if 𝐸𝑣𝑎!(𝜏) = 𝑒!,… , 𝑒! , and
1 ≤ 𝑘 ≤ 𝑛.

Definition 7. (Satisfaction) Let e be an equation in the
following form.

τ = τ′, if 𝑐! = 𝑑!,… , 𝑐! = 𝑑! .	

An (𝑆𝑝, Σ)-algebra Γ = (𝐴,𝐹) satisfies e, written Γ ⊨ 𝑒 , if
for all assignments 𝛼, we have that 𝐸𝑣𝑎!(𝜏) = 𝐸𝑣𝑎!(𝜏′)
whenever 𝐸𝑣𝑎!(𝑐!) = 𝐸𝑣𝑎!(𝑑!) is true for all 𝑖 = 1,2… , 𝑛.

Let 𝜀 = (𝑆𝑝, Σ,𝐴𝑥) be a specification. An (𝑆𝑝, Σ) -
algebra Γ = (𝐴,𝐹) satisfies specification 𝜀, written Γ ⊨ 𝜀 ,
if for all equations e in Ax, we have that Γ ⊨ 𝑒.

2.3 THE SOFIA SPECIFICATION LANGUAGE
SOFIA	 is	 a	 new	 algebraic specification language	

designed	 for	 the	 formal	 specification	 of	 services.	 It	 is	
based	 on	 the	 algebraic	 structure	 described	 above.	 Here,	
we	 give	 a	 brief	 introduction	 to	 the	 language.	 The	 readers	
are	 referred	 to	 (Zhu, Liu, & Bayley, 2013) for the
reference manual.

The	 overall	 structure	 of	 a	 SOFIA	 specification	 is	 a	
collection	 of	 specification	 units.	 A	 unit	 can	 be	 split	 into	
two	 partial	 units:	 a	 Signature	 unit,	 to	 define	 the	
signature,	 and	 an	 Axiom	 unit,	 to	 define	 the	 axioms	 that	
apply	 to	 the	 signature	 unit.	 The	 users	 can	 also	 define	
auxiliary	 functions	 and	 concepts	 in	 a	 Definition	 unit.	
More	 formally,	 in	 BNF	 notation	 we	 have:	

<Specification>	 ::=	 <Unit>*	
<Unit>	 ::=	 <Spec	 Unit>	 |	 <Signature	 Unit>	 |	 <Axiom	 Unit>	 	

|	 <Definition	 Unit>	 	
The	 “uses”	 and	 “extends”	 relations	 between	

specification	 units	 are	 declared	 in	 clauses	 introduced	
with	 the	 keywords	 uses	 and	 extends,	 as	 shown	 below.	 	

<Spec	 unit>	 ::=	 Spec	 <Sort	 Name>	 [<Observability>];	
[extends	 <Sort	 Names>]	
[uses	 <Sort	 Names>]	
<Signature>;	 	
[<Axioms>]	 	

End	
SOFIA	 also	 declares	 if	 a	 software	 entity	 is	 observable	

in	 the	 sense	 that	 its	 states	 or	 values	 can	 be	 directly	
tested	 for	 equality;	 otherwise,	 its	 states	 or	 values	 have	 to	
be	 checked	 by	 other	 means,	 e.g.	 through	 observers.	

SOFIA	 explicitly	 declares	 three	 kinds	 of	 operators	
using	 keywords	 Const	 for	 constants,	 Var	 for	 attributes,	
and	 Operation	 for	 general	 operators.	 For	 example,	 the	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

following	 is	 the	 signature	 unit	 in	 the	 SOFIA	 specification	
of	 Stack.	 	
	 Signature	 Stack;	 	
	 	 uses	 Int,	 Real,	 Bool;	
	 	 	 	 	 	 Const:	 nil;	
	 	 	 	 	 	 Var	 	
	 	 	 	 	 	 	 	 	 	 Length:	 Int;	
	 	 	 	 	 	 	 	 	 	 IsEmpty:	 Bool;	
	 	 	 	 	 	 	 	 	 	 Top:	 Real;	
	 	 	 	 	 Operation	
	 	 	 	 	 	 	 	 	 Push(Real);	
	 	 	 	 	 	 	 	 	 Pop;	
	 	 End;	 	
Note	 that	 SOFIA	 assumes	 that	 the	 sort	 name	 of	 the	 unit	
occurs	 on	 both	 sides	 of	 the	 general	 operators.	 Thus,	
Push(Real)	 is	 syntactic	 sugar	 for	 Push:	 Stack,	 Real	 -‐>	 Stack.	 	

An	 axiom	 in	 SOFIA	 is	 in	 the	 form	 of	 	
for	 all	 x1:	 s1,	 x2:	 s2,	 …,	 xn:	 sn	 that	

e1	 =	 e2,	 if	 cond;	
where	 x1,	 …,	 xn	 are	 universally	 quantified	 variables	 that	
occur	 in	 the	 equation,	 and	 s1,	 …,	 sn	 are	 their	 respective	
sorts.	 For	 example,	 the	 axioms	 for	 Stack	 are	 as	 follows.	 	

for	 all	 x:	 Real,	 s:	 Stack	 that	
	 s.push(x).length	 =	 s.length+1;	
	 s.push(x).IsEmpty	 =	 False;	 	
	 s.push(x).top	 =	 x;	
	 s.push(x).pop	 =	 s;	 	
	 s.pop.length	 =	 s.length-‐1,	 if	 s.length>0;	
	 s.length=0,	 if	 s.IsEmpty=	 True;	
	 s.IsEmpty	 =	 True,	 if	 s.length=0;	
	 s.IsEmpty	 =	 False,	 if	 s.length>0;	
	 nil.IsEmpty	 =	 True;	
SOFIA	 uses	 the	 prefix-‐dot	 notation	 for	 the	 application	 of	
an	 operator	 to	 the	 main	 sort.	 	

To	 improve	 the	 readability	 of	 axioms,	 the	 language	
also	 allows	 the	 definition	 of	 local	 variables/identifiers	
for	 use	 in	 equations.	 The	 following	 is	 an	 example.	

for	 all	 x:	 Real,	 s:	 Stack	 that	
	 	 	 let	 s’	 =	 s.push(x)	 in	

	 s’.length	 =	 s.length+1;	
	 s’.IsEmpty	 =	 False;	 	
	 s’.top	 =	 x;	
	 s’.pop	 =	 s;	 	
	 	 	 	 	 	 	 	 	 	 	 end	

3 TRANSFORMATION	 RULES	
An ontology defines the concepts in a domain through a

set of relations between them. Individual entities are the
instances of these concepts. In ontology modeling languages,
such as OWL, concepts are often modeled as classes.
Relations are modeled as properties to describe the features
and attributes of the concepts. Individuals are modeled as
objects, which are instances of the classes that represent the
corresponding concepts. Such an ontology is a

representation of domain knowledge (Uschold & Gruninger,
1996).

In this section, we present a set of mapping rules to
derive ontological descriptions of services from algebraic
specifications. We use general algebraic structures rather
than the concrete syntax of SOFIA so that the rules are
generally applicable.

3.1 EXTRACTION	 OF	 DOMAIN	 ONTOLOGY	
Given an algebraic specification (𝑆𝑝, Σ,𝐴𝑥) , the

following rules will extract classes, properties and
individuals from algebraic specifications, and thus translate
an algebraic specification into a domain ontology.
Rule 1: For each sort 𝑠 ∈ 𝑆 of the specification, generate a
formula Class(s), where predicate Class(x) means that x is a
class or, in other words, x is a concept.
Rule 2: For an extension relation 𝑠 ⊳ 𝑠′ in the system
signature (𝑆𝑝, Σ) of the specification, generate a formula
subClassOf(s, s’), where predicate subClassOf(x, y) means
that class x is a subclass of y, or equally, x is a sub-concept
of y.
Rule 3: For a uses relation 𝑠 ≻ 𝑠′ in the system signature
(𝑆𝑝, Σ) of the specification, generate a formula uses(s, s'),
where predicate uses(x, y) means that concept x is defined
by using the concept y, it is somewhat redundant because it
can be deduced from other predicates later on.
Rule 4: For each constant 𝜑 ∈ Σ!! ,
(1) Generate a formula Individual(𝜑), where predicate
Individual(y) means that y is an individual, and
(2) Generate a formula s(𝜑), where x(y) means that y is an
instance of class x.
Rule 5: For each operator : 𝑠 → 𝑠′,𝜑 ∈ Σ!! ,
(1) Generate a formula Property(𝜑), where predicate
Property(z) means that z is a property, and
(2) Generate a formula 𝜑 (s, s'), where z(x, y) means that z is
a property of concept x (i.e. an attribute or an element of x),
and its value is of type y.
Rule 6: For each general operation :𝑤 → 𝑤′,𝜑 ∈ Σ!! ,
(1) Generate a formula Class(𝜑), where predicate Class(z)

means that z is a concept, and
(2) For each 𝑠! ∈ 𝑤 , generate a formula isDomainOf(𝜑,si),

where isDomainOf(z, x) means that x is the domain of
the relation z, and

(3) For each 𝑠! ∈ 𝑤′, generate a formula isCodomainOf(𝜑, si)
where the predicate isCodomainOf(z, x) means that x is the
co-domain (or range or output) of the relation z..

To explain Rule 6, we regard an operation as a relation
(i.e. a relational concept) that links the concepts of the
domain to the concepts of the co-domain.

3.2 GENERATION	 OF	 SERVICE	 PROFILE	
Having generated the ontology from a specification, the

services can be described in an OWL-S profile based on the
ontology. Such a profile can also be generated from the
specification unit that defines the service's functionality.

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

Given a specification
(𝑆𝑝, Σ,𝐴𝑥) of service Sv, the
following rule will generate the
service profile.
Rule 7: For each general operation
𝜑:𝑤 → 𝑤′,𝜑 ∈ Σ!! ,
(1) Generate a service profile frame.
(2) Generate an element

serviceName with value 𝑠.𝜑.
(3) For each 𝑠! ∈ 𝑤 , generate an

element hasInput with resource
"Sv.owl#si".

(4) For each 𝑠! ∈ 𝑤′ , generate an
element hasOutput with
resource "Sv.owl#si".
Figure 1 illustrates the above

transformation rule.

For example, here is the specification unit in the SOFIA

language that defines the operations on Servers in the
GoGrid system. The axioms are omitted since they are not
used in the translation. 	
Spec	 GServer;	
uses	 ServerListRequest,	 ServerListResponse,	

ServerGetRequest,	 ServerGetResponse,	
ServerAddRequest,	 ServerAddResponse,	
ServerEditRequest,	 ServerEditResponse,	
ServerDeleteRequest,	 ServerDeleteResponse,	
ServerPowerRequest,	 ServerPowerResponse;	

Var	 	 	 clockTime:	 Int;	
Operation	
List(ServerListRequest)	 :	 ServerListResponse;	
Get(ServerGetRequest)	 :	 ServerGetResponse;	
Add(ServerAddRequest)	 :	 ServerAddResponse;	
Edit(ServerEditRequest)	 :	 ServerEditResponse;	
Delete(ServerDeleteRequest)	 :	 ServerDeleteResponse;	
Power(ServerPowerRequest)	 :	 ServerPowerResponse;	

Axiom	
	 	 …	

End	 	
	

The profile for the List operation is given as follows.
<rdf:RDF>	
<owl:Ontology	 rdf:about="">	
	 	 <owl:imports	 rdf:resource=	
	 	 	 	 	 	 "http://www.daml.org/services/owl-‐s/1.0/Profile.owl"/>	
	 	 <owl:imports	 rdf:resource="#GServerOntology.owl"/>	
</owl:Ontology>	
<profile:serviceName>	 GServer.List</profile:serviceName>	
<profile:hasInput	 rdf:resource="GServerOntology.owl#GServer"/>	
<profile:hasInput	 rdf:resource=	
	 	 "GServerOntology.owl#ServerListRequest"/>	
<profile:hasOutput	 rdf:resource=	 	
	 	 "GServerOntology.owl#GServer"/>	
<profile:hasOutput	 rdf:resource=	
	 	 "GServerOntology.owl#ServerListResponse"/>	
</rdf:RDF>	

4 TRS2O	 TOOL	
A prototype tool called TrS2O (Translator from

Specification to Ontology) has been designed and
implemented in Java. It translates formal specifications in
SOFIA to ontological descriptions of services in OWL.
Figure 2 shows the overall structure of the TrS2O Tool.

Figure 2. The Overall Structure of The TrS2O Tool

The tool TrS2O contains three main components.

(1) Specification Parser and Syntax Checker, which parses
algebraic specifications written in SOFIA and generates a
parse tree. It checks whether a specification is syntactically
well-formed and whether the equations in the axioms are
type correct.
(2) Ontology Generator, which takes the parse tree of the
algebraic specification as input, and generates an ontology
represented in the OWL language according to the rules
defined in section 3.
(3) Services Description Generator, which takes as inputs
the ontology and the parse tree of the algebraic specification
and generates the descriptions of services in OWL-S
profiles.

Service	
Specification	 	 	 	 	
in	 SOFIA	

Error	
Report	

Parser	
and	
Syntax	
Checker	

Ontology	 	 	 	 	
Generator	

Service	
Ontology	 	 Parse	

Tree	
Services	

Description	
Generator	

Service	
Profile	

	
Figure 1. Illustration of Rule 7

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

	
Figure 4. Visualization of Ontology Generated by TrS2O

	

Figure 3. The Interface of TrS2O Tool

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

Figure 3 shows the user interface of TrS2O. The upper-
left pane displays the specification in SOFIA, while the
lower-left displays the parsing report for it. The panes on the
right are generated from the specification. The upper-right
and shows the ontology and the lower-right shows profile of
services.

It is worth noting that the ontology generated by TrS2O
can be processed by any OWL tool. Figure 4 illustrates the
visualization of the ontology for the GoGrid specification;
the tool used was Protege. Reasoning and searching on
domain knowledge can also be performed.

5 CASE	 STUDY	
In this section, we report a case study with a real

industrial RESTful web services GoGrid.

5.1 GOGRID	 API	
GoGrid1 is an infrastructure-as-a-service (IaaS) provider.

It provides an easy-to-use API for developers, system
administrators and end-users to access its functions. Its
services can be accessed through a RESTful web service
interface in a number of different programming and
scripting languages. RESTful web services, unlike
SOAP/WSDL, are based on the HTTP protocol, so each
GoGrid API call is an individual HTTP query.

The latest version of the GoGrid API has 11 different
types of objects and 5 types of common operators. Not all
operators can be applied to all types of objects, however.
There are three types of objects that are only used as
parameters of the operators, so no operators are applicable
on them, and there are some objects that have special
operators. Table 1 gives the applicable operators for each
type of object.

It is worth noting that some operators in GoGrid have
different meanings for different types of objects. In order to
achieve well-structuredness, in our specification of GoGrid,
the definitions were grouped by object rather than by
operator. For the sake of space, we give here just the
applicable operators for the load balancer object and its
systematic specification, because it is one of the most
important objects with the most operators.

Table 1. Applicable Operators on Objects
Object List Get Add Delete Edit Other Ops
Server Yes Yes Yes Yes Yes Power
Server
image Yes Yes Yes Yes Save,

Restore
Load
Balancer Yes Yes Yes Yes Yes
Job Yes Yes
IP Yes
Password Yes Yes
Billing Yes
Option Yes

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1
	 http://www.gogrid.com/	

5.2 SPECIFICATION	 OF	 GOGRID	 IN	 SOFIA	
For each type of objects in the GoGrid system, we write

several specification units to define various aspects of the
object and its operators, including
(1) Valid requests, for which we define their structures and

constraints on how their components may be combined;
(2) Responses, with structures and constraints as above;
(3) Objects of certain types, with signatures and semantics,

including signatures and axioms that characterize the
relationships between the valid requests and the
responses.
Other specification units define features and concepts

common to many types of objects. Examples include the
four query parameters common to all GoGrid API calls.
Some properties are common to all objects too.

The specification of the GoGrid API is based on a
framework for specifying RESTful web services (Liu,	 Zhu,	 &	
Bayley,	 2013b). The framework consists of a collection of
specification units that define the general structure of HTTP
requests and responses so that a specific RESTful web
services can be specified as extensions to these units. In
particular, the following sorts in the framework are used in
the GoGrid specification: URL, HTTPMethod,
RequestHeader, RequestHeaderField, HTTPRequest,
QueryParameter, QueryString, ResponseHeader,
ResponseHeaderField and HTTPResponse. Details are
omitted for the sake of space.
5.2.1 Objects and Collections

Here we give the specifications of the load balance
object and its collection, ListofLB. The latter has an
operation items to get an individual load balancer object, an
operation insert to add on object to the list, and an attribute
length to give the number of load balancer objects in the list.
The specifications of Option, IPPP (which stands for IP
Port Pair), and ListofIPPP (its collection) are omitted here.
Spec	 LoadBalancer;	
uses	 Option,	 IPPP,	 ListofIPPP;	
Var	
id:	 Long;	
name,	 description:	 String;	
virtualip:	 IPPP;	
realiplist:	 ListofIPPP;	
type,	 persistence,	 os,	 state,	 datacenter:	 Option;	

Axiom	
For	 all	 lb:	 LoadBalancer	 that	
lb.id	 <>	 Null;	

End	
End	
Spec	 ListofLB;	
uses	 LoadBalancer;	
Var	 	
length:	 Int;	

Operation	
items(Int)	 :	 LoadBalancer;	
insert(LoadBalancer);	

End	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

Note that, when an object is structural (i.e. it consists of
a number of elements), each element of the object can be
specified using an attribute in the SOFIA language.
Traditionally in algebraic specifications, an attribute is an
observer, i.e. an operation from the sort being defined to
another sort. It is similar to the getters in object-oriented
programs for getting the value of attributes. Here, SOFIA
provides attribute as a language facility to specify the
object’s structure directly.
5.2.2 Requests

There are four query parameters that are common to all
GoGrid API calls, and they are specified as follows:
Spec	 CommonParameter;	
Var	
api_key,	 sig,	 v,	 format:	 String;	

Axiom	
Forall	 cp:	 CommonParameter	 That	

cp.api_key	 <>	 Null;	
cp.sig	 <>	 Null;	
cp.v	 <>	 Null;	

End	
End	
Here api_key is a key generated by GoGrid for security when
accessing resources, sig is an MD5 signature of the API
request data, v is the version id of the API, and format is an
optional field to indicate the response format required. NULL
is a value that represents no information.

The signature can be generated by an MD5 hash from
three parts:
• the api_key, obtained before API calls can be made,
• the user's shared secret, a string of characters set by the

user and known only by the GoGrid server, and
• a Unix timestamp, the number of seconds since the Unix

Epoch of when the request was made.
Together, the api_key and shared secret act as an

authentication mechanism. Their uses in authentication
depend on system context such as time, because	 sig is time-
dependent. Therefore, the axioms for specifying the
authentication mechanism are given in the specification of
the whole system. Here, we can only say that both are
required.

In addition to the parameters common to all service
requests, each specific type of service request may also
contain various specific parameters. So, for each type of
request, we first specify the common structure as one sort:
ListRequest, GetRequest, and so on. These are then extended
for the different types of objects, giving ServerListRequest,
LBListRequest, and so on. Here we only have space for the
get operation on load balancer, but it is the most common
operation, and complex enough to be representative. It is
implemented using the HTTP request method GET and is
the only way to determine the internal state of a service.
Spec	 GetRequest;	
extends	 HTTPRequest;	
uses	 CommonParameter,	 ListofString;	
Var	

para:	 CommonParameter;	
id,	 name	 :	 ListofString;	 	

Axiom	
For	 all	 gr:	 GetRequest	 that	
gr.id	 =	 Null,	 if	 gr.name	 <>	 Null;	
gr.name	 =	 Null,	 if	 gr.id	 <>	 Null;	

End	
End	
As you can see, the sort GetRequest adds to HTTPRequest
some extra attributes: para, the common query parameters
defined before, and both id	 and name; these are used to
select the object; only one is required and it is an error to
use both. Now GetRequest can be extended to load
balancers as LBGetRequest as follows.

Spec	 LBGetRequest;	
extends	 GetRequest;	
uses	 ListofString;	
Var	
	 	 loadbalancer:	 ListofString;	
Axiom	
For	 all	 lbgr:	 LBGetRequest	 that	
lbgr.id	 =	 Null,	 if	 lbgr.loadbalancer	 <>	 Null;	
lbgr.name	 =	 Null,	 if	 lbgr.loadbalancer	 <>	 Null;	

End	
End	
	
5.2.3 Responses

The GoGrid API responses can be in any of three
different formats: JSON (JavaScript Object Notation), XML,
and CSV (Comma Separated Values). The default format,
used when the optional format parameter is omitted, is
JSON. However, algebraic specification is abstract enough
to specify all three at once.

The response to a get call starts with a summary, defined
below, containing the total number of objects available, start
index, number of objects returned in a page, and number of
pages.
Signature	 ResponseSummary;	
Var	
total,	 start,	 returned,	 numpages:	 Int;	

End	
As well as this summary, the response contains status,

request method, status code and a list of returned objects.
Spec	 GetResponse;	
extends	 HTTPResponse;	
uses	 ResponseSummary;	
Var	
summary:	 ResponseSummary;	
status,	 request_method:	 String;	 	
statusCode:	 Int;	

Axiom	
For	 all	 gr:	 GetResponse	 that	
gr.summary.total	 >=0;	 	
gr.summary.start	 =	 0;	 	
gr.summary.returned	 =	 gr.	 summary.total;	 	

End	
End	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

For load balancers, this is extended with an attribute for
the list of returned load balancer objects.	
Spec	 LBGetResponse;	
extends	 GetResponse;	
uses	 ListofLB;	
Var	 	
	 	 	 objects:	 ListofLB;	

End	
	
5.2.4 Semantics of the operations

For each type of request, we define an operator that
takes a request as the input and produces a response as the
output. All such operators have GoGrid as the context. We
also need to know the clock time on the grid and also the
shared secret chosen by each user and timestamp for
checking the authentication of access. Thus, we have the
following signature for the sort GLB, which represents the
load balancer web services of the GoGrid cloud computing
system.
Spec	 GLB;	
uses	
LBListRequest,	 LBListResponse,	
LBGetRequest,	 LBGetResponse,	
LBAddRequest,	 LBAddResponse,	
LBEditRequest,	 LBEditResponse,	
LBDeleteRequest,	 LBDeleteResponse,	

Var	
clockTime,	 timeStamp:	 Int;	
sharedSecret:	 String;	 	

Operation	
List(LBListRequest):	 LBListResponse;	
Get(LBGetRequest):	 LBGetResponse;	
Add(LBAddRequest):	 LBAddResponse;	
Edit(LBEditRequest):	 LBEditResponse;	
Delete(LBDeleteRequest):	 LBDeleteResponse;	

Axiom	
...	

End	
Axioms are used to characterize the semantics of each

operator, but here, as illustration, we give just the get
operator.

First of all, GoGrid authenticates each get call by using
the MD5 function to reconstruct the signature from the
api_key, the user's shared secret, and the time stamp. It then
compares it to the signature contained in the request
parameter. It also checks the time stamp with its server
clock time, allowing a discrepancy of up to 10 minutes. This
authentication rule can be specified as follows.
For	 all	 G:GLB,	 X:LBGetRequest	 that	
	 	 	 Let	 	 key	 =	 X.para.api_key,	
	 	 	 	 	 	 	 	 	 	 	 sig_Re	 =	 MD5(key,	 G.sharedSecret,	 X.timeStamp)	
	 	 	 in	 G.Get(X).statusCode	 =	 403,	
	 	 	 	 	 	 	 	 	 	 	 if	 	 	 X.para.sig	 <>	 sig_Re	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 or	 abs(X.timeStamp	 -‐	 G.clockTime)	 >	 600;	
	 	 	 End	
End	

An important feature of the Get operator is that it is an
observer. So, applying it will not change the state of the
context sort GLB. This property can be expressed by axioms
in the following form.
Axiom	 <Get-‐XOp>:	
	 	 	 	 	 For	 all	 G:	 GLB,	 X:	 LBGetRequest,	 X1:	 LBXOpRequest	 that	
	 	 	 	 	 	 	 	 	 	 [G.Get(X)].XOp(X1)	 =	 G.XOp(X1);	
End	
where XOp is any of the operators List, Get, Add, Edit or
Delete.

The following axiom states that when an operation
changes the state of the cloud by adding a load balancer, the
Get operator should be able to observe the effect
accordingly. In fact, such an axiom also defines the
semantics of the Add operator.
For	 all	 G:	 GLB,	 X1:	 LBAddRequest,	
	 	 	 	 	 	 	 	 	 	 	 	 X2,	 X3:	 LBGetRequest,	 	
	 	 	 	 	 	 	 	 	 	 	 	 i:	 Int	 	
that	
	 	 	 	 [G.Add(X1)].Get(X2).objects	 =	 G.Add(X1).objects,	
	 	 	 	 	 	 	 	 	 If	 	 X2.name.length	 =	 1,	
	 	 	 	 	 	 	 	 	 	 	 	 	 X1.name	 =	 X2.name.items(0),	
	 	 	 	 	 	 	 	 	 	 	 	 	 G.Add(X1).statusCode	 =	 200,	
	 	 	 	 	 	 	 	 	 	 	 	 	 G.Get(X2).statusCode	 =	 200;	
	 	 	 	 [G.Add(X1)].Get(X2).objects	 =	 G.Get(X2).objects,	
	 	 	 	 	 	 	 	 	 If	 search(X2.name,	 X1.name)	 =	 False,	
	 	 	 	 	 	 	 	 	 	 	 	 G.Add(X1).statusCode	 =	 200,	
	 	 	 	 	 	 	 	 	 	 	 	 G.Get(X2).statusCode	 =	 200;	
	 	 	 [G.Add(X1)].Get(X2).objects	 =	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 insert(G.Get(X3).objects,	 G.Add(X1).objects)	
	 	 	 	 	 	 	 	 If	 search(X2.name,	 X1.name)	 =	 True,	
	 	 	 	 	 	 	 	 	 	 	 search(X3.name,	 X1.name)	 =	 False,	
	 	 	 	 	 	 	 	 	 	 	 search(X3.name,	 X2.name.items(i))	 =	 True,	
	 	 	 	 	 	 	 	 	 	 	 X2.name.items(i)	 <>	 X1.name,	
	 	 	 	 	 	 	 	 	 	 	 0	 =<	 i,	 i	 <	 X2.name.length,	
	 	 	 	 	 	 	 	 	 	 	 G.Add(X1).statusCode	 =	 200,	
	 	 	 	 	 	 	 	 	 	 	 G.Get(X2).statusCode	 =	 200,	
	 	 	 	 	 	 	 	 	 	 	 G.Get(X3).statusCode	 =	 200;	
End	
where insert and search are auxiliary functions, defined in a
definition unit, that insert a list of load balancer objects into
another list, and search for a string in a list of strings.

The final axiom listed here states that when an operation
changes the state of the cloud by deleting a load balancer,
the Get operator should also be able to observe the
difference accordingly.
For	 all	 G:	 GLB,	 X1:	 LBDeleteRequest,	
	 	 	 	 	 	 	 	 	 	 	 	 X2:	 LBGetRequest	 	
that	
	 	 	 	 [G.Delete(X1)].Get(X2).statusCode	 =	 500,	
	 	 	 	 	 	 	 	 If	 	 search(X2.name,	 X1.name)	 =	 True,	
	 	 	 	 	 	 	 	 	 	 	 	 G.Delete(X1).statusCode	 =	 200;	
	 	 	 [G.Delete(X1)].Get(X2).objects	 =	 G.Get(X2).objects,	
	 	 	 	 	 	 	 If	 	 search(X2.name,	 X1.name)	 =	 False,	
	 	 	 	 	 	 	 	 	 	 	 G.Delete(X1).statusCode	 =	 200,	
	 	 	 	 	 	 	 	 	 	 	 G.Get(X2).statusCode	 =	 200;	
End	
	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

5.2.5 Summary of GoGrid Specification
The complete GoGrid API has been specified in SOFIA.

The numbers of different types of specification units in the
specification are shown in Table 2.

Table 2. Number of Units in GoGrid Specification
Type of unit No
Framework of RESTful web service 10
Common features 37
Definition of Server operations 13
Definition of Server image operations 13
Definition of Load Balancer operations 11
Definition of Job operations 5
Definition of operations on other objects 14
Total 103

	

5.3 GOGRID	 ONTOLOGY	
Using the TrS2O tool, we have extracted an ontology

from the GoGrid specification. Take specification GLB for
example. Table 3 gives the numbers of classes, properties
and individuals in the GoGrid Ontology in OWL.

Table 3. Basic Data of GoGrid Ontology

Ontology
Concept

Specification
Concept

No.

Class Sort 39
General Operator 9

Property

extends 9
uses 36
Domain 16
Codomain 12
Variable Operator 97

Individual Constant Operator 20

For example, here is a fragment of the ontology profile
for the GetRequest sort. It has, in order, one class for the
sort, one property for the extends relation, two properties for
the uses relations and three properties for attributes, each
defined as ObjectProperty.
<owl:Class	 rdf:ID="GetRequest">	
	 	 	 <rdfs:subClassOf	 rdf:resource=	
	 	 	 	 	 	 "http://www.w3.org/2002/07/owl#Thing"/>	
	 	 	 <rdfs:subClassOf>	
	 	 	 	 	 	 <owl:Class	 rdf:ID="HTTPRequest"/>	
	 	 	 </rdfs:subClassOf>	
	 	 	 <rdfs:subClassOf>	
	 	 	 	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#uses"/>	
	 	 	 	 	 	 	 	 	 <owl:allValuesFrom>	
	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:Class	 rdf:ID="CommonParameter"/>	
	 	 	 	 	 	 	 	 	 </owl:allValuesFrom>	
	 	 	 	 	 	 </owl:Restriction>	
	 	 	 </rdfs:subClassOf>	
	 	 	 <rdfs:subClassOf>	

	 	 	 	 	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#uses"/>	
	 	 	 	 	 	 	 	 	 	 	 	 <owl:allValuesFrom>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:Class	 rdf:ID="ListofString"/>	
	 	 	 	 	 	 	 	 	 	 	 </owl:allValuesFrom>	
	 	 	 	 	 	 	 </owl:Restriction>	
	 	 	 </rdfs:subClassOf>	
</owl:Class>	
<owl:ObjectProperty	 rdf:about="#GetRequest.para">	
	 	 	 	 <rdfs:domain	 rdf:resource="#GetRequest"/>	
	 	 	 	 <rdfs:range	 rdf:resource="#CommonParameter"/>	
</owl:ObjectProperty>	
<owl:ObjectProperty	 rdf:about="#HTTPRequest.id">	
	 	 	 <rdfs:domain	 rdf:resource="#GetRequest"/>	
	 	 	 <rdfs:range	 rdf:resource="#ListofString"/>	
</owl:ObjectProperty>	
<owl:ObjectProperty	 rdf:about="#HTTPRequest.name">	
	 	 	 <rdfs:domain	 rdf:resource="#GetRequest"/>	
	 	 	 <rdfs:range	 rdf:resource="#ListofString"/>	
</owl:ObjectProperty>	

Similarly, here is a fragment of the ontology profile for
the GLB sort. It has, in order, one class for the sort, ten
properties for the uses relations, five properties for
isDomainOf and five properties for isCodomainOf,. five
classes for general operators, and three properties for the
attributes, defined as ObjectProperty.
<owl:Class	 rdf:ID="GLB">	
	 	 	 <rdfs:subClassOf	 rdf:resource=	
	 	 	 	 	 	 	 	 "http://www.w3.org/2002/07/owl#Thing"/>	
	 	 	 <rdfs:subClassOf>	
	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#uses"/>	
	 	 	 	 	 	 	 	 <owl:allValuesFrom>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:Class	 rdf:ID="LBListRequest"/>	
	 	 	 	 	 	 	 	 </owl:allValuesFrom>	
	 	 	 </owl:Restriction>	
	 	 	 </rdfs:subClassOf>	
	 	 	 <rdfs:subClassOf>	
	 	 	 	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#uses"/>	
	 	 	 	 	 	 	 	 	 	 	 	 <owl:allValuesFrom>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:Class	 rdf:ID="LBListResponse"/>	
	 	 	 	 	 	 	 	 	 	 	 	 </owl:allValuesFrom>	
	 	 	 	 	 	 </owl:Restriction>	
	 	 	 </rdfs:subClassOf>	
…	 //the	 other	 8	 properties	 for	 the	 uses	 relation	
	 	 	 <rdfs:subClassOf>	

	 	 	 	 	 	 	 	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#isDomainOf"/>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:allValuesFrom	 rdf:resource="#GLB.List	 "/>	
	 	 	 	 	 	 	 	 	 </owl:Restriction>	
	 	 	 	 	 </rdfs:subClassOf>	
	 	 …//the	 other	 4	 properties	 for	 isDomainOf	
	 	 	 <rdfs:subClassOf>	

	 	 	 	 	 	 	 	 	 <owl:Restriction>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:onProperty	 rdf:resource="#isCodomainOf"/>	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <owl:allValuesFrom	 rdf:resource="#GLB.List	 "/>	
	 	 	 	 	 	 	 	 </owl:Restriction>	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

	 	 	 	 	 </rdfs:subClassOf>	
…//the	 other	 4	 properties	 for	 isCodomainOf	
</owl:Class>	 	
<owl:Class	 rdf:ID="GLB.List">	
	 	 	 	 <rdfs:subClassOf	 rdf:resource=	
	 	 	 	 	 	 	 	 	 	 	 "http://www.w3.org/2002/07/owl#Thing"/>	
</owl:Class>	
…//the	 other	 4	 classes	 for	 general	 operators	
<owl:ObjectProperty	 rdf:about="#GLB.clockTime">	
	 	 	 <rdfs:domain	 rdf:resource="#GLB"/>	
	 	 	 <rdfs:range	 rdf:resource="#Integer"/>	
</owl:ObjectProperty>	

	 …//the	 other	 two	 properties	 for	 variable	 operators	
5.4	 GoGrid	 Server	 Profile.	
 With the TrS2O tool, we have also generated a service
profile. Here it is for the example of GLB.
<rdf:RDF>	
<owl:Ontology	 rdf:about="">	
	 	 	 	 	 	 <owl:imports	 rdf:resource=	
	 	 	 	 	 	 	 	 	 	 	 "http://www.daml.org/services/owl-‐s/1.0/Profile.owl"/>	
	 	 	 	 	 	 <owl:imports	 rdf:resource="#GLBOntology.owl"/>	
</owl:Ontology>	
<profile:serviceName>GLB.List</profile:serviceName>	
<profile:hasInput	 rdf:resource=	 "GLBOntology.owl#GLB"/>	
<profile:hasInput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBListRequest"/>	
<profile:hasOutput	 rdf:resource="GLBOntology.owl#GLB"/>	
<profile:hasOutput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBListResponse"/>	
<profile:serviceName>GLB.Get</profile:serviceName>	
<profile:hasInput	 rdf:resource=	 "GLBOntology.owl#GLB"/>	
<profile:hasInput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBGetRequest"/>	
<profile:hasOutput	 rdf:resource="GLBOntology.owl#GLB"/>	
<profile:hasOutput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBGetResponse"/>	
<profile:serviceName>GLB.Add</profile:serviceName>	
<profile:hasInput	 rdf:resource=	 "GLBOntology.owl#GLB"/>	
<profile:hasInput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBAddRequest"/>	
<profile:hasOutput	 rdf:resource="GLBOntology.owl#GLB"/>	
<profile:hasOutput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBAddResponse"/>	
<profile:serviceName>GLB.Edit</profile:serviceName>	
<profile:hasInput	 rdf:resource=	 "GLBOntology.owl#GLB"/>	
<profile:hasInput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBEditRequest"/>	
<profile:hasOutput	 rdf:resource="GLBOntology.owl#GLB"/>	
<profile:hasOutput	 rdf:resource=	
	 	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBEditResponse"/>	
<profile:serviceName>GLB.Delete</profile:serviceName>	
<profile:hasInput	 rdf:resource=	 "GLBOntology.owl#GLB"/>	
<profile:hasInput	 rdf:resource=	
	 	 	 	 	 	 	 	 "GLBOntology.owl#GLBDeleteRequest"/>	
<profile:hasOutput	 rdf:resource="GLBOntology.owl#GLB"/>	
<profile:hasOutput	 rdf:resource=	
	 	 	 	 	 	 	 "GLBOntology.owl#GLBDeleteResponse"/>	
</rdf:RDF>	

6 CONCLUSIONS	 AND	 FUTURE	 WORK	
In this paper, we propose an approach that bridges the

gap between formal specification and ontological
description of service semantics. We do this by transforming
formal specifications into domain ontology and ontological
descriptions of services. The former is capable of providing
verifiable and testable specifications of service semantics,
whilst the latter has the advantage of being practically
usable and easy for software developers to understand. The
prototype tool is built for the specification language SOFIA,
and the output is in OWL. A case study with the tool
demonstrates the feasibility of the proposed approach.

We are pursuing a formal approach for specifying and
testing service-oriented systems. Currently, we are
developing a tool that uses specifications in SOFIA as input
to perform automated testing and verification of web
services. Another possible avenue for future work is to
check the consistency of specification using both
ontological reasoning and equational logic inferences.

ACKNOWLEDGMENT	 	
The work reported in this paper is partially supported by

EU FP7 project MONICA on Mobile Cloud Computing
(Grant No.: PIRSES-GA-2011-295222), National Natural
Science Foundation of China (Grant No. 61272420),
National Natural Science Foundation of Jiangsu Province
(Grant No. BK2011022) and Jiangsu Qinglan Project.

REFERENCES	
Bonchi,	 F.,	 &	 Montanari,	 U.	 (2008).	 A	 coalgebraic	 theory	 of	
reactive	 systems.	 Electronic	 Notes	 in	 Theoretical	 Computer	
Science,	 209,	 201-‐215.	

Bruijn,	 J.,	 et	 al.	 (2006).	 The	 web	 service	 modelling	 language	
WSML:	 An	 overview,	 Proceedings	 of	 the	 3rd	 European	 Semantic	
Web	 Conference	 (pp.	 590-‐604):	 Springer-‐Verlag.	

Bruijn,	 J.	 d.,	 et	 al.	 (2005).	 Web	 service	 modeling	 ontology	
(WSMO),	 (W3C	 member	 submission):	 W3C.	

Chen,	 H.	 Y.,	 Tse,	 T.	 H.,	 Chan,	 F.	 T.,	 &	 Chen,	 T.	 Y.	 (1998).	 In	 black	
and	 white:	 An	 integrated	 approach	 to	 class-‐level	 testing	 of	
object-‐oriented	 programs.	 ACM	 Transactions	 on	 Software	
Engineering	 and	 Methodology,	 7(3),	 250-‐295.	

Chen,	 H.	 Y.,	 Tse,	 T.	 H.,	 &	 Chen,	 T.	 Y.	 (2001).	 TACCLE:	 A	
methodology	 for	 object-‐oriented	 software	 testing	 at	 the	 class	
and	 cluster	 levels.	 ACM	 Transactions	 on	 Software	 Engineering	
and	 Methodology,	 10(4),	 56-‐109.	

Cirstea,	 C.	 (1997).	 Coalgebra	 semantics	 for	 hidden	 algebra:	
Parameterised	 objects	 and	 inheritance,	 Proceedings	 of	 the	 12th	
International	 Workshop	 on	 Recent	 Trends	 in	 Algebraic	
Development	 Techniques	 (pp.	 174-‐189).	

International Journal of Services Computing (ISSN 2330-4472) Vol. X, No. Y, Month Year

Cirstea,	 C.	 (2002).	 A	 coalgebraic	 equational	 approach	 to	
specifying	 observational	 structures.	 Theoretical	 Computer	
Science,	 280(1-‐2),	 35-‐68.	

Doell,	 B.,	 &	 Dosch,	 W.	 (2005).	 Transforming	 functional	
signatures	 of	 algebraic	 specifications	 into	 object-‐oriented	 class	
signatures,	 Proceedings	 of	 the	 12th	 Asia-‐Pacific	 Software	
Engineering	 Conference	 (pp.	 323-‐332):	 IEEE	 CS	 Press.	

Ehrich,	 H.-‐D.	 (1982).	 On	 the	 theory	 of	 specification,	
implementation,	 and	 parametrization	 of	 abstract	 data	 types.	
Journal	 of	 ACM,	 29(1),	 206-‐227.	

Gaudel,	 M.-‐C.,	 &	 Le	 Gall,	 P.	 	 (2007).	 Testing	 data	 types	
implementations	 from	 algebraic	 specifications.	 In	 Formal	
Methods	 and	 Testing,	 R.	 Hierons,	 J.	 Bowen,	 and	 M.	 Harman,	 eds,	
Lecture	 Notes	 in	 Computer	 Science,	 Vol.	 4949,	 (209-‐239)	
Springer-‐Verlag.	 	 	

Goguen,	 J.	 A.,	 &	 Malcolm,	 G.	 (2000).	 A	 hidden	 agenda.	
Theoretical	 Computer	 Science,	 245(1),	 55-‐101.	

Goguen,	 J.	 A.,	 Thatcher,	 J.	 W.,	 Wagner,	 E.	 G.,	 &	 Wright,	 J.	 B.	
(1977).	 Initial	 algebra	 semantics	 and	 continuous	 algebras.	
Journal	 of	 ACM,	 24(1),	 68	 -‐	 95	 	

Hadley,	 M.	 J.	 (2006).	 Web	 application	 description	 language	
(WADL)	 (SMLI	 TR-‐2006-‐153).	 CA,	 USA:	 Sun	 Microsystems	 Inc.,.	

Kong,	 L.,	 Zhu,	 H.,	 &	 Zhou,	 B.	 (2007).	 Automated	 testing	
components	 based	 on	 algebraic	 specifications,	 Proceedings	 of	
the	 31th	 IEEE	 International	 Conference	 on	 Computer	 Software	
and	 Applications	 (COMPSAC	 2007)	 (pp.	 717-‐722).	

Kopecky,	 J.,	 Gomadam,	 K.,	 &	 Vitvar,	 T.	 (2008).	 hRESTS:	 An	
HTML	 microformat	 for	 describing	 RESTful	 web	 services,	
Proceedings	 of	 the	 IEEE/WIC/ACM	 2008	 International	
Conference	 on	 Web	 Intelligence	 and	 Intelligent	 Agent	
Technology	 (WI-‐IAT'08)	 (pp.	 619-‐625).	 Sydney,	 Australia.	

Lathem,	 J.,	 Gomadam,	 K.,	 &	 Sheth,	 A.	 P.	 (2007).	 SA-‐REST	 and	
(S)mashups:	 Adding	 semantics	 to	 RESTful	 services,	
Proceedings	 of	 ICSC	 (pp.	 469-‐476).	

Liu,	 D.,	 Zhu,	 H.,	 &	 Bayley,	 I.	 (2012).	 Applying	 algebraic	
specification	 to	 cloud	 computing	 -‐-‐	 a	 case	 study	 of	
Infrastructure-‐as-‐a-‐Service	 GoGrid,	 Proceedings	 of	 The	 Seventh	
International	 Conference	 on	 Software	 Engineering	 Advances	 (pp.	
407-‐414).	

Liu,	 D.,	 Zhu,	 H.,	 &	 Bayley,	 I.	 (2013a).	 A	 case	 study	 on	 algebraic	
specification	 of	 cloud	 computing,	 Proceedings	 of	 the	 21st	
Enuromicro	 International	 Conference	 on	 Parallel,	 Distributed	

and	 Network-‐Based	 Processing	 (pp.269-‐273).	 Queen's	
University,	 Belfast,	 Northern	 Ireland.	

Liu,	 D.,	 Zhu,	 H.,	 &	 Bayley,	 I.	 (2013b).	 From	 algebraic	
specification	 to	 ontological	 description	 of	 service	 semantics,	
Proceedings	 of	 the	 20th	 International	 Conference	 on	 Web	
Services	 (ICWS	 2013).	 Santa	 Clara,	 CA.	

Mallraith,	 S.	 A.,	 Son,	 T.	 C.,	 &	 Zeng,	 H.	 (2001).	 Semantic	 web	
services.	 IEEE	 Intelligent	 Systems	 (March/April),	 46-‐53.	

Martin,	 D.,	 al.,	 e.	 (2004).	 Semantic	 Markup	 for	 Web	 Services	
(W3C	 member	 submission):	 W3C.	

Papazoglou,	 M.	 P.	 (2012).	 Web	 Services	 and	 SOA:	 Principles	 and	
Technology	 (2nd	 ed.):	 Pearson.	

Richardson,	 L.,	 &	 Ruby,	 S.	 (2007).	 RESTful	 Web	 Services:	
O'Reily.	

Rutten,	 J.	 M.	 (2000).	 Universal	 coalgebra:	 a	 theory	 of	 systems.	
Theoretical	 Computer	 Science,	 249(1),	 3-‐80.	

Singh,	 M.	 P.,	 &	 Huhns,	 M.	 N.	 (2005).	 Service-‐Oriented	
Computing:	 Semantics,	 Processes,	 Agents:	 John	 Wiley	 &	 Sons.	

Uschold,	 M.,	 &	 Gruninger,	 M.	 (1996).	 Ontologies:	 Principles,	
methods,	 and	 applications.	 Knowledge	 Engineering	 Review,	
11(2),	 93-‐155.	

Yu,	 B.,	 Kong,	 L.,	 Zhang,	 Y.,	 &	 Zhu,	 H.	 (2008).	 Testing	 java	
components	 based	 on	 algebraic	 specifications,	 Proceedings	 of	
the	 First	 International	 Conference	 on	 Software	 Testing,	
Verification,	 and	 Validation	 (ICST	 2008)	 (pp.190-‐199).	
Lillehammer,	 Norway:	 IEEE	 CS	 Press.	

Zhu,	 H.	 (2003).	 A	 note	 on	 test	 oracles	 and	 semantics	 of	
algebraic	 specifications,	 Proceedings	 of	 the	 3rd	 International	
Conference	 on	 Quality	 Software	 (QSIC	 2003)	 (pp.	 91-‐98).	 Dallas,	
TX.	

Zhu,	 H.,	 Liu,	 D.,	 &	 Bayley,	 I.	 (2013).	 Reference	 manual	 of	 the	
SOFIA	 algebraic	 specification	 language	 (TR-‐CCT-‐AFM-‐01-‐
2013).	 Oxford,	 UK:	 Department	 of	 Computing	 and	
Communication	 Technologies,	 Oxford	 Brookes	 University.	

Liu,	 D.,	 Zhu,	 H.	 &	 Bayley,	 I.	 (2014).	 SOFIA:	 An	 Algebraic	
Specification	 Language	 for	 Developing	 Services,	 In	 Proc.	 of	 The	
8th	 IEEE	 International	 Symposium	 on	 Service-‐Oriented	
Systems	 Engineering	 (SOSE	 2014).	 (pp.)	 Oxford,	 UK..	 	

Zhu,	 H.,	 &	 Yu,	 B.	 (2010).	 Algebraic	 specification	 of	 web	 services,	
Proceedings	 of	 the	 10th	 International	 Conference	 on	 Quality	
Software	 (QSIC	 2010)	 (pp.	 457-‐464):	 IEEE	 CS	 Press.	

	

