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Abstract	  
The	  accurate	  description	  of	  service	  semantics	  plays	  a	  crucial	  role	   in	  service	  discovery,	  composition	  and	   interaction.	  
Most	   work	   in	   this	   area	   has	   been	   focused	   on	   ontological	   descriptions,	   which	   are	   searchable	   and	   machine-‐
understandable.	  However,	   they	   do	   not	   define	   service	   functionality	   in	   a	   verifiable	   and	   testable	  manner.	   In	   contrast,	  
formal	   specification	   techniques,	  having	  evolved	  over	   the	  past	  30	  years,	   can	  define	  semantics	   in	   such	  a	  manner,	  but	  
they	  have	  not	  yet	  been	  widely	  applied	  to	  service	  computing	  because	  the	  specifications	  produced	  are	  not	  searchable.	  
There	  is	  a	  huge	  gap	  between	  these	  two	  methods	  of	  semantics	  description.	  This	  paper	  bridges	  the	  gap	  by	  advancing	  a	  
transformation	   technique.	   It	   specifies	  services	   formally	   in	  an	  algebraic	   specification	   language,	  and	   then,	  extracts	  an	  
ontological	  description	  of	  domain	  knowledge	  and	  service	  semantics	  as	  profiles	   in	  an	  ontology	  description	   language	  
such	  as	  OWL-‐S.	  This	  brings	  the	  desired	  searchability	  benefits.	  The	  paper	  presents	  a	  prototype	  tool	  for	  performing	  this	  
transformation	  and	  reports	  a	  case	  study	  to	  demonstrate	  the	  feasibility	  of	  our	  approach.	  	  
Keywords:	  	  Web	  services,	  Formal	  semantics,	  Algebraic	  specification,	  Ontology,	  OWL-‐S	  	  
__________________________________________________________________________________________________________________	  

1 INTRODUCTION	  
The advent of Web Services technology has greatly 

influenced the uptake and use of the paradigm of service-
oriented computing. In this paradigm, services are 
autonomous, platform-independent and distributed 
computational entities (Papazoglou, 2012). Various 
techniques have been advanced to enable automated 
discovery, execution, composition and interoperation of 
services at runtime.  Such techniques heavily depend on 
accurate descriptions of the semantics of services (Singh & 
Huhns, 2005). Ideally, such descriptions should be: 
• Comprehensible as published documentation for 

developers of software that use the services.  
• Abstract, hiding design and implementation detail to 

protect the vendor’s intellectual property, and for other 
reasons.  

• Searchable at run-time, since dynamic search and 
composition unlocks the full power of service-oriented 
computing. Services must be described with an 
interface syntax and specified with a functional 
semantics. Both must be machine understandable.  

• Testable at run-time since dynamic composition delays 
integration testing until then, when the service has 
already been deployed. Services must be highly 
reliable, and correct with respect to their semantic 
descriptions. Both providers and requesters must be 
able to verify this.  

However, as we shall see in the next subsection, no 
existing technique satisfies all of these requirements at once.  
This paper integrates existing techniques in an attempt to do 
so.  

1.1 EXISTING	  WORK	  AND	  THE	  OPEN	  PROBLEM	  
Existing techniques for semantics descriptions of 

services are divided into two categories: ontology-based 
approach and formal method based approach. The former, 
comprising the majority of research, uses a vocabulary 
defined in application domain ontologies to annotate 
services; while the latter uses mathematical notations to 
formally define the functions of the software system.  

Semantic Web Services have been proposed, and 
advanced, in the context of Big Web Services (i.e. those 
based on WSDL, SOAP and UDDI, etc.). They describe 
services using metadata based on domain ontologies 
(Mallraith, Son, & Zeng, 2001). OWL-S was the first major 
ontology definition language for this purpose (Martin & al., 
2004). It provides a set of constructs for describing the 
properties and capabilities of Web Services in a machine-
readable format. Formal methods were applied to provide a 
precise mathematical meaning in a formal ontology.  

An alternative approach is the Web Service Modelling 
Ontology (WSMO) proposed by De Bruijn et al. (2005), a 
conceptual model that uses the Web Services Modelling 
Language (WSML) (Bruijn & et al., 2006).  

As well as Big Web Services, work has also been carried 
out on how to specify the semantics of RESTful web 
services (Richardson & Ruby, 2007), such as, 
MicroWSMO/hRESTS  (Kopecky, Gomadam, & Vitvar, 
2008), WADL (Hadley, 2006) and SA-REST (Lathem, 
Gomadam, & Sheth, 2007).  

This	   paper	   is	   an	   extended	   and	   revised	   version	   of	   the	   conference	  
paper	   (Liu,	   Zhu,	   &	   Bayley,	   2013b)	   presented	   at	   the	   IEEE	   20th	  
International	  Conference	  on	  Web	  Services	  (ICWS	  2013).	  
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The above mentioned works all take the same approach 
to specifying the semantics of services. A vocabulary is 
defined in an application domain ontology to give the 
meanings of the input and output parameters, as well as the 
functions of the services. Such descriptions are easy for 
human developers to understand and efficient for computers 
to process. However, they cannot provide a verifiable and 
testable definition of a service's function, because any 
ontology is limited to stereotypes formed from the 
relationship between the concepts and their instances.  

Formal methods, which we consider as an alternative to 
the ontological approach, have been developed over the past 
40 years to define the semantics of software systems in 
mathematical notations. One such formal method, algebraic 
specification was first proposed in the 1970s as an 
implementation-independent specification technique for 
defining the semantics of abstract data types (Ehrich, 1982; 
Goguen et al., 1977). Over these years, it has been advanced 
to specify concurrent systems, state-based systems and 
software components, all based on solid foundations of the 
mathematical theories of behavioural algebras (Goguen & 
Malcolm, 2000) and co-algebras (Bonchi & Montanari, 
2008; Cirstea, 1997, 2002; Rutten, 2000).  

Algebraic specifications are at a very high level of 
abstraction. They are independent of any implementation 
details. One attractive feature they have is that they can be 
used directly in automated software testing (Chen et al., 
1998; Chen, Tse, & Chen, 2001; Gaudel & Gall, 2008; 
Kong, Zhu, & Zhou, 2007; Yu et al., 2008). This feature is 
particularly important for service engineering, because, 
when services compose together dynamically, testing must 
be performed automatically on-the-fly.  

The algebraic method has been applied to service-
oriented software by extending and combining the 
behavioural algebra and co-algebra techniques. Zhu and Yu 
(2010) originally applied the algebraic specification 
language CASOCC to define traditional software entities, 
such as abstract data types, classes and components (Kong, 
Zhu, & Zhou, 2007; Yu et al., 2008). They then extended 
the language to form CASSOC-WS and applied that to Big 
Web Services (Zhu & Yu, 2010). They developed a tool that 
can automatically generate the signatures of algebraic 
specifications from WSDL descriptions of Big Web 
Services. More recently, CASOCC-WS was also applied to 
RESTful web services. A tool was developed for it that 
performs syntax level consistency checking (Liu, Zhu, & 
Bayley, 2012), and a case study was conducted applying 
CASOCC-WS to a real industrial system, GoGrid (Liu, Zhu, 
& Bayley, 2013a). Based on these works, a new algebraic 
formal specification language called SOFIA was proposed 
to improve the practical usability of algebraic specification 
languages when applied to services (Zhu, Liu, & Bayley, 
2013; Liu,	  Zhu	  &	  Bayley,	  2014). 

However, algebraic specifications, do not directly 
support efficient searching on services, and nor do other 
formal methods. This weakness has hampered their adoption 

for services because such searching is crucial for service-
oriented computing. Service semantics must be specified in 
a testable and verifiable way and these specifications must 
be searchable.  

In summary, with a vocabulary defined in an application 
domain ontology as annotation, we can create searchable 
and comprehensible descriptions. With the mathematical 
notations of formal methods, on the other hand, we can 
create descriptions that are testable and verifiable. Each 
approach has its strengths and weaknesses. The problem is 
how can we benefit from both strengths? 

1.2 PROPOSED	  APPROACH	  AND	  MAIN	  CONTRIBUTIONS	  
To bridge the gap between algebraic specification and 

ontological descriptions, this paper proposes a 
transformational approach. Algebraic specifications are 
written for services and then transformed with the support of 
an automated tool into an ontology-based semantics 
description, thereby conferring onto formal specifications 
the machine-readability and human-understandability 
benefits of ontologies.   

The main contributions of the paper are three-fold.  
First, we propose a framework to solve the problem 

stated in the previous subsection. The semantics of a service 
and its domain knowledge are both described in a formal 
specification language. The domain knowledge is 
automatically transformed into a domain ontology, while the 
semantics is transformed into an ontology-based service 
description. 

Second, we present the details of these two 
transformations in the form of transformation rules. We also 
report their implementation in an automated tool.  

Finally, we demonstrate the feasibility of our solution 
with a case study of an actual industrial system called 
GoGrid. It is a RESTful web service interface to an  
Infrastructure-as-a-Service (IaaS).  

To our knowledge, the only similar work that has ever 
been reported in the literature is (Doell & Dosch, 2005), 
where traditional algebraic specification signatures are 
transformed into object-oriented class signatures. However, 
such traditional signatures cannot be used for specifying 
services; we will see why in the next section. A further 
problem is that the language is not modularized enough to 
separate the definition of domain knowledge from the 
specification of service functional semantics. This makes 
the two transformations much more complicated, if not 
impossible. For example, when transforming an operation 
into a method, it is unclear which class to put it into. Our 
approach overcomes this difficulty by associating only one 
sort with each modular unit of specification. 

1.3 STRUCTURE	  OF	  THE	  PAPER	  
The remainder of the paper is organised as follows. 

Section 2 defines preliminary mathematical notions and the 
notations of algebraic/co-algebraic specification. It also 
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briefly introduces the specification language SOFIA. 
Section 3 presents the mapping rules that translate algebraic 
specifications into ontologies and the rules that extract the 
ontological descriptions of the service semantics. Section 4 
describes the prototype tool TrS2O that implements both 
sets of rules for the SOFIA language. It represents the 
resulting ontology and service semantics in OWL and 
OWL-S profiles. Section 5 reports the case study of the 
GoGrid API. Section 6 concludes the paper with a 
discussion of future work. 

2 PRELIMINARIES	  
In this section, we define preliminary mathematical 

notions and notations. We also briefly introduce the SOFIA 
language.  

2.1 ALGEBRAIC	  STRUCTURES	  
We regard a service-oriented system as consisting of a 

collection of units. Each unit has a unique identifier, which 
is called the sort name. We recognise two different ways in 
which one unit can be constructed from another, extension 
and usage, as follows: 

(1) A unit can be extended with additional elements, in a 
manner similar to the inheritance relation of object-
orientation. The notation 𝑠 ⊳ 𝑠′ means that s extends s’, i.e. 
s inherits all the operations and axioms defined in s’.  

(2) A unit can use another unit, e.g. as a component, 
operation parameter or operation result, just like the 
association relation of object-orientation. Such usage is 
denoted by the notation 𝑠 ≻ 𝑠′, which means that s uses s’. 

As in (Zhu, 2003), we assume that the specification of a 
software system is well-structured in the following sense.  
1) Each type of software entity has a corresponding 

specification unit with a unique sort name.   
2) Each type of real-world entity involved in the software 

system is specified by a corresponding specification 
unit with a unique sort name. 

3) The same is also true for each real-world concept. 
4) Any extension or usage relationship between 

specification units has a corresponding relationship 
between real-world counterparts and vice versa. 

Together, a set of specification units, extension relation 
and usage relation comprise a system signature, defined 
formally as follows. 

Definition 1. (System Signature) A system signature is an 
ordered pair 𝑆𝑝,𝛴 , where 𝑆𝑝 = 𝑆,≻,⊳   is a set S of sorts 
with two binary relations on S denoted by ≻ and ⊳, and  
𝛴 = 𝛴!|𝑠 ∈ 𝑆  is a collection of unit signatures, with 𝛴! 
denoting the unit signature for sort s.  

Every kind of software entity, whether it is an abstract 
data type, a class, a component or, as here, a service, must 
define a set of typed operators. The syntactic aspect of an 

operator is determined by its domain, its co-domain and its 
identifier. This is specified in the following form. 

𝑜𝑝: (𝑠!, 𝑠!,… , 𝑠!) → (𝑠′!, 𝑠′!,… , 𝑠′!) 
where op is the identifier of the operator, (𝑠!, 𝑠!,… , 𝑠!), 𝑛 ≥
0, are the domain sorts, and (𝑠′!, 𝑠′!,… , 𝑠′!), 𝑘 > 0, are the 
co-domain sorts. 

We allow an operator to have more than one domain sort 
and more than one co-domain sort at the same time. This is 
the main difference between our theory and that used for 
algebraic specifications, which require a single sort co-
domain, and that used for co-algebraic specifications, which 
require a single sort domain. These restrictions are too tight 
to specify services so they are relaxed in our theory. This 
allows us, for example, to give a BookTicket operator for an 
online ticket booking service a signature like this: 

BookTicket:	  DATE,	  NAT,	  BOOKING	  -‐>	  MESSAGE,	  BOOKING	  
Here, DATE is the date of the performance, NAT is the number 
of tickets wanted, MESSAGE is the response to the requester. 
BOOKING represents the state of the online booking services. 
It occurs in both the domain and the co-domain so that the 
original state can be taken as input and the modified state 
can be produced as output. 

We now define the notion of unit signature to represent 
the structure of software units as follows. Let X be a finite 
set of symbols. We write X* to denote the set of finite 
sequences of the symbols in X. In the sequel, we use Ws to 
denote  𝑥 ∈ 𝑆|𝑠 ≻ 𝑥 ∨ 𝑥 = 𝑠 ∗ .  

Definition 2. (Unit Signature) Given a system signature 
(Sp, Σ), the unit signature  Σ! ∈ Σ for a sort s ∈ S  consists 
of a finite family of disjoint sets Σ!,!!!  indexed by pairs of 
units (𝑤,𝑤′)  with 𝑤,𝑤′ ∈ 𝑊! . Each element 𝜑 in set Σ!,!!!  
is an operator symbol of type 𝑤 → 𝑤′ , where w is the 
domain type and w’ the co-domain type of the operator. 

Such operators can be classified as constants, attributes, 
and general operations as follows. 
(1) 𝜑 is a constant, if 𝑤 = ∅,𝑤′ = (𝑠), 
(2) 𝜑 is an attribute, if 𝑤 = (𝑠),𝑤′ = (𝑠′) and 𝑠 ≻ 𝑠′, 
(3) Otherwise, 𝜑 is a general operation. 

In the sequel, we will write  Σ!!  , Σ!!  , and Σ!!   for the 
subsets of Σ! that contain the constants, the attributes and 
the general operations, respectively. 

The semantics of the operators are defined by axioms 
that describe the properties that these functions must satisfy. 
An axiom consists of a number of universally quantified 
variables and a list of conditional equations.  

Let (Sp, Σ) be a given system signature and 𝑠 ∈ 𝑆 be any 
given sort. We define the notion of valid terms that can be 
used in the specification unit of sort s as s-terms. Each s-
term is also typed. Each 𝑤 ∈ 𝑊!  is a type in unit s. 
Formally, we have the following definition.  

Definition 3. (Term) For a unit 𝑠 ∈ 𝑆, the set  𝑇! of valid 
terms in s, called s-terms, is a family of disjoint sets 
𝑇!!|𝑤 ∈ 𝑊!, 𝑠 ∈ 𝑆 . Here, each 𝑇!!   is the set of s-terms of 

type w, and is inductively defined as follows.  
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(1) x is an s-term of type w, if  𝑥 ∈ 𝑉!!, where 𝑉!! is the set of 
variables in s of type w. 

(2) For each (𝑜𝑝:∅ → 𝑠) ∈ Σ!! ,  op is an s-term of type s.  
(3) For each  (𝑜𝑝: 𝑠 → 𝑠′) ∈ Σ!!,  𝑜𝑝(𝑡)  is a s-term of type s’, 

if t is an s-term of type s.  
(4) For each  (𝑜𝑝:𝑤 → 𝑤′) ∈ Σ!! , 𝑜𝑝(𝑡)  is an s-term of type 

w’, if t is an s-term of type w.  
(5)

 
 𝜏!, 𝜏!,… , 𝜏!   is an s-term of type w, if 𝜏! is an s-term of 
type 𝑠!, for 𝑖 = 1,2,… , 𝑛 ,	  where 𝑤 = (𝑠!, 𝑠!,… , 𝑠!) .	  	  

(6) 𝜏#𝑘
 
is an s-term of type 𝑠!, if  𝜏 

 
is an s-term of type 

(𝑠!, 𝑠!,… , 𝑠!), and 0<k≤n is a natural number.  
An equation in specification unit s has the form τ = τ′, 

where τ and τ′ are s-terms of the same type. A conditional 
equation in specification unit s has the form  

τ = τ′, if  𝑐! = 𝑑!,… , 𝑐! = 𝑑!  ,  
where τ and τ′ are s-terms of the same type, 𝑐! and 𝑑! are s-
terms of type si such that 𝑠 ≻ 𝑠! ∨ 𝑠! = 𝑠  for all 𝑖 =
1,2,… , 𝑛 , 𝑐! = 𝑑!,… , 𝑐! = 𝑑!   are the conditions.  

An axiom in the specification unit s is a conditional or 
unconditional equation E with all variables in the equation 
universally quantified at the outermost.  

A specification unit consists of a unit signature and a set 
of axioms.  

Definition 4. (Specification) A specification is a triple 
𝑆𝑝, Σ,𝐴𝑥  , where 

(1) 𝑆𝑝 = 𝑆,≻,⊳ , S is finite set of sorts, ⊳ and ≻ are the 
extends and uses relations on S, respectively; 

(2) Σ = Σ!|𝑠 ∈ 𝑆   is a set of unit signatures indexed by s; 
(3) 𝐴𝑥 = 𝐴𝑥!|𝑠 ∈ 𝑆   is a finite collection of axiom sets 

indexed by s; 
(4) for all s and 𝑠′ ∈ 𝑆  , 𝑠 ⊳ 𝑠′  implies that Σ!! ⊆ Σ! 

and  𝐴𝑥!! ⊆ 𝐴𝑥!. 
For each 𝑠 ∈ 𝑆, (Σ!,𝐴𝑥!) is called the specification unit 

for sort s. 
Note that, by Definition 2, a specification consists of a 

system signature 𝑆𝑝, Σ , and a collection Ax of axiom sets. 

2.2 SEMANTICS	  OF	  ALGEBRAIC	  SPECIFICATION	  
We now define the semantics of algebraic specifications 

by defining what it means for an implementation to be 
correct with respect to a specification. In general, an 
implementation of a specification is a mathematical 
structure that realises the operators in the signature and 
satisfies the axioms. 

Definition 5. (Algebra) Given a system signature 𝑆𝑝, Σ  , a 
𝑆𝑝, Σ -algebra Γ  is a mathematical structure (A,F) that 

consists of a collection 𝐴 = 𝐴!|𝑠 ∈ 𝑆  of sets indexed by s, 
and a collection F of functions indexed by (𝑤,𝑤′) , where 
𝑤,𝑤′   ∈ 𝑊!, 𝑠 ∈ 𝑆 such that for each operator  𝜑:  𝑤 → 𝑤′, 
the function 𝑓! ∈ 𝐹  has domain Aw and co-domain Aw’, 
where 𝐴! = 𝐴!!×𝐴!!×…×𝐴!! ,  when 𝑢 = (𝑠!, 𝑠!,… , 𝑠!) . 

The evaluation of a term in an algebra depends on the 
values assigned to the variables that occur in the term. Such 

an assignment 𝛼 of variables 𝑉!, 𝑠 ∈ 𝑆, in an algebra Γ is a 
function from 𝑉! to 𝐴!. 

Definition 6.  (Evaluation of terms in an algebra) Given an 
assignment 𝛼 , the evaluation of a term 𝜏  in an (𝑆𝑝, Σ)-
algebra Γ = (𝐴,𝐹) , written 𝐸𝑣𝑎!(𝜏), is defined as follows. 
(1)  𝐸𝑣𝑎!(𝑣) = 𝛼(𝑣) ; 
(2) 𝐸𝑣𝑎!(𝜑(𝜏)) = 𝑓!,!(𝐸𝑣𝑎!(𝜏)) ; 
(3) 𝐸𝑣𝑎!( 𝜏!, 𝜏!,… , 𝜏! ) = 
               𝐸𝑣𝑎!(𝜏!),𝐸𝑣𝑎!(𝜏!),… ,𝐸𝑣𝑎!(𝜏!)  ; 
(4) 𝐸𝑣𝑎!(𝜏#𝑘) = 𝑒! , if 𝐸𝑣𝑎!(𝜏) = 𝑒!,… , 𝑒! , and 
1 ≤ 𝑘 ≤ 𝑛. 

Definition 7.  (Satisfaction) Let e be an equation in the 
following form. 

τ = τ′, if  𝑐! = 𝑑!,… , 𝑐! = 𝑑!  .	  

An (𝑆𝑝, Σ)-algebra Γ = (𝐴,𝐹)  satisfies e, written Γ ⊨ 𝑒 , if 
for all assignments 𝛼, we have that 𝐸𝑣𝑎!(𝜏) = 𝐸𝑣𝑎!(𝜏′)  
whenever 𝐸𝑣𝑎!(𝑐!) = 𝐸𝑣𝑎!(𝑑!)  is true for all 𝑖 = 1,2… , 𝑛. 

Let 𝜀 = (𝑆𝑝, Σ,𝐴𝑥)  be a specification. An (𝑆𝑝, Σ) -
algebra  Γ = (𝐴,𝐹) satisfies specification 𝜀, written Γ ⊨ 𝜀 , 
if for all equations e in Ax, we have that Γ ⊨ 𝑒.  

2.3 THE SOFIA SPECIFICATION LANGUAGE 
SOFIA	   is	   a	   new	   algebraic specification language	  

designed	   for	   the	   formal	   specification	   of	   services.	   It	   is	  
based	  on	  the	  algebraic	  structure	  described	  above.	  Here,	  
we	  give	  a	  brief	  introduction	  to	  the	  language.	  The	  readers	  
are	   referred	   to	   (Zhu, Liu, & Bayley, 2013) for the 
reference manual.  

The	   overall	   structure	   of	   a	   SOFIA	   specification	   is	   a	  
collection	  of	   specification	  units.	  A	  unit	   can	  be	   split	   into	  
two	   partial	   units:	   a	   Signature	   unit,	   to	   define	   the	  
signature,	   and	   an	  Axiom	   unit,	   to	   define	   the	   axioms	   that	  
apply	   to	   the	   signature	   unit.	   The	   users	   can	   also	   define	  
auxiliary	   functions	   and	   concepts	   in	   a	   Definition	   unit.	  
More	  formally,	  in	  BNF	  notation	  we	  have:	  

<Specification>	  ::=	  <Unit>*	  
<Unit>	  ::=	  <Spec	  Unit>	  |	  <Signature	  Unit>	  |	  <Axiom	  Unit>	  	  

|	  <Definition	  Unit>	  	  
The	   “uses”	   and	   “extends”	   relations	   between	  

specification	   units	   are	   declared	   in	   clauses	   introduced	  
with	  the	  keywords	  uses	  and	  extends,	  as	  shown	  below.	  	  

<Spec	  unit>	  ::=	  Spec	  <Sort	  Name>	  [<Observability>];	  
[extends	  <Sort	  Names>]	  
[uses	  <Sort	  Names>]	  
<Signature>;	  	  
[<Axioms>]	  	  

End	  
SOFIA	  also	  declares	  if	  a	  software	  entity	  is	  observable	  

in	   the	   sense	   that	   its	   states	   or	   values	   can	   be	   directly	  
tested	  for	  equality;	  otherwise,	  its	  states	  or	  values	  have	  to	  
be	  checked	  by	  other	  means,	  e.g.	  through	  observers.	  

SOFIA	   explicitly	   declares	   three	   kinds	   of	   operators	  
using	   keywords	   Const	   for	   constants,	   Var	   for	   attributes,	  
and	   Operation	   for	   general	   operators.	   For	   example,	   the	  
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following	  is	  the	  signature	  unit	  in	  the	  SOFIA	  specification	  
of	  Stack.	  	  
	   Signature	  Stack;	  	  
	   	   uses	  Int,	  Real,	  Bool;	  
	  	  	  	  	   	   Const:	  nil;	  
	  	  	  	  	   	   Var	  	  
	  	  	  	  	  	  	  	  	   	   Length:	  Int;	  
	  	  	  	  	  	  	  	  	   	   IsEmpty:	  Bool;	  
	  	  	  	  	  	  	  	  	   	   Top:	  Real;	  
	  	  	  	   	   Operation	  
	  	  	  	  	  	  	  	   	   Push(Real);	  
	  	  	  	  	  	  	  	   	   Pop;	  
	   	   End;	  	  
Note	  that	  SOFIA	  assumes	  that	   the	  sort	  name	  of	   the	  unit	  
occurs	   on	   both	   sides	   of	   the	   general	   operators.	   Thus,	  
Push(Real)	  is	  syntactic	  sugar	  for	  Push:	  Stack,	  Real	  -‐>	  Stack.	  	  

An	  axiom	  in	  SOFIA	  is	  in	  the	  form	  of	  	  
for	  all	  x1:	  s1,	  x2:	  s2,	  …,	  xn:	  sn	  that	  

e1	  =	  e2,	  if	  cond;	  
where	   x1,	  …,	  xn	   are	   universally	   quantified	   variables	   that	  
occur	   in	   the	   equation,	   and	   s1,	  …,	  sn	   are	   their	   respective	  
sorts.	  For	  example,	  the	  axioms	  for	  Stack	  are	  as	  follows.	  	  

for	  all	  x:	  Real,	  s:	  Stack	  that	  
	   s.push(x).length	  =	  s.length+1;	  
	   s.push(x).IsEmpty	  =	  False;	  	  
	   s.push(x).top	  =	  x;	  
	   s.push(x).pop	  =	  s;	  	  
	   s.pop.length	  =	  s.length-‐1,	  if	  s.length>0;	  
	   s.length=0,	  if	  s.IsEmpty=	  True;	  
	   s.IsEmpty	  =	  True,	  if	  s.length=0;	  
	   s.IsEmpty	  =	  False,	  if	  s.length>0;	  
	   nil.IsEmpty	  =	  True;	  
SOFIA	  uses	  the	  prefix-‐dot	  notation	  for	  the	  application	  of	  
an	  operator	  to	  the	  main	  sort.	  	  

To	   improve	   the	   readability	   of	   axioms,	   the	   language	  
also	   allows	   the	   definition	   of	   local	   variables/identifiers	  
for	  use	  in	  equations.	  The	  following	  is	  an	  example.	  

for	  all	  x:	  Real,	  s:	  Stack	  that	  
	  	  	  let	  s’	  =	  s.push(x)	  in	  

	   s’.length	  =	  s.length+1;	  
	   s’.IsEmpty	  =	  False;	  	  
	   s’.top	  =	  x;	  
	   s’.pop	  =	  s;	  	  
	  	  	  	  	  	  	  	  	  	  	  end	  

3 TRANSFORMATION	  RULES	  
An ontology defines the concepts in a domain through a 

set of relations between them. Individual entities are the 
instances of these concepts. In ontology modeling languages, 
such as OWL, concepts are often modeled as classes. 
Relations are modeled as properties to describe the features 
and attributes of the concepts. Individuals are modeled as 
objects, which are instances of the classes that represent the 
corresponding concepts. Such an ontology is a 

representation of domain knowledge (Uschold & Gruninger, 
1996). 

In this section, we present a set of mapping rules to 
derive ontological descriptions of services from algebraic 
specifications. We use general algebraic structures rather 
than the concrete syntax of SOFIA so that the rules are 
generally applicable. 

3.1 EXTRACTION	  OF	  DOMAIN	  ONTOLOGY	  
Given an algebraic specification (𝑆𝑝, Σ,𝐴𝑥) , the 

following rules will extract classes, properties and 
individuals from algebraic specifications, and thus translate 
an algebraic specification into a domain ontology.  
Rule 1: For each sort 𝑠 ∈ 𝑆 of the specification, generate a 
formula Class(s), where predicate Class(x) means that x is a 
class or, in other words, x is a concept. 
Rule 2: For an extension relation 𝑠 ⊳ 𝑠′  in the system 
signature (𝑆𝑝, Σ) of the specification, generate a formula 
subClassOf(s, s’), where predicate subClassOf(x, y) means 
that class x is a subclass of y, or equally, x is a sub-concept 
of y. 
Rule 3: For a uses relation 𝑠 ≻ 𝑠′ in the system signature 
(𝑆𝑝, Σ) of the specification, generate a formula uses(s, s'), 
where predicate uses(x, y) means that concept x is defined 
by using the concept y, it is somewhat redundant because it 
can be deduced from other predicates later on. 
Rule 4: For each constant 𝜑 ∈ Σ!! , 
(1) Generate a formula Individual(𝜑 ), where predicate 
Individual(y) means that y is an individual, and 
(2) Generate a formula s(𝜑), where x(y) means that y is an 
instance of class x. 
Rule 5: For each operator : 𝑠 → 𝑠′,𝜑 ∈ Σ!! , 
(1) Generate a formula Property( 𝜑 ), where predicate 
Property(z) means that z is a property, and 
(2) Generate a formula 𝜑 (s, s'), where z(x, y) means that z is 
a property of concept x (i.e. an attribute or an element of x), 
and its value is of type y. 
Rule 6: For each general operation :𝑤 → 𝑤′,𝜑 ∈ Σ!!  , 
(1) Generate a formula Class(𝜑), where predicate Class(z) 

means that z is a concept, and  
(2) For each 𝑠! ∈ 𝑤 , generate a formula isDomainOf(𝜑,si), 

where isDomainOf(z, x) means that x is the domain of 
the relation z, and 

(3) For each 𝑠! ∈ 𝑤′, generate a formula isCodomainOf(𝜑, si) 
where the predicate isCodomainOf(z, x) means that x is the 
co-domain (or range or output) of the relation z.. 

To explain Rule 6, we regard an operation as a relation 
(i.e. a relational concept) that links the concepts of the 
domain to the concepts of the co-domain. 

3.2 GENERATION	  OF	  SERVICE	  PROFILE	  
Having generated the ontology from a specification, the 

services can be described in an OWL-S profile based on the 
ontology. Such a profile can also be generated from the 
specification unit that defines the service's functionality. 
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Given a specification 
(𝑆𝑝, Σ,𝐴𝑥)  of service Sv, the 
following rule will generate the 
service profile. 
Rule 7: For each general operation 
𝜑:𝑤 → 𝑤′,𝜑 ∈ Σ!! , 
(1) Generate a service profile frame. 
(2) Generate an element 

serviceName with value 𝑠.𝜑. 
(3) For each 𝑠! ∈ 𝑤 , generate an 

element hasInput with resource 
"Sv.owl#si". 

(4) For each 𝑠! ∈ 𝑤′ , generate an 
element hasOutput with 
resource "Sv.owl#si". 
Figure 1 illustrates the above 

transformation rule.  
 
For example, here is the specification unit in the SOFIA 

language that defines the operations on Servers in the 
GoGrid system. The axioms are omitted since they are not 
used in the translation. 	  
Spec	  GServer;	  
uses	  ServerListRequest,	  ServerListResponse,	  

ServerGetRequest,	  ServerGetResponse,	  
ServerAddRequest,	  ServerAddResponse,	  
ServerEditRequest,	  ServerEditResponse,	  
ServerDeleteRequest,	  ServerDeleteResponse,	  
ServerPowerRequest,	  ServerPowerResponse;	  

Var	  	  	  clockTime:	  Int;	  
Operation	  
List(ServerListRequest)	  :	  ServerListResponse;	  
Get(ServerGetRequest)	  :	  ServerGetResponse;	  
Add(ServerAddRequest)	  :	  ServerAddResponse;	  
Edit(ServerEditRequest)	  :	  ServerEditResponse;	  
Delete(ServerDeleteRequest)	  :	  ServerDeleteResponse;	  
Power(ServerPowerRequest)	  :	  ServerPowerResponse;	  

Axiom	  
	  	  …	  

End	  	  
	  

The profile for the List operation is given as follows. 
<rdf:RDF>	  
<owl:Ontology	  rdf:about="">	  
	  	  <owl:imports	  rdf:resource=	  
	  	  	  	  	  	  "http://www.daml.org/services/owl-‐s/1.0/Profile.owl"/>	  
	  	  <owl:imports	  rdf:resource="#GServerOntology.owl"/>	  
</owl:Ontology>	  
<profile:serviceName>	  GServer.List</profile:serviceName>	  
<profile:hasInput	  rdf:resource="GServerOntology.owl#GServer"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  "GServerOntology.owl#ServerListRequest"/>	  
<profile:hasOutput	  rdf:resource=	  	  
	  	  "GServerOntology.owl#GServer"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  "GServerOntology.owl#ServerListResponse"/>	  
</rdf:RDF>	  

4 TRS2O	  TOOL	  
A prototype tool called TrS2O (Translator from 

Specification to Ontology) has been designed and 
implemented in Java. It translates formal specifications in 
SOFIA to ontological descriptions of services in OWL. 
Figure 2 shows the overall structure of the TrS2O Tool. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. The Overall Structure of The TrS2O Tool 
 
The tool TrS2O contains three main components. 

(1) Specification Parser and Syntax Checker, which parses 
algebraic specifications written in SOFIA and generates a 
parse tree. It checks whether a specification is syntactically 
well-formed and whether the equations in the axioms are 
type correct. 
(2) Ontology Generator, which takes the parse tree of the 
algebraic specification as input, and generates an ontology 
represented in the OWL language according to the rules 
defined in section 3. 
(3) Services Description Generator, which takes as inputs 
the ontology and the parse tree of the algebraic specification 
and generates the descriptions of services in OWL-S 
profiles. 
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Figure 1. Illustration of Rule 7 



International Journal of Services Computing (ISSN 2330-4472)                 Vol. X, No. Y, Month Year 

 

	  
Figure 4. Visualization of Ontology Generated by TrS2O 

	  
 

Figure 3. The Interface of TrS2O Tool 
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Figure 3 shows the user interface of TrS2O. The upper-
left pane displays the specification in SOFIA, while the 
lower-left displays the parsing report for it. The panes on the 
right are generated from the specification. The upper-right 
and shows the ontology and the lower-right shows profile of 
services.  

It is worth noting that the ontology generated by TrS2O 
can be processed by any OWL tool. Figure 4 illustrates the 
visualization of the ontology for the GoGrid specification; 
the tool used was Protege. Reasoning and searching on 
domain knowledge can also be performed. 

5 CASE	  STUDY	  
In this section, we report a case study with a real 

industrial RESTful web services GoGrid. 

5.1 GOGRID	  API	  
GoGrid1 is an infrastructure-as-a-service (IaaS) provider. 

It provides an easy-to-use API for developers, system 
administrators and end-users to access its functions. Its 
services can be accessed through a RESTful web service 
interface in a number of different programming and 
scripting languages. RESTful web services, unlike 
SOAP/WSDL, are based on the HTTP protocol, so each 
GoGrid API call is an individual HTTP query. 

The latest version of the GoGrid API has 11 different 
types of objects and 5 types of common operators. Not all 
operators can be applied to all types of objects, however. 
There are three types of objects that are only used as 
parameters of the operators, so no operators are applicable 
on them, and there are some objects that have special 
operators. Table 1 gives the applicable operators for each 
type of object. 

It is worth noting that some operators in GoGrid have 
different meanings for different types of objects. In order to 
achieve well-structuredness, in our specification of GoGrid, 
the definitions were grouped by object rather than by 
operator. For the sake of space, we give here just the 
applicable operators for the load balancer object and its 
systematic specification, because it is one of the most 
important objects with the most operators. 

Table 1. Applicable Operators on Objects 
Object List Get Add Delete Edit Other Ops 
Server  Yes Yes Yes Yes Yes Power 
Server 
image  Yes Yes  Yes Yes Save, 

Restore 
Load 
Balancer  Yes Yes Yes Yes Yes  
Job  Yes Yes     
IP  Yes      
Password  Yes Yes     
Billing   Yes     
Option  Yes      

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1
	  http://www.gogrid.com/	  

5.2 SPECIFICATION	  OF	  GOGRID	  IN	  SOFIA	  
For each type of objects in the GoGrid system, we write 

several specification units to define various aspects of the 
object and its operators, including 
(1) Valid requests, for which we define their structures and 

constraints on how their components may be combined; 
(2) Responses, with structures and constraints as above; 
(3) Objects of certain types, with signatures and semantics, 

including signatures and axioms that characterize the 
relationships between the valid requests and the 
responses. 
Other specification units define features and concepts 

common to many types of objects. Examples include the 
four query parameters common to all GoGrid API calls. 
Some properties are common to all objects too.  

The specification of the GoGrid API is based on a 
framework for specifying RESTful web services (Liu,	  Zhu,	  &	  
Bayley,	   2013b). The framework consists of a collection of 
specification units that define the general structure of HTTP 
requests and responses so that a specific RESTful web 
services can be specified as extensions to these units. In 
particular, the following sorts in the framework are used in 
the GoGrid specification: URL, HTTPMethod, 
RequestHeader, RequestHeaderField, HTTPRequest, 
QueryParameter, QueryString, ResponseHeader, 
ResponseHeaderField and HTTPResponse. Details are 
omitted for the sake of space.  
5.2.1 Objects and Collections 

Here we give the specifications of the load balance 
object and its collection, ListofLB. The latter has an 
operation items to get an individual load balancer object, an 
operation insert to add on object to the list, and an attribute 
length to give the number of load balancer objects in the list. 
The specifications of Option, IPPP (which stands for IP 
Port Pair), and ListofIPPP (its collection) are omitted here. 
Spec	  LoadBalancer;	  
uses	  Option,	  IPPP,	  ListofIPPP;	  
Var	  
id:	  Long;	  
name,	  description:	  String;	  
virtualip:	  IPPP;	  
realiplist:	  ListofIPPP;	  
type,	  persistence,	  os,	  state,	  datacenter:	  Option;	  

Axiom	  
For	  all	  lb:	  LoadBalancer	  that	  
lb.id	  <>	  Null;	  

End	  
End	  
Spec	  ListofLB;	  
uses	  LoadBalancer;	  
Var	  	  
length:	  Int;	  

Operation	  
items(Int)	  :	  LoadBalancer;	  
insert(LoadBalancer);	  

End	  
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Note that, when an object is structural (i.e. it consists of 
a number of elements), each element of the object can be 
specified using an attribute in the SOFIA language. 
Traditionally in algebraic specifications, an attribute is an 
observer, i.e. an operation from the sort being defined to 
another sort. It is similar to the getters in object-oriented 
programs for getting the value of attributes. Here, SOFIA 
provides attribute as a language facility to specify the 
object’s structure directly.  
5.2.2 Requests 

There are four query parameters that are common to all 
GoGrid API calls, and they are specified as follows: 
Spec	  CommonParameter;	  
Var	  
api_key,	  sig,	  v,	  format:	  String;	  

Axiom	  
Forall	  cp:	  CommonParameter	  That	  

cp.api_key	  <>	  Null;	  
cp.sig	  <>	  Null;	  
cp.v	  <>	  Null;	  

End	  
End	  
Here api_key is a key generated by GoGrid for security when 
accessing resources, sig is an MD5 signature of the API 
request data, v is the version id of the API, and format is an 
optional field to indicate the response format required. NULL 
is a value that represents no information.  

The signature can be generated by an MD5 hash from 
three parts:  
• the api_key, obtained before API calls can be made,  
• the user's shared secret, a string of characters set by the 

user and known only by the GoGrid server, and  
• a Unix timestamp, the number of seconds since the Unix 

Epoch of when the request was made.  
Together, the api_key and shared secret act as an 

authentication mechanism. Their uses in authentication  
depend on system context such as time, because	  sig is time-
dependent. Therefore, the axioms for specifying the 
authentication mechanism are given in the specification of 
the whole system. Here, we can only say that both are 
required.  

In addition to the parameters common to all service 
requests, each specific type of service request may also 
contain various specific parameters. So, for each type of 
request, we first specify the common structure as one sort: 
ListRequest, GetRequest, and so on. These are then extended 
for the different types of objects, giving ServerListRequest, 
LBListRequest, and so on. Here we only have space for the 
get operation on load balancer, but it is the most common 
operation, and complex enough to be representative. It is 
implemented using the HTTP request method GET and is 
the only way to determine the internal state of a service. 
Spec	  GetRequest;	  
extends	  HTTPRequest;	  
uses	  CommonParameter,	  ListofString;	  
Var	  

para:	  CommonParameter;	  
id,	  name	  :	  ListofString;	  	  

Axiom	  
For	  all	  gr:	  GetRequest	  that	  
gr.id	  =	  Null,	  if	  gr.name	  <>	  Null;	  
gr.name	  =	  Null,	  if	  gr.id	  <>	  Null;	  

End	  
End	  
As you can see, the sort GetRequest adds to HTTPRequest 
some extra attributes: para, the common query parameters 
defined before, and both id	   and name; these are used to 
select the object; only one is required and it is an error to 
use both. Now GetRequest can be extended to load 
balancers as LBGetRequest as follows. 

Spec	  LBGetRequest;	  
extends	  GetRequest;	  
uses	  ListofString;	  
Var	  
	  	  loadbalancer:	  ListofString;	  
Axiom	  
For	  all	  lbgr:	  LBGetRequest	  that	  
lbgr.id	  =	  Null,	  if	  lbgr.loadbalancer	  <>	  Null;	  
lbgr.name	  =	  Null,	  if	  lbgr.loadbalancer	  <>	  Null;	  

End	  
End	  
	  
5.2.3 Responses 

The GoGrid API responses can be in any of three 
different formats: JSON (JavaScript Object Notation), XML, 
and CSV (Comma Separated Values). The default format, 
used when the optional format parameter is omitted, is 
JSON. However, algebraic specification is abstract enough 
to specify all three at once. 

The response to a get call starts with a summary, defined 
below, containing the total number of objects available, start 
index, number of objects returned in a page, and number of 
pages.  
Signature	  ResponseSummary;	  
Var	  
total,	  start,	  returned,	  numpages:	  Int;	  

End	  
As well as this summary, the response contains status, 

request method, status code and a list of returned objects.  
Spec	  GetResponse;	  
extends	  HTTPResponse;	  
uses	  ResponseSummary;	  
Var	  
summary:	  ResponseSummary;	  
status,	  request_method:	  String;	  	  
statusCode:	  Int;	  

Axiom	  
For	  all	  gr:	  GetResponse	  that	  
gr.summary.total	  >=0;	  	  
gr.summary.start	  =	  0;	  	  
gr.summary.returned	  =	  gr.	  summary.total;	  	  

End	  
End	  
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For load balancers, this is extended with an attribute for 
the list of returned load balancer objects.	  
Spec	  LBGetResponse;	  
extends	  GetResponse;	  
uses	  ListofLB;	  
Var	  	  
	  	  	  objects:	  ListofLB;	  

End	  
	  
5.2.4 Semantics of the operations 

For each type of request, we define an operator that 
takes a request as the input and produces a response as the 
output. All such operators have GoGrid as the context. We 
also need to know the clock time on the grid and also the 
shared secret chosen by each user and timestamp for 
checking the authentication of access. Thus, we have the 
following signature for the sort GLB, which represents the 
load balancer web services of the GoGrid cloud computing 
system. 
Spec	  GLB;	  
uses	  
LBListRequest,	  LBListResponse,	  
LBGetRequest,	  LBGetResponse,	  
LBAddRequest,	  LBAddResponse,	  
LBEditRequest,	  LBEditResponse,	  
LBDeleteRequest,	  LBDeleteResponse,	  

Var	  
clockTime,	  timeStamp:	  Int;	  
sharedSecret:	  String;	  	  

Operation	  
List(LBListRequest):	  LBListResponse;	  
Get(LBGetRequest):	  LBGetResponse;	  
Add(LBAddRequest):	  LBAddResponse;	  
Edit(LBEditRequest):	  LBEditResponse;	  
Delete(LBDeleteRequest):	  LBDeleteResponse;	  

Axiom	  
...	  

End	  
Axioms are used to characterize the semantics of each 

operator, but here, as illustration, we give just the get 
operator. 

First of all, GoGrid authenticates each get call by using 
the MD5 function to reconstruct the signature from the 
api_key, the user's shared secret, and the time stamp. It then 
compares it to the signature contained in the request 
parameter. It also checks the time stamp with its server 
clock time, allowing a discrepancy of up to 10 minutes. This 
authentication rule can be specified as follows. 
For	  all	  G:GLB,	  X:LBGetRequest	  that	  
	  	  	  Let	  	  key	  =	  X.para.api_key,	  
	  	  	  	  	  	  	  	  	  	  	  sig_Re	  =	  MD5(key,	  G.sharedSecret,	  X.timeStamp)	  
	  	  	  in	  G.Get(X).statusCode	  =	  403,	  
	  	  	  	  	  	  	  	  	  	  	  if	  	  	  X.para.sig	  <>	  sig_Re	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  or	  abs(X.timeStamp	  -‐	  G.clockTime)	  >	  600;	  
	  	  	  End	  
End	  

An important feature of the Get operator is that it is an 
observer. So, applying it will not change the state of the 
context sort GLB. This property can be expressed by axioms 
in the following form.  
Axiom	  <Get-‐XOp>:	  
	  	  	  	  	  For	  all	  G:	  GLB,	  X:	  LBGetRequest,	  X1:	  LBXOpRequest	  that	  
	  	  	  	  	  	  	  	  	  	  [G.Get(X)].XOp(X1)	  =	  G.XOp(X1);	  
End	  
where XOp is any of the operators List, Get, Add, Edit or 
Delete. 

The following axiom states that when an operation 
changes the state of the cloud by adding a load balancer, the 
Get operator should be able to observe the effect 
accordingly. In fact, such an axiom also defines the 
semantics of the Add operator. 
For	  all	  G:	  GLB,	  X1:	  LBAddRequest,	  
	  	  	  	  	  	  	  	  	  	  	  	  X2,	  X3:	  LBGetRequest,	  	  
	  	  	  	  	  	  	  	  	  	  	  	  i:	  Int	  	  
that	  
	  	  	  	  [G.Add(X1)].Get(X2).objects	  =	  G.Add(X1).objects,	  
	  	  	  	  	  	  	  	  	  If	  	  X2.name.length	  =	  1,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  X1.name	  =	  X2.name.items(0),	  
	  	  	  	  	  	  	  	  	  	  	  	  	  G.Add(X1).statusCode	  =	  200,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  G.Get(X2).statusCode	  =	  200;	  
	  	  	  	  [G.Add(X1)].Get(X2).objects	  =	  G.Get(X2).objects,	  
	  	  	  	  	  	  	  	  	  If	  search(X2.name,	  X1.name)	  =	  False,	  
	  	  	  	  	  	  	  	  	  	  	  	  G.Add(X1).statusCode	  =	  200,	  
	  	  	  	  	  	  	  	  	  	  	  	  G.Get(X2).statusCode	  =	  200;	  
	  	  	  [G.Add(X1)].Get(X2).objects	  =	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  insert(G.Get(X3).objects,	  G.Add(X1).objects)	  
	  	  	  	  	  	  	  	  If	  search(X2.name,	  X1.name)	  =	  True,	  
	  	  	  	  	  	  	  	  	  	  	  search(X3.name,	  X1.name)	  =	  False,	  
	  	  	  	  	  	  	  	  	  	  	  search(X3.name,	  X2.name.items(i))	  =	  True,	  
	  	  	  	  	  	  	  	  	  	  	  X2.name.items(i)	  <>	  X1.name,	  
	  	  	  	  	  	  	  	  	  	  	  0	  =<	  i,	  i	  <	  X2.name.length,	  
	  	  	  	  	  	  	  	  	  	  	  G.Add(X1).statusCode	  =	  200,	  
	  	  	  	  	  	  	  	  	  	  	  G.Get(X2).statusCode	  =	  200,	  
	  	  	  	  	  	  	  	  	  	  	  G.Get(X3).statusCode	  =	  200;	  
End	  
where insert and search are auxiliary functions, defined in a 
definition unit, that insert a list of load balancer objects into 
another list, and search for a string in a list of strings. 

The final axiom listed here states that when an operation 
changes the state of the cloud by deleting a load balancer, 
the Get operator should also be able to observe the 
difference accordingly. 
For	  all	  G:	  GLB,	  X1:	  LBDeleteRequest,	  
	  	  	  	  	  	  	  	  	  	  	  	  X2:	  LBGetRequest	  	  
that	  
	  	  	  	  [G.Delete(X1)].Get(X2).statusCode	  =	  500,	  
	  	  	  	  	  	  	  	  If	  	  search(X2.name,	  X1.name)	  =	  True,	  
	  	  	  	  	  	  	  	  	  	  	  	  G.Delete(X1).statusCode	  =	  200;	  
	  	  	  [G.Delete(X1)].Get(X2).objects	  =	  G.Get(X2).objects,	  
	  	  	  	  	  	  	  If	  	  search(X2.name,	  X1.name)	  =	  False,	  
	  	  	  	  	  	  	  	  	  	  	  G.Delete(X1).statusCode	  =	  200,	  
	  	  	  	  	  	  	  	  	  	  	  G.Get(X2).statusCode	  =	  200;	  
End	  
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5.2.5 Summary of GoGrid Specification 
The complete GoGrid API has been specified in SOFIA. 

The numbers of different types of specification units in the 
specification are shown in Table 2. 

 
Table 2. Number of Units in GoGrid Specification 
Type of unit No 
Framework of RESTful web service 10 
Common features 37 
Definition of Server operations 13 
Definition of Server image operations 13 
Definition of Load Balancer operations 11 
Definition of Job operations 5 
Definition of operations on other objects 14 
Total 103 

	  

5.3 GOGRID	  ONTOLOGY	  
Using the TrS2O tool, we have extracted an ontology 

from the GoGrid specification. Take specification GLB for 
example. Table 3 gives the numbers of classes, properties 
and individuals in the GoGrid Ontology in OWL. 

 
Table 3. Basic Data of GoGrid Ontology 

Ontology 
Concept 

Specification 
Concept 

No. 

Class Sort 39 
General Operator 9 

Property 

extends 9 
uses 36 
Domain 16 
Codomain 12 
Variable Operator 97 

Individual Constant Operator 20 
 

For example, here is a fragment of the ontology profile 
for the GetRequest sort. It has, in order, one class for the 
sort, one property for the extends relation, two properties for 
the uses relations and three properties for attributes, each 
defined as ObjectProperty. 
<owl:Class	  rdf:ID="GetRequest">	  
	  	  	  <rdfs:subClassOf	  rdf:resource=	  
	  	  	  	  	  	  "http://www.w3.org/2002/07/owl#Thing"/>	  
	  	  	  <rdfs:subClassOf>	  
	  	  	  	  	  	  <owl:Class	  rdf:ID="HTTPRequest"/>	  
	  	  	  </rdfs:subClassOf>	  
	  	  	  <rdfs:subClassOf>	  
	  	  	  	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#uses"/>	  
	  	  	  	  	  	  	  	  	  <owl:allValuesFrom>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:Class	  rdf:ID="CommonParameter"/>	  
	  	  	  	  	  	  	  	  	  </owl:allValuesFrom>	  
	  	  	  	  	  	  </owl:Restriction>	  
	  	  	  </rdfs:subClassOf>	  
	  	  	  <rdfs:subClassOf>	  

	  	  	  	  	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#uses"/>	  
	  	  	  	  	  	  	  	  	  	  	  	  <owl:allValuesFrom>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:Class	  rdf:ID="ListofString"/>	  
	  	  	  	  	  	  	  	  	  	  	  </owl:allValuesFrom>	  
	  	  	  	  	  	  	  </owl:Restriction>	  
	  	  	  </rdfs:subClassOf>	  
</owl:Class>	  
<owl:ObjectProperty	  rdf:about="#GetRequest.para">	  
	  	  	  	  <rdfs:domain	  rdf:resource="#GetRequest"/>	  
	  	  	  	  <rdfs:range	  rdf:resource="#CommonParameter"/>	  
</owl:ObjectProperty>	  
<owl:ObjectProperty	  rdf:about="#HTTPRequest.id">	  
	  	  	  <rdfs:domain	  rdf:resource="#GetRequest"/>	  
	  	  	  <rdfs:range	  rdf:resource="#ListofString"/>	  
</owl:ObjectProperty>	  
<owl:ObjectProperty	  rdf:about="#HTTPRequest.name">	  
	  	  	  <rdfs:domain	  rdf:resource="#GetRequest"/>	  
	  	  	  <rdfs:range	  rdf:resource="#ListofString"/>	  
</owl:ObjectProperty>	  

Similarly, here is a fragment of the ontology profile for 
the GLB sort. It has, in order, one class for the sort, ten 
properties for the uses relations, five properties for 
isDomainOf and five properties for isCodomainOf,. five 
classes for general operators, and three properties for the 
attributes, defined as ObjectProperty. 
<owl:Class	  rdf:ID="GLB">	  
	  	  	  <rdfs:subClassOf	  rdf:resource=	  
	  	  	  	  	  	  	  	  "http://www.w3.org/2002/07/owl#Thing"/>	  
	  	  	  <rdfs:subClassOf>	  
	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#uses"/>	  
	  	  	  	  	  	  	  	  <owl:allValuesFrom>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:Class	  rdf:ID="LBListRequest"/>	  
	  	  	  	  	  	  	  	  </owl:allValuesFrom>	  
	  	  	  </owl:Restriction>	  
	  	  	  </rdfs:subClassOf>	  
	  	  	  <rdfs:subClassOf>	  
	  	  	  	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#uses"/>	  
	  	  	  	  	  	  	  	  	  	  	  	  <owl:allValuesFrom>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:Class	  rdf:ID="LBListResponse"/>	  
	  	  	  	  	  	  	  	  	  	  	  	  </owl:allValuesFrom>	  
	  	  	  	  	  	  </owl:Restriction>	  
	  	  	  </rdfs:subClassOf>	  
…	  //the	  other	  8	  properties	  for	  the	  uses	  relation	  
	  	  	  <rdfs:subClassOf>	  

	  	  	  	  	  	  	  	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#isDomainOf"/>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:allValuesFrom	  rdf:resource="#GLB.List	  "/>	  
	  	  	  	  	  	  	  	  	  </owl:Restriction>	  
	  	  	  	  	  </rdfs:subClassOf>	  
	  	  …//the	  other	  4	  properties	  for	  isDomainOf	  
	  	  	  <rdfs:subClassOf>	  

	  	  	  	  	  	  	  	  	  <owl:Restriction>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:onProperty	  rdf:resource="#isCodomainOf"/>	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <owl:allValuesFrom	  rdf:resource="#GLB.List	  "/>	  
	  	  	  	  	  	  	  	  </owl:Restriction>	  
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	  	  	  	  	  </rdfs:subClassOf>	  
…//the	  other	  4	  properties	  for	  isCodomainOf	  
</owl:Class>	  	  
<owl:Class	  rdf:ID="GLB.List">	  
	  	  	  	  <rdfs:subClassOf	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  	  	  "http://www.w3.org/2002/07/owl#Thing"/>	  
</owl:Class>	  
…//the	  other	  4	  classes	  for	  general	  operators	  
<owl:ObjectProperty	  rdf:about="#GLB.clockTime">	  
	  	  	  <rdfs:domain	  rdf:resource="#GLB"/>	  
	  	  	  <rdfs:range	  rdf:resource="#Integer"/>	  
</owl:ObjectProperty>	  

	  …//the	  other	  two	  properties	  for	  variable	  operators	  
5.4	  GoGrid	  Server	  Profile.	  
      With the TrS2O tool, we have also generated a service 
profile. Here it is for the example of GLB.  
<rdf:RDF>	  
<owl:Ontology	  rdf:about="">	  
	  	  	  	  	  	  <owl:imports	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  	  	  "http://www.daml.org/services/owl-‐s/1.0/Profile.owl"/>	  
	  	  	  	  	  	  <owl:imports	  rdf:resource="#GLBOntology.owl"/>	  
</owl:Ontology>	  
<profile:serviceName>GLB.List</profile:serviceName>	  
<profile:hasInput	  rdf:resource=	  "GLBOntology.owl#GLB"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBListRequest"/>	  
<profile:hasOutput	  rdf:resource="GLBOntology.owl#GLB"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBListResponse"/>	  
<profile:serviceName>GLB.Get</profile:serviceName>	  
<profile:hasInput	  rdf:resource=	  "GLBOntology.owl#GLB"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBGetRequest"/>	  
<profile:hasOutput	  rdf:resource="GLBOntology.owl#GLB"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBGetResponse"/>	  
<profile:serviceName>GLB.Add</profile:serviceName>	  
<profile:hasInput	  rdf:resource=	  "GLBOntology.owl#GLB"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBAddRequest"/>	  
<profile:hasOutput	  rdf:resource="GLBOntology.owl#GLB"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBAddResponse"/>	  
<profile:serviceName>GLB.Edit</profile:serviceName>	  
<profile:hasInput	  rdf:resource=	  "GLBOntology.owl#GLB"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBEditRequest"/>	  
<profile:hasOutput	  rdf:resource="GLBOntology.owl#GLB"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBEditResponse"/>	  
<profile:serviceName>GLB.Delete</profile:serviceName>	  
<profile:hasInput	  rdf:resource=	  "GLBOntology.owl#GLB"/>	  
<profile:hasInput	  rdf:resource=	  
	  	  	  	  	  	  	  	  "GLBOntology.owl#GLBDeleteRequest"/>	  
<profile:hasOutput	  rdf:resource="GLBOntology.owl#GLB"/>	  
<profile:hasOutput	  rdf:resource=	  
	  	  	  	  	  	  	  "GLBOntology.owl#GLBDeleteResponse"/>	  
</rdf:RDF>	  

6 CONCLUSIONS	  AND	  FUTURE	  WORK	  
In this paper, we propose an approach that bridges the 

gap between formal specification and ontological 
description of service semantics. We do this by transforming 
formal specifications into domain ontology and ontological 
descriptions of services. The former is capable of providing 
verifiable and testable specifications of service semantics, 
whilst the latter has the advantage of being practically 
usable and easy for software developers to understand. The 
prototype tool is built for the specification language SOFIA, 
and the output is in OWL. A case study with the tool 
demonstrates the feasibility of the proposed approach. 

We are pursuing a formal approach for specifying and 
testing service-oriented systems. Currently, we are 
developing a tool that uses specifications in SOFIA as input 
to perform automated testing and verification of web 
services. Another possible avenue for future work is to 
check the consistency of specification using both 
ontological reasoning and equational logic inferences. 

ACKNOWLEDGMENT	  	  
The work reported in this paper is partially supported by 

EU FP7 project MONICA on Mobile Cloud Computing 
(Grant No.: PIRSES-GA-2011-295222), National Natural 
Science Foundation of China (Grant No. 61272420), 
National Natural Science Foundation of Jiangsu Province 
(Grant No. BK2011022) and Jiangsu Qinglan Project.  

REFERENCES	  
Bonchi,	   F.,	   &	   Montanari,	   U.	   (2008).	   A	   coalgebraic	   theory	   of	  
reactive	   systems.	   Electronic	   Notes	   in	   Theoretical	   Computer	  
Science,	  209,	  201-‐215.	  

Bruijn,	   J.,	   et	   al.	   (2006).	   The	   web	   service	   modelling	   language	  
WSML:	  An	  overview,	  Proceedings	  of	  the	  3rd	  European	  Semantic	  
Web	  Conference	  (pp.	  590-‐604):	  Springer-‐Verlag.	  

Bruijn,	   J.	   d.,	   et	   al.	   (2005).	   Web	   service	   modeling	   ontology	  
(WSMO),	  (W3C	  member	  submission):	  W3C.	  

Chen,	  H.	  Y.,	  Tse,	  T.	  H.,	  Chan,	  F.	  T.,	  &	  Chen,	  T.	  Y.	  (1998).	  In	  black	  
and	   white:	   An	   integrated	   approach	   to	   class-‐level	   testing	   of	  
object-‐oriented	   programs.	   ACM	   Transactions	   on	   Software	  
Engineering	  and	  Methodology,	  7(3),	  250-‐295.	  

Chen,	   H.	   Y.,	   Tse,	   T.	   H.,	   &	   Chen,	   T.	   Y.	   (2001).	   TACCLE:	   A	  
methodology	   for	   object-‐oriented	   software	   testing	   at	   the	   class	  
and	   cluster	   levels.	   ACM	  Transactions	   on	   Software	   Engineering	  
and	  Methodology,	  10(4),	  56-‐109.	  

Cirstea,	   C.	   (1997).	   Coalgebra	   semantics	   for	   hidden	   algebra:	  
Parameterised	  objects	  and	  inheritance,	  Proceedings	  of	  the	  12th	  
International	   Workshop	   on	   Recent	   Trends	   in	   Algebraic	  
Development	  Techniques	  (pp.	  174-‐189).	  



International Journal of Services Computing (ISSN 2330-4472)                 Vol. X, No. Y, Month Year 

Cirstea,	   C.	   (2002).	   A	   coalgebraic	   equational	   approach	   to	  
specifying	   observational	   structures.	   Theoretical	   Computer	  
Science,	  280(1-‐2),	  35-‐68.	  

Doell,	   B.,	   &	   Dosch,	   W.	   (2005).	   Transforming	   functional	  
signatures	  of	  algebraic	  specifications	  into	  object-‐oriented	  class	  
signatures,	   Proceedings	   of	   the	   12th	   Asia-‐Pacific	   Software	  
Engineering	  Conference	  (pp.	  323-‐332):	  IEEE	  CS	  Press.	  

Ehrich,	   H.-‐D.	   (1982).	   On	   the	   theory	   of	   specification,	  
implementation,	   and	   parametrization	   of	   abstract	   data	   types.	  
Journal	  of	  ACM,	  29(1),	  206-‐227.	  

Gaudel,	   M.-‐C.,	   &	   Le	   Gall,	   P.	  	   (2007).	   Testing	   data	   types	  
implementations	   from	   algebraic	   specifications.	   In	   Formal	  
Methods	  and	  Testing,	  R.	  Hierons,	  J.	  Bowen,	  and	  M.	  Harman,	  eds,	  
Lecture	   Notes	   in	   Computer	   Science,	   Vol.	   4949,	   (209-‐239)	  
Springer-‐Verlag.	  	  	  

Goguen,	   J.	   A.,	   &	   Malcolm,	   G.	   (2000).	   A	   hidden	   agenda.	  
Theoretical	  Computer	  Science,	  245(1),	  55-‐101.	  

Goguen,	   J.	   A.,	   Thatcher,	   J.	   W.,	   Wagner,	   E.	   G.,	   &	   Wright,	   J.	   B.	  
(1977).	   Initial	   algebra	   semantics	   and	   continuous	   algebras.	  
Journal	  of	  ACM,	  24(1),	  68	  -‐	  95	  	  

Hadley,	   M.	   J.	   (2006).	   Web	   application	   description	   language	  
(WADL)	  (SMLI	  TR-‐2006-‐153).	  CA,	  USA:	  Sun	  Microsystems	  Inc.,.	  

Kong,	   L.,	   Zhu,	   H.,	   &	   Zhou,	   B.	   (2007).	   Automated	   testing	  
components	   based	   on	   algebraic	   specifications,	   Proceedings	   of	  
the	   31th	   IEEE	   International	   Conference	   on	   Computer	   Software	  
and	  Applications	  (COMPSAC	  2007)	  (pp.	  717-‐722).	  

Kopecky,	   J.,	   Gomadam,	   K.,	   &	   Vitvar,	   T.	   (2008).	   hRESTS:	   An	  
HTML	   microformat	   for	   describing	   RESTful	   web	   services,	  
Proceedings	   of	   the	   IEEE/WIC/ACM	   2008	   International	  
Conference	   on	   Web	   Intelligence	   and	   Intelligent	   Agent	  
Technology	  (WI-‐IAT'08)	  (pp.	  619-‐625).	  Sydney,	  Australia.	  

Lathem,	   J.,	   Gomadam,	   K.,	   &	   Sheth,	   A.	   P.	   (2007).	   SA-‐REST	   and	  
(S)mashups:	   Adding	   semantics	   to	   RESTful	   services,	  
Proceedings	  of	  ICSC	  (pp.	  469-‐476).	  

Liu,	   D.,	   Zhu,	   H.,	   &	   Bayley,	   I.	   (2012).	   Applying	   algebraic	  
specification	   to	   cloud	   computing	   -‐-‐	   a	   case	   study	   of	  
Infrastructure-‐as-‐a-‐Service	  GoGrid,	  Proceedings	  of	  The	  Seventh	  
International	  Conference	  on	  Software	  Engineering	  Advances	  (pp.	  
407-‐414).	  

Liu,	  D.,	  Zhu,	  H.,	  &	  Bayley,	  I.	  (2013a).	  A	  case	  study	  on	  algebraic	  
specification	   of	   cloud	   computing,	   Proceedings	   of	   the	   21st	  
Enuromicro	   International	   Conference	   on	   Parallel,	   Distributed	  

and	   Network-‐Based	   Processing	   (pp.269-‐273).	   Queen's	  
University,	  Belfast,	  Northern	  Ireland.	  

Liu,	   D.,	   Zhu,	   H.,	   &	   Bayley,	   I.	   (2013b).	   From	   algebraic	  
specification	   to	   ontological	   description	   of	   service	   semantics,	  
Proceedings	   of	   the	   20th	   International	   Conference	   on	   Web	  
Services	  (ICWS	  2013).	  Santa	  Clara,	  CA.	  

Mallraith,	   S.	   A.,	   Son,	   T.	   C.,	   &	   Zeng,	   H.	   (2001).	   Semantic	   web	  
services.	  IEEE	  Intelligent	  Systems	  (March/April),	  46-‐53.	  

Martin,	   D.,	   al.,	   e.	   (2004).	   Semantic	   Markup	   for	   Web	   Services	  
(W3C	  member	  submission):	  W3C.	  

Papazoglou,	  M.	  P.	  (2012).	  Web	  Services	  and	  SOA:	  Principles	  and	  
Technology	  (2nd	  ed.):	  Pearson.	  

Richardson,	   L.,	   &	   Ruby,	   S.	   (2007).	   RESTful	   Web	   Services:	  
O'Reily.	  

Rutten,	   J.	  M.	   (2000).	  Universal	  coalgebra:	  a	   theory	  of	  systems.	  
Theoretical	  Computer	  Science,	  249(1),	  3-‐80.	  

Singh,	   M.	   P.,	   &	   Huhns,	   M.	   N.	   (2005).	   Service-‐Oriented	  
Computing:	  Semantics,	  Processes,	  Agents:	  John	  Wiley	  &	  Sons.	  

Uschold,	   M.,	   &	   Gruninger,	   M.	   (1996).	   Ontologies:	   Principles,	  
methods,	   and	   applications.	   Knowledge	   Engineering	   Review,	  
11(2),	  93-‐155.	  

Yu,	   B.,	   Kong,	   L.,	   Zhang,	   Y.,	   &	   Zhu,	   H.	   (2008).	   Testing	   java	  
components	   based	   on	   algebraic	   specifications,	   Proceedings	   of	  
the	   First	   International	   Conference	   on	   Software	   Testing,	  
Verification,	   and	   Validation	   (ICST	   2008)	   (pp.190-‐199).	  
Lillehammer,	  Norway:	  IEEE	  CS	  Press.	  

Zhu,	   H.	   (2003).	   A	   note	   on	   test	   oracles	   and	   semantics	   of	  
algebraic	   specifications,	   Proceedings	   of	   the	   3rd	   International	  
Conference	  on	  Quality	  Software	  (QSIC	  2003)	  (pp.	  91-‐98).	  Dallas,	  
TX.	  

Zhu,	   H.,	   Liu,	   D.,	   &	   Bayley,	   I.	   (2013).	   Reference	   manual	   of	   the	  
SOFIA	   algebraic	   specification	   language	   (TR-‐CCT-‐AFM-‐01-‐
2013).	   Oxford,	   UK:	   Department	   of	   Computing	   and	  
Communication	  Technologies,	  Oxford	  Brookes	  University.	  

Liu,	   D.,	   Zhu,	   H.	   &	   Bayley,	   I.	   (2014).	   SOFIA:	   An	   Algebraic	  
Specification	  Language	  for	  Developing	  Services,	  In	  Proc.	  of	  The	  
8th	   IEEE	   International	   Symposium	   on	   Service-‐Oriented	  
Systems	  Engineering	  (SOSE	  2014).	  (pp.)	  Oxford,	  UK..	  	  

Zhu,	  H.,	  &	  Yu,	  B.	  (2010).	  Algebraic	  specification	  of	  web	  services,	  
Proceedings	   of	   the	   10th	   International	   Conference	   on	   Quality	  
Software	  (QSIC	  2010)	  (pp.	  457-‐464):	  IEEE	  CS	  Press.	  

	  


