

WWW.BROOKES.AC.UK/GO/RADAR

RADAR
Research Archive and Digital Asset Repository

Zhu, H and Bayley, I

On the Composability of Design Patterns

Zhu, H and Bayley, I (2015) On the Composability of Design Patterns. IEEE Transactions on Software Engineering, 41 (11). pp.
1138-1152.

This version is available: https://radar.brookes.ac.uk/radar/items/259da36e-dfbd-4436-84a6-1bd3bfa86504/1/

Available on RADAR: September 2016
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for
personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted
extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed
in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the post print version of the journal article. Some differences between the published version and this
version may remain and you are advised to consult the published version if you wish to cite from it.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220157828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://radar.brookes.ac.uk/radar/items/259da36e-dfbd-4436-84a6-1bd3bfa86504/1/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING (TO APPEAR) 1

On the Composability of Design Patterns
Hong Zhu, Senior Member, IEEE, and Ian Bayley

Oxford Brookes University, Oxford OX33 1HX, UK
Email: hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—In real applications, design patterns are almost
always to be found composed with each other. It is crucial
that these compositions be validated. This paper examines the
notion of validity, and develops a formal method for proving
or disproving it, in a context where composition is performed
with formally defined operators on formally specified patterns.
In particular, for validity, we require that pattern compositions
preserve the features, semantics and soundness of the composed
patterns. The application of the theory is demonstrated by a
formal analysis of overlap-based pattern compositions and a case
study of a real pattern-oriented software design.

Keywords-Design Patterns, Pattern composition, Composibility,
Feature preservation, Semantics preservation, Soundness preser-
vation, Formal methods.

I. MOTIVATION

Design patterns encapsulate knowledge of reusable solu-
tions to recurring design problems [1]. Since Gamma et al.
published a catalogue of 23 basic OO design patterns [2], a
large number of patterns in various specific design areas have
been identified and documented [3]–[15]. Many software tools
have been developed, often as IDE plug-ins, to apply design
patterns, or to recognise the correct uses of patterns at code
level [16]–[21] and at model level [22]–[26]. They are widely
used in practice in almost all software development [27].
A pattern-oriented software design methodology is emerging
[28], [29].

Empirical studies show that design patterns are often used
wrongly, with a negative impact on software quality [27], [30],
[31], though the exact meaning of appropriate application is
still an open question. For example, Fig. 1 shows in diagrams
c) to f), four different compositions of the Gamma et al.’s
patterns [2] Composite and Adapter, with the latter indicated
by shading. Are these valid and is there a way to prove that
they are?

!

Component!

Leaves! Composite!

Target!

Adapter!

Adaptee!

(a)!Composite!pattern! (b)!Adapter!pattern!

!

! !

!
!

!

! !

!

!

!

!

! !

!

! !

! !

!

!
!

! !

!

(c)! (d)! (e)! (f)!

Fig. 1. Motivative examples of pattern compositions

In this paper, we take a formal approach to the problem
by proposing a mathematical definition of the notion of
valid composition and instantiation of design patterns, and
developing a formal theory that allows us to formally prove or
disprove that a use of a design pattern is sound and valid. The
applicability of the theory is demonstrated by applying it to
the analysis of overlap-based pattern compositions as well as
a case study with a real example of pattern-oriented design. It
is based on our previous work on an algebra of design patterns
[32] as well as on the work of many others on formalisation
of design patterns [33]–[41].

The remainder of the paper is organised as follows. Section
II outlines our proposed approach and summarises the main
contributions of this paper. Section III sets the foundation of
the work by defining the mathematical notations and recalls the
formal theory that the paper is based on. Section IV examines
the notion of valid pattern composition and instantiation. The
notions of feature preservation, semantics preservation and
soundness preservation are introduced and formally defined
as conditions of valid pattern compositions and instantiations.
Their interrelationships are studied. Section V is devoted to
the verification of the validity of pattern compositions and
instantiations expressed in terms of pattern operations. Section
VI applies the theory to overlap-based pattern composition
operators. Section VII reports a case study with a real example
of pattern-oriented software design: a general request handling
framework [42]. Finally, Section VIII concludes the paper with
a comparison with related work and a discussion of future
work.

II. THE PROPOSED APPROACH

This section outlines our approach to the open problem
of verifying that a composition and instantiation of design
patterns is valid. We refine the problem to that of proving
that a pattern composition and instantiation preserves three
important qualities of the pattern:
• soundness, the existence of valid instances for the pattern,

i.e. at least one design conforms to the pattern;
• semantics, the meaning of the pattern, which is the set of

designs conforming to the pattern;
• features, the structural and behavioural properties of the

pattern.
Another important quality of pattern specifications we will

discuss is completeness, which means that it covers all the
characteristic features of the pattern, no more no less.

In common with other researchers, we regard a design
pattern as a predicate that asserts the existence of elements
(eg classes) in the design, states structural properties in terms

2

of how these elements are statically interconnected, and be-
havioural properties in terms of their dynamic interaction.
Pattern compositions and instantiations are expressions formed
from the application of six pattern operators [32], [43], [44] to
existing patterns. To determine validity, we investigate under
what conditions the operators preserve soundness, semantics
and features.

The main contributions of the paper are as follows.
• We formally define the notions of feature preservation,

semantics preservation and soundness preservation, and
thereby formalise the notion of valid composition. We
also study the relationships between them.

• We present a formal method to enable software designers
to prove or disprove the validity of pattern composition,
by considering soundness preservation, semantics preser-
vation and feature preservation. In particular, we prove
that

– all six operators are feature preserving,
– operators that change the structural requirements are

semantics preserving, and
– operators that introduce new constraints fail to be

soundness preserving only when the newly intro-
duced constraints are in conflict with the semantics
of the original pattern.

• We demonstrate the validity and applicability of the
theory developed in this paper by two means:

– a theoretical analysis of the validity conditions for
pattern compositions based on overlaps [45],

– a case study of a real pattern-oriented design.

III. PRELIMINARIES

In this section, we first recall the logic underlying the formal
specification of design patterns, then the pattern composition
and instantiation operators [32].

A. Logics underlying Pattern Specification and Reasoning

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of the differences in their formalisms, the basic underlying
ideas are quite similar. In particular, a pattern is usually
specified using statements that constrain the structural features,
and sometimes also the behavioural features, of its valid
instances. The structural constraints are typically assertions
that certain types of components exist and have a certain
configuration. The behavioural constraints, on the other hand,
detail the temporal order of messages exchanged between the
components during the executions of an instance of the pattern.
Note that negative information can also be included in pattern
specifications, for example, to state the so-called forbidden
conditions, such as that no associations are allowed between
two particular components. Such negative conditions could be
useful to validate the correct uses of patterns.

The various approaches to pattern formalisation differ in
how they represent software systems and in how they formalise
the predicate. For example, Eden’s predicates are on the source
code of object-oriented programs [40], [46]–[48] but they

are limited to structural features. Taibi’s approach in [38]
is similar but he takes the further step of adding temporal
logic for behavioural features. In contrast, our predicates
are built up from primitive predicates on UML class and
sequence diagrams [41]. These primitives are induced from the
abstract syntax definition of UML diagrams in GEBNF, which
is an extension of BNF for graphical modelling languages
[49], [50]. Therefore, without loss of generality, a pattern
specification is defined as follows.

Definition 1: (Formal specifications of design patterns)
A formal specification of a design pattern is an ordered pair

P = 〈V ars, Pred〉, where Pred is a predicate on the domain
of software systems, and V ars = {v1 : T1, · · · , vn : Tn}
is a set of declarations for the variables that are free in the
predicate Pred. Each vi is a variable that represents a com-
ponent in the pattern and Ti is that variable’s corresponding
type. A type can be a basic type Z of elements, such as class,
method, attribute, message, lifeline, etc. in the design model,
or P(Z) (i.e. a power set of Z), or P(P(Z)) to represent a
set of sets of elements of the type Z, etc. Note that, for the
sake of convenience, we do not allow the empty set ∅ to be
an instance of a power set type P(T).

The semantics of a specification is a ground predicate in the
following form.

∃v1 : T1 · · · ∃vn : Tn · (Pred) (1)

In the sequel, we write Spec(P) to denote the predicate (1)
above, V ars(P) for the set of variables declared in V ars, and
Pred(P) for the predicate Pred. ut

Often predicate Pred is split into static and dynamic
conditions as in [38] and [41]. It can also be specialised to
particular representations of software systems such as program
code, UML diagrams etc, though in this paper, for simplicity,
we will just consider the latter for our concrete examples. The
operators we use from [32], [43], [51] are also independent
of the particular formalism, although the examples come from
the previous work [41] and [52]. The theory developed in this
paper is valid as far as the following notion of conformance
is valid and the logic is consistent.

Give a specification of a design pattern, one can decide
whether a concrete design conforms to the design pattern by
demonstrating that the predicate is satisfied by the design. To
prove such a conformance we just need to give an assignment
α of variables in V ars to elements in the design model m
and evaluate Pred(P) in the context of α. The evaluation of
a predicate p in the context of an assignment α of variables
in p to elements in a model m, denoted by [[p]]mα , is defined
as usual in predicate logic. Thus, the definition is omitted for
the sake of space. If the result of the evaluation [[Pred(P)]]mα
is true, we say that the model m satisfies the specification P ,
and write m |= Spec(P).

Definition 2: (Conformance of a Design to a Pattern)
Let m be a model and P = 〈V ars, Pred〉 be a formal

specification of a design pattern. The model m conforms to the
design pattern as specified by P if and only if m |= Spec(P).
For the sake of simplicity, in the sequel we will also write
m |= P for m |= Spec(P). ut

3

Given a formal specification o f a p attern P , w e c an also
infer the properties of any system that conforms to it by
deducing that Spec(P) ⇒ q where q is a formula denot-
ing a property of the model. In other words, every logical
consequence of a formal specification i s a p roperty o f every
model that conforms to the pattern specified. This statement is
true only if the logic interpretation of predicates is consistent
with logic inference rules. Formally, we have the following
proposition about the logic system underlying the formalism
used for pattern specification.

Proposition 1: (Consistency of Specification Logic)
For all models m and predicates p and q on models, we

have that ` (p⇒ q) and m |= p imply that m |= q. ut
Note that the logic system also has axioms about the atomic

predicates of software systems. One such predicate is −−.,
where X −−. Y means that X is a subclass of Y . Two of its
axioms are the transitivity and asymmetry properties below.
∀X,Y, Z ∈ Class,

(X −−. Y) ∧ (Y −−. Z) =⇒ X −−. Z. (2)
¬(X −−. Y ∧ Y −−. X) (3)

These well-formedness conditions are true for all valid
UML models. For that reason, they can be used as axioms
in reasoning about design patterns [26].

B. Relations and Operators on Design Patterns

Based on the formal logic underlying pattern specifications,
we can define various relationships between patterns, one of
which is the following specialisation relationship, which has
been studied by a number of researchers in various contexts,
such as [39], [53].

Definition 3: (Specialisation Relation between Patterns)
Let P and Q be design patterns. Pattern P is a specialisation

of Q, written P 4 Q, if for all models m, whenever m
conforms to P , m also conforms to Q. Formally, P 4 Q ,
∀m · (m |= P ⇒ m |= Q).

Two patterns P and Q are equivalent, written P ≈ Q, if
P 4 Q and Q 4 P . ut

To establish that P 4 Q, one can use logic inference in
predicate logic to prove that Spec(P)⇒ Spec(Q).

Specialisation is a partial order with FALSE as bottom
and TRUE as top, where TRUE and FALSE are special
patterns defined as follows.

Definition 4: (TRUE and FALSE patterns)
Pattern TRUE is the pattern that satisfies the condition

that for all models m, m |= TRUE. Pattern FALSE is the
pattern that satisfies the condition that for all models m, m |=
FALSE. ut

The operators on patterns introduced in [32] are as defined
below; see the original for explanations, examples and case
studies.

Definition 5: (Pattern Operators)
Let P and Q be any given patterns, V = V ars(P) = {x0 :

T0, · · · , xn : Tn} and Pred(P) = p(x0, · · · , xn).
1) Restriction: Let c be a predicate on V . P [c] is the

pattern such that V ars(P [c]) = V and Pred(P [c]) =
p ∧ c.

2) Superposition: Assume that V ∩ V ars(Q) = ∅. P ∗Q,
is the pattern that V ars(P ∗ Q) = V ∪ V ars(Q) and
Pred(P ∗Q) = p ∧ Pred(Q).

3) Extension: Let V ∩U = ∅, and c be a predicate on V ∪U .
P#(U • c) is the pattern such that V ars(P#(U • c)) =
V ∪ U and Pred(P#(U • c)) = p ∧ c,

4) Flattening: Assume T0 = P(T) and x′0 6∈ V . P ⇓ x0\x′0
is the pattern such that

V ars(P ⇓ x0\x′0) = {x′0 : T, x1 : T1, · · · , xn : Tn};
Pred(P ⇓ x0\x′0) = p({x′0}, x1, · · · , xn).

5) Generalisation: P ⇑ x0\x′0 is the pattern such that

V ars(P ⇑ x0\x′0) = {x′0 : P(T0), x1 : T1, · · · , xn : Tn},
P red(P ⇑ x0\x′0) = ∀x0 ∈ x′0 · Pred(P).

6) Lifting: Let X = {x0 · · · , xk}, n > k > 0, and xsi 6∈ V
for i = 1, · · · , n. P ↑ X is the pattern such that

V ars(P ↑ X) = {xs0 : P(T0), · · · , xsn : P(Tn)},
P red(P ↑ X) = ∀x0 ∈ xs0 · · · ∀xk ∈ xsk ·
∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · p(x1, · · · , xn).

ut
Informal explanations of the operators are as follows.
Restriction operator P [c] imposes an additional condition

c on an existing pattern P . A common use of restriction, as
shown in our case studies [43], is in the form P [u = v], where
u and v are variables of the same type. An alternative form
P [u = a] where a is a constant element is also useful for
instantiating a pattern.

Superposition P ∗ Q is a pattern containing both pattern
P and pattern Q. Naming clashes in component variables can
always be resolved by systematic renaming. Let x ∈ V ars(P)
and x′ /∈ V ars(P). The systematic renaming of x to x′,
written as P [x\x′], does not change the meaning of the pattern.
That is, for all models m that m |= P ⇔ m |= P [x\x′].
Another approach, which we prefer, is to write P.x to denote
the variable x in pattern P . Thus, the variable P.x can be
easily distinguished from Q.x.

Extension P#(U •c) introduces a set U of new components
into the pattern P and links these components with the existing
ones according to the predicate c.

Flattening P ⇓ x\x′ forces the component x in P always
to be a singleton {x′}. When there is no risk of confusion, the
name x′ can be omitted.

Generalisation P ⇑ x\x′ is the opposite of flattening. It
allows an element x in pattern P to be repeated one or many
times. Both the generalisation and flattening operators can be
overloaded to be applied to a set X of component variables.

Lifting P ↑ X results in a pattern P ′ that contains a varying
number of instances of pattern P . For example, Adapter ↑
Target is the pattern that contains a number of Targets of
adapted classes. Each of these has a dependent Adapter and
Adaptee class configured as in the original Adapter pattern.
In other words, the component Target in the lifted pattern
plays a role similar to the primary key in a relational database.
The difference between lifting and generalisation is illustrated
in Example 1.

Note that pattern specifications are closed formulae, contain-
ing no free variables. Although the names given to component

4

variables improve readability significantly, they have no effect
on semantics. So, in the sequel, we will often omit new
variable names and write simply P ⇓ x to represent P ⇓ x\x′,
and P ⇓ X to represent P ⇓ X\X ′. For the lifting operator,
when the key set X is singleton, we omit the set brackets for
simplicity, so we write P ↑ x instead of P ↑ {x}.

The following are some simple examples that illustrate the
meanings of pattern operators. They are also used in the
next section to illustrate the notions of validity of pattern
compositions.

Example 1: Consider patterns P and Q defined as below.

P = 〈{A : Class}, A.isAbstract〉
Q = 〈{B : Class, C : Class}, B −−. C〉

where X.isAbstract means that class X is an abstract class,
X −−. Y means that class X is a subclass of Y . We have that

Spec(P) = ∃A : Class · (A.isAbstract)
Spec(Q) = ∃B,C : Class · (B −−. C)

Consider the pattern compositions R1 to R4 defined as
follows:

R1 = P#(D : Class •D �−→ A)

R2 = Q ⇑ B\Bs
R3 = Q ↑ B\Bs
R4 = (P ∗Q)[A = C]

where X �−→ Y means class X contains class Y as a part,
i.e. there is composite/aggregate relation from X to Y .

Informally, R1 adds an additional component D to P
and connects it to class A with an aggregation relation.
R2 generalises Q by allowing a number of classes Bs =
{B1, · · · , Bn, · · · } to be C’s subclasses instead of just one
class B, whereas R3 is the lifting of Q on the component
B. Note that, flattening is the inverse of generalization. Thus,
Q is a flattening of R2. R4 is the composition of P and Q
by unifying component A of pattern P with component C of
pattern Q. These compositions are illustrated in Fig. 2.

!

A"
B! C!

!

isAbstract"

!

B"
!

C!

isAbstract"

A" D!

isAbstract"

!

B2! C!

B1!

Bn!
…!

…!

Bs!

Cm!

B2!
C1!

B1!

Bn!
…!

…!

…!

…!

Bs! Cs!

B! A=C!
isAbstract"

!

Not"isAbstract"

!

B! C!

Not"isAbstract"

! !

A=B! C!

isAbstract"

P! Q!
Q’!

R1!
R2! R3!

R4! R5!

Fig. 2. Illustration of the Patterns in Examples 1 to 4

From the definitions of the operators we immediately have:

Spec(R1) = ∃A,D : Class · (A.isAbstract ∧D �−→ A)

Spec(R2) = ∃Bs : P(Class),∃C : Class ·
(∀B ∈ Bs · (B −−. C))

Spec(R3) = ∃Bs,Cs : P(Class) ·
(∀B ∈ Bs · ∃C ∈ Cs · (B −−. C))

Spec(R4) = ∃A,B : Class · (A.isAbstract ∧B −−. A)

ut
In [32], we proved a complete set of equational laws that

the operators obey. Some of them are used in this paper to
prove the theorems and in the case study. Thus, they are listed
in the online Appendix.

IV. THE NOTION OF VALIDITY

Our process to determine validity of compositions considers
each of feature preservation, semantic preservation and sound-
ness preservation in turn. We formally define these notions
now and study the relationships between them.

A. Feature Preservation

If a pattern P has a certain feature, one would expect that a
valid use of the pattern should also have the feature. The notion
of feature preservation can be formally defined as follows.

Definition 6: (Feature Preservation)
A unary operator ⊕ on patterns is feature preserving, if, for

any pattern P and any predicate p, pattern P has property p
implies that ⊕P also has property p. Formally,

Spec(P) ` p⇒ Spec(⊕P) ` p.

A binary operator ⊕ on patterns is feature preserving, if for
any patterns P and Q and any predicate p, pattern P has the
property p or pattern Q has the property p imply that P ⊕Q
also has property p. Formally,

(Spec(P) ` p) ∨ (Spec(Q) ` p)⇒ (Spec(P ⊕Q) ` p). ut

The following lemma proves an important property of
feature preservation operators.

Lemma 1: (Feature Preservation Lemma)
(a) An unary pattern operator ⊕ is feature preserving, if for

all patterns P , Spec(⊕P)⇒ Spec(P).
(b) A binary pattern operator ⊕ is feature preserving, if for

all patterns P and Q, Spec(P⊕Q)⇒ Spec(P) and Spec(P⊕
Q)⇒ Spec(Q).

Proof: (a) Assume that for all patterns P , we have that
Spec(⊕P)⇒ Spec(P). Then, for any predicate p, Spec(p) `
p implies that Spec(⊕P) ` p by the consistency of the logic.
Thus, ⊕ preserves features.

(b) Let p be any given property. If we have that Spec(P) `
p, by proposition 1, we have that Spec(P) ⇒ p. Because
Spec(P ⊕Q) ⇒ Spec(P), we have that Spec(P ⊕Q) ⇒ p.
If we have that Spec(Q) ` p, then, by Proposition 1 we have
that Spec(Q) ⇒ p. Because Spec(P ⊕ Q) ⇒ Spec(Q), we
have that Spec(P ⊕Q)⇒ p. Thus, we have that

(Spec(P) ` p) ∨ (Spec(Q) ` p)⇒ (Spec(P ⊕Q) ` p).

5

That is, ⊕ preserves features.
An important property of pattern specifications i s com-

pleteness, which means that it should capture all aspects of
the design. If the specification i s i ncomplete, a d esign may
wrongly be regarded as an instance of the pattern, leading to
a false positive. The formal definition o f c ompleteness i s as
follows.

Definition 7 : (Completeness of Pattern Specification)
Let P = 〈V ars, P red〉 be a formal specification of a given

pattern, T hm be a set of statements on the properties that all
instances of the pattern should possess. The specification P is
complete with respect to T hm, if for all p ∈ T hm, we have
that Spec(P) ` p. ut

Because design patterns are documented informally and
represent empirical knowledge, the completeness of a formal
specification c an o nly b e j udged m anually, p erhaps w ith the
aid of examples. However, we would want a composition
to preserve completeness when its components do. More
formally,

Definition 8 : (Completeness Preservation)
A unary operator ⊕ on patterns is completeness preserving,

if, for any pattern P and set T hm of statements, P is complete
with respect to T hm implies that ⊕P is also complete with
respect to T hm.

A binary operator ⊕ on patterns is completeness preserving,
if for any patterns P and Q and any sets ThmP and ThmQ

of statements, P is complete w.r.t. ThmP and Q is complete
w.r.t. ThmQ imply that P ⊕ Q is complete w.r.t. ThmP ∪
ThmQ. ut

Fortunately, completeness preservation is guaranteed by
feature preservation, as the following lemma states

Lemma 2: (Completeness Preservation Lemma)
(a) An unary pattern operator ⊕ is completeness preserving,

if it is feature preserving.
(b) A binary pattern operator ⊕ is completeness preserving,

if it is feature preserving.
Proof:

(a) Let P be any pattern specification that is complete w.r.t. a
given set of statements Thm. By Definition 7, we have that for
all p ∈ Thm, Spec(P)⇒ p. Because ⊕ is feature preserving,
we have that Spec(⊕(P)) ⇒ p. Therefore, statement (a) of
the lemma is true.

(b) Similarly, let P and Q be any pattern specifications com-
plete w.r.t. sets of statements ThmP and ThmQ, respectively.
By Definition 7, we have that

∀p ∈ ThmP · (Spec(P)⇒ p), (4)
∀q ∈ ThmQ · (Spec(Q)⇒ q). (5)

Now, let s ∈ ThmP ∪ThmQ. So s ∈ ThmP or s ∈ ThmQ. If
s ∈ ThmP , by (4) and statement (b) of Lemma 1, we have that
Spec(P ⊕ Q) ⇒ s. Similarly, if s ∈ ThmQ then by (5) and
statement (b) again, Spec(P ⊕Q)⇒ s. So for all statements
s ∈ ThmP ∪ ThmQ implies that Spec(P ⊕ Q) ⇒ s. This
means that ⊕ preserves completeness.

Example 2: Consider the patterns in Example 1. It is easy
to see that Spec(R1)⇒ Spec(P). Thus, we can prove that for
all p, Spec(P)⇒ p implies that Spec(R1)⇒ p by transitivity

of ⇒. This means that for all properties p that pattern P has,
pattern R1 also has property p. In other words, pattern R1

preserves the features of pattern P . Similarly, we also have

Spec(R2)⇒ Spec(Q)

Spec(R3)⇒ Spec(Q)

Spec(R4)⇒ Spec(P) and Spec(R4)⇒ Spec(Q).

This means that patterns R2 and R3 preserve the features
of pattern Q, and pattern R4 preserves the features of both
patterns P and Q.

Note we do not allow the empty set ∅ to be an instance
of power set type P(T), since if Bs = ∅ then Spec(R2) and
Spec(R3) are vacuously true, even if Spec(Q) is false. So
this requirement is necessary for R2 and R3 to be feature
preserving.
ut

B. Preservation of Semantics

The semantics of a pattern is the set of designs that conform
to it. More formally, we have

Definition 9: (Denotational Semantics of Patterns)
Let P be a pattern specification. The denotational semantics

(or simply semantics) of P , denoted by [[P]], is the set of
models m that satisfy the specification. Formally,

[[P]] , {m | m |= Spec(P)}. ut

By the above definition, it is easy to see that, for all patterns
P and Q, we have

P ≈ Q⇔ [[P]] = [[Q]], (6)
P 4 Q⇔ [[P]] ⊆ [[Q]]. (7)

Some operators preserve the denotational semantics while
changing the structural requirements, while others introduce
new restrictions, and thereby change the semantics. Semantics
preservation is formally defined as follows.

Definition 10: (Semantics Preservation Property)
A unary operator ⊕ on patterns is semantics preserving if

for all patterns P we have that [[P]] = [[⊕P]].
A binary operator ⊕ on patterns is semantics preserving if,

for all patterns P and Q, we have [[P ⊕Q]] = [[P]]∩ [[Q]]. ut
Obviously, a unary operator ⊕ preserves semantics, if and

only if for all models m, (m |= P) ⇔ (m |= ⊕P). For a
binary operator ⊕, the operator ⊕ preserves semantics if and
only if for any patterns P and Q, we have for all models m,
(m |= P ⊕Q)⇔ ((m |= P) ∧ (m |= Q)).

Example 3: Consider patterns P , Q and R4 defined in
Example 1. We have that

m |= Spec(R4)

⇔ m |= ∃A,B : Class · (A.isAbstract ∧B −−. A)
⇒ m |= ∃A : Class · (A.isAbstract)

∧ ∃A,B : Class · (B −−. A)
⇔ m |= ∃A : Class · (A.isAbstract) ∧

m |= ∃A,B : Class · (B −−. A)
⇔ m |= Spec(P) ∧m |= Spec(Q)

6

Therefore, [[R4]] ⊆ [[P]] ∩ [[Q]].
On the other hand, [[R4]] 6= [[P]] ∩ [[Q]], because

∃A : Class · (A.isAbstract) ∧ ∃A,B : Class · (B −−. A)
6⇒ ∃A,B : Class · (A.isAbstract ∧B −−. A).

Therefore, pattern R4 does not preserve the semantics of
patterns P and Q, even though, as we saw in Example 2,
it preserves their features. ut

C. Preservation of Soundness

A design pattern is sound if it has at least one instance. For
example, the FALSE pattern is not sound because it cannot
be satisfied. Any operation ⊕ is soundness preserving if when
applied to a sound pattern P it gives a sound pattern ⊕P .

Definition 11: (Soundness Preservation Property)
A unary operator ⊕ on patterns is soundness preserving if

for any pattern P we have

∃m · (m |= P)⇒ ∃m · (m |= ⊕P).

A binary operator ⊕ on patterns is soundness preserving if
for any patterns P and Q we have

(∃m ·m |= P) ∧ (∃m ·m |= Q)⇒ ∃m ·m |= (P ⊕Q). ut

The following lemma is useful.
Lemma 3: If a pattern operator preserves semantics, it also

preserves soundness.
Proof: Here, we only give the proof for unary pattern

operators. The proof for binary operators is very similar.
Let ⊕ be a unary operator that preserves semantics. By

definition of semantics preservation, for all patterns P and
models m, we have that m |= P ⇔ m |= ⊕P . If P is sound,
i.e. there is a model m such that m |= P , then, we have
that m |= ⊕P . That is, ⊕P is also sound. Thus, ⊕ preserves
soundness.

Example 4: Let pattern P be as defined in Example 1. Let
pattern Q′ be the following.

〈{B,C : Class}, (B −−. C ∧ ¬B.isAbstract)〉

Then, we have that

Spec(Q′) = ∃B,C : Class · (B −−. C ∧ ¬B.isAbstract)

Although P and Q′ are sound, their composition might not
be. For example, pattern R5 is not sound,

R5 = P ∗Q′[A = B]

because the following is not satisfiable.

Spec(R5) = ∃A,C : Class · ((A−−. C) ∧
¬A.isAbstract ∧A.isAbstract),

ut
From Examples 2 to 4, we can see that not all pattern

compositions preserve semantics nor even soundness. The next
section analyses which operators preserves these properties.

Knowledge of this will make validity much easier to deter-
mine without recourse again to logic as required above.

V. ANALYSIS OF PATTERN OPERATORS

Now we analyse the preservation properties of the operators,
proving a set of general theorems. The lengthier proofs are
given in online Appendix 2.

A. Feature Preservation Properties

Theorem 1: (Feature Preservation of Pattern Operators)
The restriction, extension, flattening, generalisation, super-

position and lifting operators all preserve features. ut
Note that, for all patterns P and Q, if Spec(P)⇒ Spec(Q),

we have that P 4 Q. Therefore, the feature preservation
theorem means that applying any of the six pattern operators
will not increase the set of instances of the pattern. This is
because each of these operators either introduces additional
constraints on the instances, or modifies the structure of the
pattern without changing its semantics.

As shown in the case studies and examples given in [43],
pattern compositions are expressions formed from patterns and
the six operators. Using Theorem 1, by induction on the struc-
ture of expressions, we can prove all such pattern expressions
are feature preserving. Thus, we have the following theorem.

Theorem 2: (Feature Preservation of Expressions)
For any expression E made up by applying the six operators

to patterns Pi, for each i we have that Spec(E)⇒ Spec(Pi).
This means that E preserves the features of Pi. ut

Informally, Theorem 2 guarantees that any expression made
up from the operators preserves features. We regard this as
essential for the correctness of using patterns.

B. Semantics Preservation Properties

Theorem 3: (Semantics Preservation Properties)
Superposition, lifting and generation operators preserve

semantics. That is, for all patterns P and Q, all sets X ⊆
V ars(P), we have that for all models m,

(m |= P ∗Q)⇔ ((m |= P) ∧ (m |= Q)), (8)
(m |= (P ↑ X))⇔ (m |= P), (9)
(m |= (P ⇑ X))⇔ (m |= P). (10)

ut
An immediate corollary is the following.
Corollary 1: For all patterns P and Q, we have that
1) [[P ∗Q]] = [[P]] ∩ [[Q]];
2) [[P ⇑ x]] = [[P]], for all x ∈ V ars(P);
3) [[P ↑ x]] = [[P]], for all x ∈ V ars(P). ut
These operators change the structure of the pattern without

affecting conformance. They are usually applied, as seen in
[43], in preparation for restriction and extension, which do
affect conformance since they add constraints.

Theorem 4: (Semantics of Restriction, Extension and Flat-
tening) Let P be any given pattern, V a set of variables disjoint
to V ars(P), and c a given predicate. We have that

[[P [c]]] = {m|m ∈ [[P]] ∧m |= c}, (11)
[[P#(V • c)]] = {m|m ∈ [[P]] ∧m |= ∃V · c}, (12)
[[P ⇓ x]] = {m|m ∈ [[P]] ∧m |= (||x|| = 1).} (13)

7

ut
Note that Theorem 4 implies that [[P [c]]] ⊆ [[P]], [[P#(V •

c)]] ⊆ [[P]], and [[P ⇓ x]] ⊆ [[P]]. Using Theorem 3 as well, and
induction on the structure of pattern expressions, we obtain:

Corollary 2: For any expression E made up by applying the
six operators to patterns Pi, for each i, we have that [[E]] ⊆
[[Pi]]. ut

C. Soundness Preservation Properties

While each of the six operators preserve features, some
do not preserve soundness. For example, restriction does
not because P [false] cannot be sound even if P is sound.
However, Lemma 3 tells us that semantics preserving operators
also are soundness preserving so we conclude:

Corollary 3: The superposition, lifting and generalisation
operators preserve soundness. ut

Restriction, extension and flattening do not, however, as the
following counterexamples show.

Example 5: (Counterexamples of Soundness Preservation)
(1) Restriction. Suppose [[P]] 6= ∅. But [[P [false]]] = ∅

because P [false] ≈ FALSE.
(2) Extension. Suppose [[P]] 6= ∅ again. But [[P#(V •

false)]] = ∅ because P#(V • false) ≈ FALSE.
(3) Flattening. Suppose P = 〈{v : P(Class)}, ||v|| ≥ 2〉.

Then designs exist that satisfy P so [[P]] 6= ∅. However,
from the definition of the flatten operator, P ⇓ v = 〈{v′ :
Class}, (||{v′}|| ≥ 2)〉. But ||{v′}|| ≥ 2 is not satisfiable so
[[P ⇓ v]] = ∅. ut

From Theorem 4, we obtain the following conditions for
these operators to lose soundness.

Corollary 4: (Conditions of losing soundness)
Let P be any given pattern. We have that
1) P [c] is not sound, if Pred(P)⇒ ¬c.
2) P#(V • c) is not sound if Pred(P)⇒ ¬∃V · c.
3) P ⇓ x is not sound if Pred(P)⇒ (||x|| 6= 1). ut
Informally, semantics is lost if a conflicting condition is

introduced. These conditions are necessary as well as sufficient
if the logic system is complete in the sense that c 6= false
implies that there is a model m such that m |= c, so these
conditions are the strongest that one can get.

D. An Example

We now conclude the section by applying these theorems
to our original motivating example of Fig. 1.
• Feature Preservation.

The compositions (c), (d) and (f) in Fig. 1 can be formally
expressed using the operators as follows.

(c) = Composite ∗Adapter[Leaves = Target]

(d) = Composite ∗Adapter[Composite = Target]

(f) = Composite ∗Adapter[Leaves = Target

∧ Component = Adapter]

So by Theorem 2, all the features of Composite and Adapter
are present in these compositions. This is not true of (e),
however, because the structural feature Composite � −→

Component is missing. So, (e) is not valid, and thus, cannot
even be written as an expression.
• Semantics Preservation.

By Theorem 4, we have the semantics of (c)

[[(c)]] = {m|m ∈ [[Composite ∗Adapter]]
∧m |= (Leaves = Target)}

⊆ [[Composite ∗Adapter]]
= [[Composite]] ∩ [[Adapter]]

As [[Composite]] 6= [[Adapter]], we have [[(c)]] ⊂ [[Adapter]]
and [[(c)]] ⊂ [[Composite]]. So (c) does not preserve semantics
but instead restricts the semantics with a further condition.
Compositions (d) and (f) are similar.

Informally, this means that the composition does not com-
pletely preserve the semantics of the composted patterns, but
restricts the semantics with an additional condition. This is
what one would expect.

In the same way, we can also prove a similar property for
compositions (d) and (f).
• Soundness Preservation.

By Corollary 4 we have that composition (c) is not sound, if

Pred(Composite ∗Adapter) =⇒ ¬(Leaves = Target).

However, this is not provable. Since the logic system is
complete, and Composite and Adapter are sound, we have
that composition (c) is sound. Compositions (d) and (e) are
also sound for similar reasons, but (f) is not. By Theorem 4,
the semantics of (f) is

{m|m ∈ [[Composite ∗Adapter]]
∧m |= Leaves=Target ∧ Component=Adapter}.

Assume that a software system m satisfies the specifications
of Composite and Adapter patterns as well as the conditions
Leaves = Target and Component = Adapter. Because

Pred(Composite) =⇒ Leaves−−. Component,
Pred(Adapter) =⇒ Adapter −−. Target,

we have that Leaves−−. Adapter and Adapter −−. Leaves.
This contradicts the axioms about inheritance relation between
classes, i.e. Equ. (3). So we have

Pred(Composite ∗Adapter) =⇒
¬(Leaves = Target ∧ Component = Adapter).

In summary, compositions (c) and (d) are valid. However,
(e) and (f) are not, because (e) is not feature-preserving
though it is implementable, and (f) is not sound and thus not
implementable.

Note that proving the conditions of lost soundness can be
performed by employing a theorem prover such as SPASS1.
The details of using SPASS in the proof of the example above
is given in online Appendix 3.

In conclusion, the validity of a pattern composition can be
determined as follows. First, represent it using the six pattern

1http://www.spass-prover.org

8

operators. If this can be done then the composition is feature-
preserving. Then, determine whether semantics and soundness
are preserved. This is best done by applying the theorems we
proved in this section rather than using the formal definitions
directly. This is demonstrated in the next section in the analysis
of overlap-based pattern compositions.

VI. ANALYSIS OF OVERLAP-BASED COMPOSITIONS

In our previous work [45], pattern compositions are formally
defined in terms of overlaps between components in the
patterns composed. Three types of overlaps were identified. In
this section, we re-express them using the pattern operators.
By doing so, we can deduce their validity properties from the
theorems proved above.

A. Expression of Overlaps in Pattern Operators

To define the notion of overlap, suppose that patterns P
and Q are composed together in the form P ⊗ Q. Then,
if a model m conforms to this composition then m also
conforms both to P and to Q, provided that the composition
is sound. By the definition of conformance, we must have
assignments α1 and α2 such that [[Pred(P)]]mα1

= true and
[[Pred(Q)]]mα2

= true. There is an overlap between two
assignments if there is an element of the model m assigned
to two variables, one in V ars(P) and the other in V ars(Q).
There are three types of overlaps, distinguished by whether the
variables are elements (one-to-one), sets of elements (many-
to-many) or one of each (many-to-one or one-to-many). The
following defines composition with various types of overlaps
using the pattern operators.

Definition 12: (Composition with One-to-One Overlap)
Let P and Q be design patterns. Let v ∈ V ars(P) and

u ∈ V ars(Q) be variables of the same type T , i.e. v, u : T .
Then, the composition of P and Q with one-to-one overlap
v −−u, written P 〈v −−u〉Q, is defined as follows:

P 〈v −−u〉Q , (P ∗Q)[v = u]. ut

Definition 13: (Composition with Many-to-Many Overlap)
Let P and Q be design patterns. Let vs ∈ V ars(P)

and us ∈ V ars(Q) be variables assigned to sets of model
elements of the same type P(T), i.e. vs, us : P(T). Then,
the composition of P and Q with many-to-many overlap
vs >−< us, written P 〈vs >−< us〉Q, is defined as follows:

P 〈vs >−< us〉Q , (P ∗Q)[vs ∩ us 6= ∅]. ut

For example, in Definition 12, T could be the type Class,
and then v and u would be classes. In Definition 13, vs and
us would be sets of classes.

Alternative formulations of many-to-many overlaps are pos-
sible, by instantiating the general form below for R bound to
⊆, ⊂ and =.

P 〈vs >−<R us〉Q , (P ∗Q)[vs R us].

Theorem 5: (Ordering among Many-to-Many Composi-
tions)

For all patterns P and Q, we have that

(P 〈vs >−<⊂ us〉Q) 4 (P 〈vs >−<⊆ us〉Q) (14)
(P 〈vs >−<= us〉Q) 4 (P 〈vs >−<⊆ us〉Q) (15)
(P 〈vs >−<⊆ us〉Q) 4 (P 〈vs >−< us〉Q) (16)

Proof: The ordering relations follow the algebraic laws
of the pattern operators (See [32] for details) and the fact that
(vs ⊂ us) ⇒ (vs ⊆ us), (vs = us) ⇒ (vs ⊆ us) and
(vs ⊆ us)⇒ (vs ∩ us 6= ∅).

The third sort of composition is defined as follows.
Definition 14: (Composition with One-to-Many Overlap)
Let P and Q be design patterns. Let v ∈ V ars(P) be a

variable assigned to a model element and let us ∈ V ars(Q)
be a variable assigned to sets of model elements of the type of
v; i.e., v : T and us : P(T). Then, the composition of P and
Q with one-to-many overlap v−−< us, written P 〈v−−< us〉Q,
is defined as follows:

P 〈v −−< us〉Q , (P ∗Q)[v ∈ us] ut

Naturally, a composition with many-to-one overlap can also
be defined by symmetry. The version in [45] however is
slightly more complex in that P is first lifted to duplicate
its class components. It is defined as follows.

Definition 15: (Composition with Lifted One-to-Many
Overlap)

Let P and Q be design patterns. Let v ∈ V ars(P) be a
variable assigned to a model element and let us ∈ V ars(Q)
be a variable assigned to sets of model elements of the type
of v; i.e., v : T and us : P(T). Then, the lifted composition
of P and Q with one-to-many overlap v−−< us is defined as
follows:

P 〈v↑ −−<⊆ us〉Q , (P ↑ (v\vs) ∗Q)[vs ⊆ us] ut

Many alternatives to this are possible. Lifting could be
replaced by generalisation, for example, duplicating only the
generalised component. Also, the constraints vs ⊆ us could
be specialised to vs = us, vs ⊂ us, etc.

P 〈v↑ −−<⊂ us〉Q , (P ↑ (v\vs) ∗Q)[vs ⊂ us]
P 〈v↑ −−<= us〉Q , (P ↑ (v\vs) ∗Q)[vs = us]

P 〈v⇑ −−<⊆ us〉Q , (P ⇑ (v\vs) ∗Q)[vs ⊆ us]
P 〈v⇑ −−<⊂ us〉Q , (P ⇑ (v\vs) ∗Q)[vs ⊂ us]
P 〈v⇑ −−<= us〉Q , (P ⇑ (v\vs) ∗Q)[vs = us]

By applying the algebraic laws we can easily prove that
these compositions have the following relationships.

Theorem 6: For all patterns P and Q, we have that

P 〈v↑ −−<R us〉Q 4 P 〈v⇑ −−<R us〉Q,
P 〈v↑ −−<⊆ us〉Q 4 P 〈v −−< us〉Q.

where R is one of the relations ⊆, ⊂ and =.
Note that, by definition of many-to-many overlaps and one-

to-many overlaps, the ordering relations given in Theorem 5
also hold among P 〈v↑ −−<R us〉Q for R to be ⊆, ⊂ and =,
and among P 〈v⇑ −−<R us〉Q.

The above 4 relationships between these composition oper-
ators are summarised in Fig. 3, where nodes represent various

9

composition operators and an arrow from node A to node B
means A 4 B. On the right-hand side of Fig. 3 are the ordering
relations given in Theorem 5. On the left-hand side are the
4 relationships between the one-to-many overlap composition
operators.

⊆

= ⊂

⊆↑

=↑ ⊆⇑ ⊂↑

=⇑ ⊂⇑

Fig. 3. Relationships Between Compositions with Overlaps

B. Validity of Overlap-based Compositions

By the theorems of feature preservation, semantics preser-
vation and soundness preservation of the operators used to
define the composition with overlaps, we know at once that
the validity of overlap-based composition follows from their
definitions.

Theorem 7: (Validity of Overlap Compositions)
(I) One-to-One Overlaps. For a one-to-one overlap compo-

sition P 〈v −−u〉Q, we have that
1) it preserves features;
2) its semantics [[P 〈v −−u〉Q]] is:

{m | m ∈ [[P]] ∩ [[Q]] ∧m |= (v = u)};

3) it loses soundness, if Pred(P)∧Pred(Q)⇒ ¬(v = u).
(II) Many-to-Many Overlaps. For a many-to-many overlap

composition P 〈vs >−<R us〉Q, we have that
1) it always preserves features;
2) its semantics is:

{m | m ∈ [[P]] ∩ [[Q]] ∧m |= (vs R us)};

3) it loses soundness, if

Pred(P) ∧ Pred(Q)⇒ ¬(vs R us),

where (vs R us) is (vs ⊆ us), (vs ⊂ us), (vs = us), or
(vs ∩ us 6= ∅).

(III) One-to-Many Overlaps. For a one-to-many overlap
composition P 〈v† −−<R us〉Q, where † is either ↑ or ⇑ and
R is the same as in (II), we have that

1) it always preserves features;
2) its semantics is

{m | m ∈ [[P]] ∩ [[Q]] ∧m |= (vs R us)};

3) it loses soundness, if

(Pred(P †v/vs) ∧ Pred(Q)⇒ ¬(vs R us)).

Proof: Here, we only give the proof of (I). The proofs
for (II) and (III) are very similar.

For 1), as shown in the previous subsection, a one-to-one
overlap composition P 〈v −−u〉Q can be expressed with the
pattern operators as follows.

P 〈v −−u〉Q = (P ∗Q)[v = u] (Def. 12)

Therefore, by Theorem 2, such a one-to-one overlap compo-
sition preserves features.

For 2), we have that

[[P 〈v −−u〉Q]]

= [[(P ∗Q)[v = u]]] (Def. 12)

= {m | m ∈ [[P ∗Q]] ∧m ` v = u} (Thm. 4)

= {m | m ∈ [[P]] ∩ [[Q]] ∧m ` v = u} (Thm. 3)

For 3), by Corollary 4 and Definition 12, a one-to-one
overlap composition P 〈v −−u〉Q loses its soundness, if
Pred(P ∗ Q) ⇒ ¬(v = u). By Definition 5, we have that
Pred(P ∗ Q) = Pred(P) ∧ Pred(Q). Thus, statement 3) is
true.

VII. A CASE STUDY

In this section we report a case study in which a pattern-
oriented design approach is used to develop a general request
handling framework RHF [42].

Pattern-oriented design is a process of repeatedly recognis-
ing a design problem, identifying a design pattern to solve it
and then applying the pattern by instantiating it and composing
it to the design. Table I summarises the five design decisions
that result in the design depicted in Fig. 4.2 In [32], it is
demonstrated that these design decisions can be formally
expressed using pattern operators. When the formal design is
compared manually with the original design depicted in Fig.
5, mismatches between them were detected.

Now, as a further contribution, we demonstrate that the
theory developed in this paper will not only enable us to
identify the differences between the original design and the
formal design as detected in our previous case study [32], but
will also enable us to formally prove that the differences are
indeed errors in the manual design and that the formal design
is valid. Moreover, the validity proofs can be automated by
employing a theorem prover.

A. Feature Preservation

As pointed out in [32], there is a mistake in the original
design. That mistake is that, in the definition of the Memento
pattern, the originator creates a state and passes it to the
caretaker component, which then holds the state and passes it
back to the originator when needed [2]. However, in the design
presented in [42], the caretaker creates the states. Therefore,
this feature in the Memento pattern is not preserved in the
design.

2Note that, there are two different versions of Command Processor pattern
in the literature by the same group of authors [9], [54]. The one used in [42]
is the one given in [9].

10

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Fig. 4. Design of Request Handling Framework as Derived from the Formal Definition of RHF

TABLE I
DESIGN DECISIONS MADE IN THE DESIGN OF REQUEST HANDLING FRAMEWORK

Design problem Solution
The requests to the system are issued by the clients,
who may be human users or other computer systems.
Such requests must be objectified.

Apply the Command pattern that consists of an abstract class Command which de-
clares a set of abstract methods to execute client requests. A set of ConcreteCommand
subclasses implement these methods.

Multiple clients issue requests independently. A cen-
tral component should coordinate the handling of
these requests.

Use the Command Processor pattern to provide such coordination. The clients pass
concrete commands to a CommandProcessor component for further handling and
execution. It is inserted inbetween client and the Command class.

The system need to support undoing the actions
performed in response to requests.

Use Memento pattern. The Memento component maintains copies of the states of
the Originator, which is the Application class. The Caretaker component creates a
memento, holds it over time, and if needed, passes it back to the Originator.

Requests from client must be logged. Requests from
different users may be logged differently.

Apply Strategy pattern. The CommandProcessor passes the requests it received to
a logging context, i.e. the context role in Strategy, which implements the invariant
parts of the logging service and delegates the customer-specific logging aspects to the
ConcreteStrategy component in Strategy.

The system should support compound commands,
which are aggregates of other commands executed
in a particular order.

Use the Composite pattern with atomic commands as the Leaves and compound
commands as the Composite. Thus, add a new class CompoundCommand and an
whole-part relation from this new class to the Command class.

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Command Processor: command processor
Strategy: context

Strategy: strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Memento: memento

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: composite
Memento: caretaker

Strategy: concrete
strategy

Fig. 5. Original Design of Request Handling Framework as in [42]

11

B. Semantics Preservation

Another problem with the original design is that it has a
structural feature that Client −→ Command. By Theorem
3, we have that

m ∈ [[RHFO]] =⇒ m |= (Client −→ Command).

where RHFO denotes the original design presented in [42].
Informally, this means the design allows the client to send
requests directly to the command, bypassing command pro-
cessor, and therefore not logging. We believe this is not what
the designer intended to do, so it is a semantics error and is
removed from the revised version of the design.

Fixing the above two problems led to the revised design
depicted in Fig. 4.

On the other hand, the design decisions given in Table I
can be formally expressed using pattern operators as follows,
where RHF is the final result.

RHF1 , Command[Invoker = Client,
Receiver\Application]

RHF2 , RHF1 ∗ CommandProcessor
[Command = Component
∧ Client = CommandProcessor]

RHF3 , RHF2 ∗Memento
[Originator = Application,
Command −→ Caretaker]

RHF4 , RHF3 ∗ Strategy
[Context\LoggingContext, Strategy\Logging,
ConcreteStrategies\ConcreteLoggingStrategies]
[CommandProcessor −→ LoggingContext]

RHF5 , RHF4 ∗ Composite
[Leaves = ConcreteCommands
∧ Component = Command]
[Composite\CompositeCommand]

RHF , RHF5[Caretaker = Command]
[CommandProcessor = LoggingContext]

By applying algebraic laws, we can rewrite this to the
following, which exactly matches the diagram in Fig 4.

RHF ≈ TRUE

({Client, Application,CommandProcessor, Logging,

Command,CompositeCommand,Memento : Class,

ConcreteLoggingStrategies,

ConcreteCommands : P(Class)}
• ((Client −→ CommandProcessor) ∧
∀CC ∈ ConcreteCommands · (CC −→ Application ∧

CC −−. Command ∧ ¬isAbstract(CC)) ∧
(CommandProcessor −→ Command) ∧
(Command �−→Memento) ∧
(Application −→ memento) ∧
(CommandProcessor �−→ Logging) ∧
∀CL ∈ ConcreteLoggingStrategies · (CL−−. Logging) ∧
isInterface(Command) ∧
isInterface(Logging) ∧
(CompositeCommand−−.∗ Command) ∧
(CompositeCommand �−→+ Command)))

Therefore, by Theorem 2, we can conclude that the revised
design is feature preserving.

C. Soundness Preservation

By applying the algebraic laws of pattern operators [32],
we can also prove that

RHF ≈ (Command ∗ CommandProcessor ∗Memento∗
Strategy ∗ Composite)[Connection]

where Connection is the conjunction of the following predi-
cates.

Command = Caretaker,
Command = Component,
Originator = Application,
Command.Client = CommandProcessor,
Originator = Application,
Leaves = ConcreteCommands,
Component = Command,
CommandProcessor = Context,
Caretaker = Command

By Corollary 4, the revised design loses its soundness if the
following is true.

Pred(Command ∗ CommandProcessor ∗Memento ∗
Strategy ∗ Composite) =⇒ ¬Connection.

Using the theorem prover SPASS, we can show this is not
true; see online Appendix 3 for details. So, soundness isn’t
lost.

In conclusion, we have demonstrated again how to analyse
the validity of a pattern composition. In our previous case
study [32], we found two differences between the original
manual design and our formal design. In this paper, we can
confirm that the differences are errors in the manual design;
one is feature preservation error and the other is a semantics
error. We have also proved that our revised design is valid in
terms of its preservation of feature and soundness.

VIII. CONCLUSION

Although each pattern is specified separately, they are
usually to be found composed with each other [55]. Thus,
pattern composition plays a crucial role in the effective use
of design knowledge, whereas wrongly used patterns may
impose a negative impact on software quality. In this paper, we
formalised the notion of the validity of pattern compositions
and instantiations by defining feature preservation, semantics
preservation and soundness preservation. We studied these
properties for the operators proposed in [32], [43]. The theory
is applied to the theoretical analysis of pattern compositions
represented as overlaps between patterns and a case study of a
real pattern-oriented design, thereby demonstrating their utility
in formally proving the validity of designs. Where there is an
error, we can distinguish feature preservation problems from
semantic errors and soundness lost.

A. Comparison with Related Works

Existing related work can be classified into two categories:
(a) the representation of pattern composition and instantiation,
and (b) the validation of pattern applications when they are
composed and instantiated.

12

1) Representation of Pattern Compositions and Instanti-
ations: Compositions can be represented either visually or
formally.
• Visual representation
This is usually informal [42], [56]. Visual notations such

as the Venn diagram with Pattern:Role annotation proposed
by Vlissides [57] have been widely used in practice to show
the component parts of the composition. Dong et al. [58]
developed both static and dynamic techniques for visualizing
the applications of design patterns. They defined UML profiles
and implemented a tool, deployed as a web service, that
represents the application of patterns in UML diagrams. This is
done by UML profiles to attach information to designs through
stereotypes, tagged values, and constraints. Such information
is delivered dynamically with the movement of the user’s
mouse cursor on the screen. Their experiments show that this
dynamic delivery helps to reduce the apparent complexity
of the design. More recently, Smith [59] proposed the PIN
notation (Pattern Instance Notation) to represent the same
information in a hierarchical manner.
• Formal representation of pattern compositions
Very few authors have studied pattern compositions for-

mally despite the large number of works on formalisation of
design patterns. Dong et al. and Taibi do so in [60] and [61],
respectively.

In Dong et al.’s approach, a composition of two patterns
is a pair of mappings each of which link components from
a pattern to the result pattern. Formally, for a composition
P of P1, · · · , Pn, Dong et al. define a composition map-
ping C : V ars(P1) × · · · × V ars(Pn) → V ars(P) that
associates names of component pattern Pi to those of P ,
which is mathematically equivalent to a set of name mappings
Ci : V ars(Pi)→ V ars(P), i = 1, · · · , n.

Dong et al. demonstrated how the structural and behavioural
properties of the composite pattern can be derived from the
original patterns and applied this to the study of security design
patterns [62]. Let each Pi have a set θi of properties and the
composition have the set θ of properties. The derivation of
the properties of a composed pattern is actually a mapping
M that extends C. It translates the sentences in each θi to θ,
preserving the types of variables.

In [63], Dong et al. define instantiation again as a mapping,
but from components in the pattern (e.g. classes, attributes,
methods) to corresponding instances in the actual system.

Taibi [61], [64] took a very similar approach to Dong et al.,
but instead of defining mappings between the components of
composed patterns, he directly renames the components and
combines the predicates from the pattern specification. The
variables in the predicates of the patterns to be composed are
substituted with new variables of the result pattern or with
constants to represent instantiation. Formally, for patterns P1

and P2 with properties ϕ1 and ϕ2 their composition is given
by

Subst{v1\t1, · · · , vn\tn}(ϕ1 ∧ ϕ2)

where the terms ti are either variables or constants.
Mathematically speaking, these substitutions are equivalent

to the name mappings of Dong et al. Both must preserve types

of variables for the resulting formulae to be well-typed and for
that reason both approaches can only express one-to-one and
many-to-many overlaps, but not one-to-many overlaps.

Both of these approaches effectively specify how compo-
nents from the composed patterns overlap in the composite
pattern. In our previous work [45], a pattern composition
operator was formally defined based on the notion of overlaps
between the elements of composed patterns. There are three
types of overlap: one-to-one, many-to-many and one-to-many.
Dong and Taibi’s approaches can handle the first two but
cannot easily be extended to one-to-many overlaps because the
latter requires linking component names of different types and
therefore cannot be defined as mappings between component
names (Dong’s approach), nor as renaming of component
identifiers (Taibi’s approach).

In [32], [43], [51], we developed a formal calculus of design
patterns, consisting of:
• A set of operators on design patterns in which pattern

compositions and instantiations can be expressed.
• A set of algebraic laws that these operators obey so that

two different compositions can be proven equal.
• A normalisation process that transforms pattern expres-

sions into a normal form. The process always terminates
with a unique normal form up to logic equivalence.

As shown in [43], these operators are expressive enough to
capture all pattern compositions suggested by Gamma et al.
[2], and the normalisation process with algebraic laws can be
used in a pattern oriented design processes, as demonstrated in
[32] with a case study based on a real software design example.
In this paper, we further proved the expressiveness of the set
of six operators by using them to express the overlap-based
operator.

2) Validation of Pattern Compositions and Instantiations:
The impact on software quality, both positive and negative,
of using design patterns has been studied empirically, for
example, by Huston [65], Prechelt et al. [66], Khomh and
Guéhéneuc [27] and Mouratidou et al. [31], etc.

Wendorff [30] observed that there are two different ways in
which patterns can be misused.

1) the pattern’s intent might not fit the project’s require-
ments. Research efforts to address this include Hsueh
et al.’s quantitative approach [67], which uses quality
metrics to measure the improvement effectiveness, and
Ampatzoglou et al.’s methodology [68] of impact assess-
ment.

2) the pattern may be misapplied by software developers
who misunderstand the rationale. This is the subject of
this paper and few have addressed it.

Dong et al. [60] were perhaps the first who studied the
‘correctness’ of compositions of design patterns. Given their
definition of a pattern composition as a set C = 〈C1, · · · , Cn〉
of mappings from patterns P1, · · · , Pn to be composed to
the result pattern P , they proposed the following faithfulness
conditions to ensure that pattern composition makes sense.

1) the mappings must agree on shared objects and parts,
2) it must not be possible to infer new facts about the

patterns being composed from the result of their com-

13

position, and
3) all the properties of the composed patterns must also be

true in the resultant composite pattern.

Their faithfulness conditions were formally defined as fol-
lows. Let θi be the properties of pattern Pi that are being
composed, θ be the set of properties of the pattern P of the
result of composition, and M be the mapping for translating
properties of Pi to properties of P . Then,

1) for all variables x1 and x2, C(x1) = C(x2) implies that
Type(x1) = Type(x2) = Type(C(x1));

2) for every sentence S, if S ∈ θi then M(S) ∈ θ;
3) if S 6∈ θi then M(S) 6∈ θ.

In [60], Dong et al. also showed how to verify these conditions
with an example where Composite is composed with Iterator.
However, there was no theory or method for proving their
faithfulness conditions in general.

Condition (1) above ensures that the results of the transla-
tion of formulas are well formed. However, it limits the pattern
compositions to be only valid for one-to-one overlaps. Condi-
tion (2), that composition should not lose properties, is similar
to our feature preservation condition, but weaker because the
compositions are limited to one-to-one overlaps. Condition (3),
means that composition should not gain properties, but it is
very difficult if not impossible to prove. Moreover, it is not
necessary, as argued by Taibi and Ngo [64]: “while the second
condition of faithfulness is relevant to component, it is not al-
ways necessary in the case of patterns”. In fact, a composition
of patterns may well introduce additional properties as shown
in our case studies.

Taibi [64] also observed the faithfulness conditions (1) and
(2) of Dong but only informally explained why his example
satisfied condition (2). There is a lack of formal methods either
for proving or for disproving faithfulness.

Our feature preservation property ensures that no features
are lost from the original pattern, whereas our semantic
preservation property ensures that no features are added.
This latter property may be too strong, as extra features are
often wanted, so soundness preservation is used instead as a
minimal requirement that the added features do not cause a
conflict. Dong and Taibi do not have such a condition. But
what distinguishes our approach even more is that they have
no systematic methods to prove their faithfulness conditions,
whereas we have the general theorems about when soundness
is preserved and how semantics are changed when patterns
are composed. In addition, we can apply algebraic laws for
the operators and automated theorem provers to prove feature
preservation and soundness as demonstrated in the case study.

Interactions and conflicts between patterns were also dis-
cussed by Bottoni et al. for a different approach to pattern for-
malization [69]. Their pattern formalization approach is gen-
eral for specifying patterns of all types of models, including
OO designs, workflow models, etc. Their approach is graphical
but formally based on category theory. They express patterns
as triples of graphs (source, target and correspondence). These
represent, respectively, the structure or configuration of the
pattern, the roles of the pattern, giving the vocabulary of the
application domain, and the mapping from this structure to

these roles. Pattern satisfaction, composition and expansion
were all defined as graph operations. Graphs also represent
constraints with constraint satisfaction defined in terms of
graph matching. Our power set types are represented in their
notation by variable parts, visualized as triangles. They discuss
pattern composition informally with an example and identify
three types of conflicts.

• Fatal conflicts, which result in unsatisfiable compositions,
i.e., loss of soundness.

• Conflicts affecting satisfaction, which change parts of
elements in the design that constitute an instance of the
pattern.

• Conflicts between invariants, which change the semantics
of the invariants.

Obviously, the second and third types of conflict cannot be
considered to be invalid pattern compositions. It is unclear
however how to validate a pattern composition, e.g. to prove
that it is satisfiable without a conflict.

B. Future work

It would be useful to have tools to prove soundness for
specific compositions and to support equational reasoning
on them. Our case study employed the automated theorem
prover SPASS and it indicates that it is feasible to design and
implement such a tool.

The composition of OO design patterns has also been
studied in the context of aspect-oriented programming (AOP)
[70], in which overlap based compositions can be implemented
by employing a crosscutting mechanism. Cacho et al. demon-
strated in an empirical study that under certain conditions such
blending of design patterns could achieve a better modularity
than by simply merging statements, methods and/or classes in
overlapped pattern components using traditional OO program-
ming languages. The notions of feature preservation, semantics
preservation and soundness preservation for the validity of
pattern compositions proposed in this paper should be appli-
cable to such an implementation of pattern compositions. The
pattern operators express pattern composition and instantiation
at a high level of abstraction, and thus they are independent of
the way that pattern compositions are implemented. Therefore,
the theory presented in this paper should also be applicable to
the blending of design patterns. It is worth conducting some
empirical study to demonstrate how to apply the theory to
prove or disprove the validity of pattern blending in practice.

An interesting research questions is: how expressive are the
pattern operators? In our previous work [43], we demonstrated
that the six pattern operators can express all pattern com-
positions documented by Gamma et al. in [2]. In [32], we
demonstrated that they can express the design decisions made
in a real pattern-oriented design process of the general request
handling framework. In this paper, we have also demonstrated
that all overlap-based compositions can be expressed using the
six operators. However, how to formally define the notion that
a set of operators is complete and to prove or disprove that the
set of six operators is complete still remains open for future
work.

14

REFERENCES

[1] P. Coad, “Object-oriented patterns,” Communications of the ACM,
vol. 35, no. 9, pp. 152 – 159, Sept. 1992.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
- Elements of Reusable Object-Oriented Software. Boston, USA:
Addison-Wesley, 1995.

[3] M. Grand, Patterns in Java: A Catalog of Reusable Design Patterns
Illustrated with UML,Volume 1. New York, USA: John Wiley & Sons,
2002.

[4] ——, Patterns in Java, volume 2. New York, USA: John Wiley &
Sons, 1999.

[5] ——, Java Enterprise Design Patterns. New York, USA: John Wiley
& Sons, 2002.

[6] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices
and Design Strategies, 2nd ed. Upper Saddle River, NJ, USA: Prentice
Hall, June 2003.

[7] M. Fowler, Patterns of Enterprise Application Architecture. Boston,
USA: Addison Wesley, 2003.

[8] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Boston, USA: Addison
Wesley, 2004.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture. Vol 4: A Pattern Language for Distributed Computing.
West Sussex, England: John Wiley & Sons, 2007.

[10] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns. West Sussex,
England: John Wiley & Sons, 2004.

[11] M. Schumacher, E. Fernandez, D. Hybertson, and F. Buschmann,
Security Patterns: Integrating Security and Systems Engineering. West
Sussex, England: John Wiley & Sons, 2005.

[12] C. Steel, Applied J2EE Security Patterns: Architectural Patterns & Best
Practices. Upper Saddle River, NJ, USA: Prentice Hall, 2005.

[13] L. DiPippo and C. D. Gill, Design Patterns for Distributed Real-Time
Systems. Secaucus, NJ, USA: Springer-Verlag, 2005.

[14] B. P. Douglass, Real Time Design Patterns: Robust Scalable Architecture
for Real-time Systems. Boston, USA: Addison Wesley, 2002.

[15] R. S. Hanmer, Patterns for Fault Tolerant Software. West Sussex,
England: Wiley, 2007.

[16] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and J. Welsh,
“Towards pattern-based design recovery,” in Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2002). Or-
lando, Florida, USA: IEEE CS, May 2002, pp. 338–348.

[17] D. Hou and H. J. Hoover, “Using SCL to specify and check design intent
in source code,” IEEE Transactions on Software Engineering, vol. 32,
no. 6, pp. 404–423, Jun. 2006.

[18] N. Nija Shi and R. Olsson, “Reverse engineering of design patterns from
Java source code,” in Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06). Tokyo,
Japan: IEEE Computer Society, Sept. 2006, pp. 123–134.

[19] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification of design
patterns in Java,” in Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005). Long
Beach, California, USA: ACM Press, Nov. 2005, pp. 224–232.

[20] D. Maplesden, J. Hosking, and J. Grundy, “Design pattern modelling
and instantiation using DPML,” in Proceedings of the 4th International
Conference on Tools Pacific (TOOLS Pacific 2002). Darlinghurst,
Australia: Australian Computer Society, 2002, pp. 3–11.

[21] J. Dong, Y. Zhao, and T. Peng, “Architecture and design pattern discov-
ery techniques - a review,” in Proceedings of the 2007 International
Conference on Software Engineering Research and Practice (SERP
2007), H. R. Arabnia and H. Reza, Eds., vol. II. Las Vegas Nevada,
USA: CSREA Press, Jun. 2007, pp. 621–627.

[22] D.-K. Kim and L. Lu, “Inference of design pattern instances in UML
models via logic programming,” in Proceedings of the 11th International
Conference on Engineering of Complex Computer Systems (ICECCS
2006). Stanford, California, USA: IEEE Computer Society, Aug. 2006,
pp. 47–56.

[23] D.-K. Kim and W. Shen, “An approach to evaluating structural pattern
conformance of UML models,” in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC’07). Seoul, Korea: ACM Press,
Mar. 2007, pp. 1404–1408.

[24] ——, “Evaluating pattern conformance of UML models: a divide-and-
conquer approach and case studies,” Software Quality Journal, vol. 16,
no. 3, pp. 329–359, 2008.

[25] H. Zhu, I. Bayley, L. Shan, and R. Amphlett, “Tool support for design
pattern recognition at model level,” in Proc. of COMPSAC’09. Seattle,
Washington, USA: IEEE Computer Society, Jul. 2009, pp. 228–233.

[26] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A formal descriptive
semantics of UML and its applications,” in UML 2 Semantics and
Applications, K. Lano, Ed. John Wiley & Sons, Inc., Nov. 2009.

[27] F. Khomh and Y.-G. Guéhéneuc, “Do design patterns impact software
quality positively?” in Proceedings of the 12th European Conference
on Software Maintenance and Reengineering (CSMR 2008). Athens,
Greece: IEEE, Apr. 1-4 2008, pp. 274–278.

[28] B. Venners, “How to use design patterns: A conversation with
Erich Gamma, Part I,” [Online] http://www.artima.com/lejava/articles/
gammadp.html, May 2005.

[29] S. M. Yacoub and H. H. Ammar, “UML support for designing software
systems as a composition of design patterns,” in Proceedings of the
4th International Conference on The Unified Modeling Language –
Modeling Languages, Concepts, and Tools (UML 2001), Lecture Notes
in Computer Science, Vol. 2185, Toronto, Canada, Oct. 2001, pp. 149 –
165.

[30] P. Wendorff, “Assessment of design patterns during software reengineer-
ing: lessons learned from a large professional project,” in Proceedings
of the 5th European Conference on Software Maintenance and Reengi-
neering (CSMR 2001), Lisbon, Portugal, Mar. 2001, pp. 77–84.

[31] M. Mouratidou, V. Lourdas, A. Chatzigeorgiou, and C. K. Georgiadis,
“An assessment of design patterns’ influence on a Java-based e-
commerce application,” Journal of Theoretical and Applied Electronic
Commerce Research, vol. 5, no. 1, pp. 25–38, Apr. 2010.

[32] H. Zhu and I. Bayley, “An algebra of design pattern composition,” ACM
Transactions on Software Engineering and Methodology (ACM TOSEM),
vol. 22, no. 3, p. Article 23, Jul. 2013.

[33] K. Lano, J. C. Bicarregui, and S. Goldsack, “Formalising design pat-
terns,” in BCS-FACS Northern Formal Methods Workshop, Ilkley, UK,
Sept. 1996.

[34] T. Mikkonen, “Formalizing design patterns,” in Proc. of ICSE’98, Kyoto,
Japan. IEEE CS, Apr. 1998, pp. 115–124.

[35] J. Dong, P. S. C. Alencar, and D. D. Cowan, “Correct composition of
design components,” in Proceedings of the 4th International Workshop
on Component-Oriented Programming in conjunction with ECOOP’99,
1999.

[36] A. Lauder and S. Kent, “Precise visual specification of design patterns,”
in Proc. of ECOOP’98, Lecture Notes in Computer Science Vol. 1445.
Springer, 1998, pp. 114–134.

[37] A. H. Eden, “Formal specification of object-oriented design,” in Interna-
tional Conference on Multidisciplinary Design in Engineering, Montreal,
Canada, Nov. 2001.

[38] T. Taibi, D. Check, and L. Ngo, “Formal specification of design patterns-
a balanced approach,” Journal of Object Technology, vol. 2, no. 4, Jul.-
Aug. 2003.

[39] I. Bayley and H. Zhu, “Formalising design patterns in predicate logic,”
in Proceedings of the 5th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2007). London, UK: IEEE
Computer Society, Sept. 2007, pp. 25–36.

[40] E. Gasparis, A. H. Eden, J. Nicholson, and R. Kazman, “The design
navigator: charting Java programs,” in Proc. of ICSE’08, Companion
Volume, 2008, pp. 945–946.

[41] I. Bayley and H. Zhu, “Formal specification of the variants and be-
havioural features of design patterns,” Journal of Systems and Software,
vol. 83, no. 2, pp. 209–221, Feb. 2010.

[42] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture. Vol.5: On Patterns and Pattern Languages. West
Sussex, England: John Wiley & Sons, 2007.

[43] I. Bayley and H. Zhu, “A formal language of pattern composition,” in
Proceedings of The 2nd International Conference on Pervasive Patterns
(PATTERNS 2010). Lisbon, Portugal: Xpert Publishing Services, Nov.
2010, pp. 1–6.

[44] ——, “A formal language for the expression of pattern compositions,”
International Journal on Advances in Software, vol. 4, no. 3&4, pp.
354–366, 2011.

[45] ——, “On the composition of design patterns,” in Proceedings of the 8th
International Conference on Quality Software (QSIC 2008). Oxford,
UK: IEEE Computer Society, Aug. 2008, pp. 27–36.

[46] A. H. Eden, Codecharts: Roadmaps and Blueprints for Object-Oriented
Programs. Hoboken, New Jersey: Wiley-Blackwell, 2011.

[47] A. H. Eden, E. Gasparis, J. Nicholson, and R. Kazman, “Modeling and
visualizing object-oriented programs with codecharts,” Formal Methods
in System Design, vol. 42, no. 1, p. 1–28, 2013.

[48] J. Nicholson, A. H. Eden, E. Gasparis, and R. Kazman, “Automated
verification of design patterns: A case study,” Science of Computer
Programming, vol. 80, no. B, p. 211–222, Feb. 2014.

15

[49] H. Zhu, “On the theoretical foundation of meta-modelling in graphically
extended BNF and first order logic,” in Proceedings of the 4th IEEE
Symposium on Theoretical Aspects of Software Engineering (TASE
2010). Taipei, Taiwan: IEEE CS, August 2010, pp. 95–104.

[50] ——, “An institution theory of formal meta-modelling in graphically
extended BNF,” Frontiers of Computer Science, vol. 6, no. 1, pp. 40–
56, 2012.

[51] H. Zhu and I. Bayley, “Laws of pattern composition,” in Proceedings of
12th International Conference on Formal Engineering Methods (ICFEM
2010), LNCS, vol. 6447. Shanghai, China: Springer, Nov. 17-19 2010,
pp. 630–645.

[52] I. Bayley and H. Zhu, “Specifying behavioural features of design pat-
terns,” Department of Computing, Oxford Brookes University, Oxford,
UK, Tech. Rep. TR-08-01, 2008.

[53] P. Bottoni, E. Guerra, and J. de Lara, “Towards a formal notion
of interaction pattern,” in Proceedings of the 2010 IEEE Symposium
on Visual Languages and Human-Centric Computing (VLHCC 2010),
Leganes, Spain, Sept. 2010, pp. 235 – 239.

[54] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Soft-
ware Architecture. Vol. 1: A System of Patterns. West Sussex, England:
John Wiley & Sons, 1996.

[55] W. B. McNatt and J. M. Bieman, “Coupling of design patterns: Common
practices and their benefits,” in Proceedings of the 25th Computer
Software and Applications Conference (COMPSAC 2001). IEEE
Computer Society Press, Oct. 2001, pp. 574 – 579.

[56] D. Riehle, “Composite design patterns,” in Proceedings of the 1997
ACM SIGPLAN Conference On Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’97). Atlanta, Georgia: ACM
Press, Oct. 5-9 1997, pp. 218–228.

[57] J. Vlissides, “Notation, notation, notation,” C++ Report, April 1998.
[58] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns in

their applications and compositions,” IEEE Transactions on Software
Engineering, vol. 33, no. 7, pp. 433–453, July 2007.

[59] J. M. Smith, “The pattern instance notation: A simple hierarchical visual
notation for the dynamic visualization and comprehension of software
patterns,” Journal of Visual Languages and Computing, vol. 22, no. 5,
pp. 355–374, Oct. 2011.

[60] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure and
behavior correctness in design composition,” in Proceedings of the IEEE
7th Annual International Conference and Workshop on Engineering
Computer Based Systems (ECBS 2000). Edinburgh, Scotland: IEEE
CS Press, Apr. 2000, pp. 279–287.

[61] T. Taibi, “Formalising design patterns composition,” Software, IEE
Proceedings, vol. 153, no. 3, pp. 126–153, Jun. 2006.

[62] J. Dong, T. Peng, and Y. Zhao, “Automated verification of security
pattern compositions,” Information and Software Technology, vol. 52,
no. 3, p. 274–295, Mar. 2010.

[63] ——, “On instantiation and integration commutability of design pattern,”
The Computer Journal, vol. 54, no. 1, pp. 164–184, Jan. 2011.

[64] T. Taibi and D. C. L. Ngo, “Formal specification of design pattern com-
bination using BPSL,” Information and Software Technology, vol. 45,
no. 3, pp. 157–170, Mar. 2003.

[65] B. Huston, “The effects of design pattern application on metric scores,”
Journal of Systems and Software, vol. 58, no. 3, pp. 261–269, Sept.
2001.

[66] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta, “A
controlled experiment in maintenance: comparing design patterns to
simpler solutions,” IEEE Transactions on Software Engineering, vol. 27,
no. 12, pp. 1134 – 1144, 2001.

[67] N.-L. Hsueh, P.-H. Chu, and W. Chu, “A quantitative approach for
evaluating the quality of design patterns,” The Journal of Systems and
Software, vol. 81, pp. 1430–1439, 2008.

[68] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, “A methodology to
assess the impact of design patterns on software quality,” Information
and Software Technology, vol. 54, no. 4, pp. 331–346, Apr. 2012.

[69] P. Bottoni, E. Guerra, and J. de Lara, “A language-independent and for-
mal approach to pattern-based modelling with support for composition
and analysis,” Information and Software Technology, vol. 52, no. 8, pp.
821–844, 2010.

[70] N. Cacho, C. Santanna, E. Figueiredo, F. Dantas, A. Garcia, and
T. Batista, “Blending design patterns with aspects: A quantitative study,”
Journal of Systems and Software, vol. 98, pp. 117 – 139, 2014.

Dr. Hong Zhu obtained his BSc, MSc and PhD degrees in
Computer Science from Nanjing University, China, in 1982,
1984 and 1987, respectively. He worked at Nanjing University
as a Lecturer, Associate Professor and then Full Professor
from August 1987 to November 1998. From October 1990 to
December 1994 while on leave from Nanjing University, Dr.
Zhu was a research fellow at Brunel University and the Open
University, UK. He joined Oxford Brookes University, UK, in
November 1998 as a Senior Lecturer in Computing and be-
came a Professor of Computer Science in October 2004. Prof.
Zhu chairs the Applied Formal Methods Research Group of the
Department of Computing and Communication Technologies.
He is a senior member of IEEE Computer Society, a member
of British Computer Society, ACM, and China Computer
Federation. His research interests are in the area of software
development methodologies, including formal methods, agent-
orientation, automated software development, foundation of
software engineering, software design, modeling and testing
methods, Software-as-a-Service, etc. Prof. Zhu has published
2 books and more than 180 research papers in journals and
international conferences. He has been a conference program
committee chair of IEEE SOSE 2012 and IEEE ICWS 2015,
etc., a conference general chair of IEEE SOSE 2013, IEEE
MobileCloud 2014, etc. He is a member of the editorial board
of the journal of Software Testing, Verification and Reliability,
Software Quality Journal, International Journal of Big Data
Intelligence, and the International Journal of Multi-Agent and
Grid Systems.

Dr. Ian Bayley studied for an MEng Computing (Mathemat-
ical Foundations and Formal Methods) at Imperial College
London and earned a DPhil Computation at Balliol College
of Oxford University with research into the semantics of
functional programming languages. Since 2005, he has been a
lecturer at Oxford Brookes University. His research interests
include software engineering, formal methods, and program-
ming paradigms.

16

APPENDIX 1: LAWS OF PATTERN OPERATIONS

In [32], we proved a complete set of the equational laws
that the operators obey. Some of theme are used in the proof
of theorems and in the case study. For the sake of self-
containedness, these laws are listed here in Fig. 6, where the
following notations are used.

Let P be any given pattern, X = {x1 : T1, · · · , xn : Tn}
be any set of variables, and p be any predicate.
• XP = X ∩ V ars(P);
• X↑ = {xs1 : P(T1), · · · , xsn : P(Tn)},
• ∃X · p denotes ∃x1 : T1 · · · ∃xn : Tn · p,
• ∀X · p denotes ∀x1 : T1 · · · ∀xn : Tn · p,
• ∃X ∈ Xs · p denotes ∃x1 ∈ xs1 · · · ∃xn ∈ xsn · p,
• ∀X ∈ Xs · p denotes ∀x1 ∈ xs1 · · · ∀xn ∈ xsn · p,
• vars(p) denotes the set of free variables in predicate p,
• Let X ′ = (X ∩ vars(p)) ∪ (X − vars(p)), and Y =

(V ars(P) ∪ vars(p))−X ′). Then,

p⇑X = ∀X ∈ X↑ · p
p⇓X = p({x′1}, · · · , {x′n}, xn+1, · · · , xk),
p(P↑X) = ∀X ′ ∈ X ′↑ · ∃Y ∈ Y ↑ · (Pred(P) ∧ p).

APPENDIX 2: PROOFS OF THEOREMS

This Appendix gives the proofs of the theorems.
Proof: of Theorem 1

In each case, we prove Spec(⊕(P)) ⇒ Spec(P) by using
Definition 5, which defines the operators, and then use Lemma
1 to conclude that the operator is feature preserving. We give
proofs for just three of the operators. The other three proofs
are similar. Let X = {x1 : T1, · · · , xn : Tn} in each case.

(1) Restriction. Let V ars(P) = X . By the definition of the
operator,

Spec(P [c]) = ∃X · (Pred(P) ∧ c)
⇒ ∃X · (Pred(P)) = Spec(P).

(2) Extension. Let V = {y1 : T ′1, · · · , yk : T ′k}. By the
definition of the operator, and since V ∩X = ∅, we have that

Spec(P#(V • c)) = ∃X ∃V · (Pred(P) ∧ c)
⇒ ∃X ∃V · (Pred(P))⇒ ∃X · (Pred(P)) = Spec(P)

(3) Flattening. We first consider P ⇓ x\x′ where x :
P (T). Let V ars(P) = {x : P(T)} ∪ X and Pred(P) =
p(x, x1, · · · , xn). We have that

Spec(P ⇓ x\x′) = ∃x′ : T · ∃X · (p({x′}, x1, · · · , xn))
⇒ ∃x : P(T) · ∃X · (p(x, x1, · · · , xn)) = Spec(P)

We now extend this by mathematical induction to all finite
sets of variables.

Assume that the flatten operator has the following property
for all variable sets X of size k > 0.

Spec(P ⇓ X)⇒ Spec(P). (69)

Then, for all variable sets X ′ of size k + 1, X ′ = {x} ∪X ,
where X is of size k. By algebraic law (45) in Fig. 6, the
following equality is true.

P ⇓ ({x} ∪X) ≈ (P ⇓ x) ⇓ X.

Therefore, we have that

Spec(P ⇓ X ′) = Spec(P ⇓ ({x} ∪X))

= Spec((P ⇓ x) ⇓ X)

⇒ Spec(P ⇓ x)⇒ Spec(P)

Therefore, for all variable sets of size k+1, we also have the
property (69).

So by mathematical induction, 69 is true for finite sets
of variables X and by Lemma 1, the operator ⇓ is feature-
preserving.

Proof: of Theorem 2
The theorem follows by induction on the structure of

expression E.
For the base case, E = Pi for some i such that Pi is the

only constituent pattern so Spec(E)⇒ Spec(Pi).
Suppose, as the induction hypothesis, that for some expres-

sion E′ we have for each i that Spec(E′)⇒ Spec(Pi).
Then, for any of the five unary operators ⊕, we have that

Spec(⊕E′)⇒ Spec(E′) because of their feature preservation
properties. And, by transitivity of⇒, for each i, the statement
Spec(⊕E′)⇒ Spec(Pi) follows from the induction hypothe-
sis. The argument for a binary operator ⊕ is similar.

Proof: of Theorem 3
(1) Superposition.
By definition, m |= (P ∗ Q) if and only if there is an

assignment α from V ars(P ∗Q) to elements in m such that
[[Pred(P ∗Q)]]mα is true.

By Definition 5, Pred(P ∗ Q) = Pred(P) ∧ Pred(Q). In
predicate logic, we have that [[Pred(P)∧Pred(Q)]]mα = true
if and only if [[Pred(P)]]mα = true and [[Pred(Q)]]mα = true.

Because V ars(P ∗ Q) = V ars(P) ∪ V ars(Q), let αP
and αQ be the assignments obtained by restricting α on
V ars(P) and V ars(Q), respectively. Then, we have that
[[Pred(P)]]mα = true is true if and only if [[Pred(P)]]mαP

=
true.

By definition, we have that [[Pred(P ∗Q)]]mαP
= true if and

only if m |= P . Similarly, we have that [[Pred(Q)]]mα = true
if and only if m |= Q.

Therefore, the theorem holds for the superposition operator.
(2) Lifting.
Without lost of generality, we assume that V ars(P) = {x1 :

T1, · · · , xn : Tn} and X = {x1 : T1, · · · , xk : Tk} with
n > k > 0, and α(xi) = ai for each i. Let Pred(P) =
p(x1, · · · , xn), and Y = V ars(P)−X .

(⇒) Let m |= P . By Definition 2, there is an assignment α
such that

[[Pred(P)]]mα = true. (70)

We have that Equ (70) means that p(a1, a2, · · · , an) is true
in model m.

Define α′(xsi) = {ai}, for i ∈ 1 . . . n. We also have that
xsi 6= ∅ for all i ∈ 1 · · · k. Then the following predicate must
be true under assignment α′.

∀X ∈ X↑ · ∃Y ∈ Y ↑ · p(x1, x2, · · · , xn)

In other words, [[Pred(P ↑ V)]]mα′ = true. Therefore, we have
that m |= P ↑ V .

17

1. Laws of 4:

P 4 P (17)
(P 4 Q) ∧ (Q 4 R)⇒ (P 4 R) (18)

P 4 Q ∧Q 4 P ⇒ P ≈ Q (19)
FALSE 4 P 4 TRUE (20)

2. Laws of [c]:

(c1 ⇒ c2)⇒ P [c1] 4 P [c2] (21)
P [c][c] ≈ P [c] (22)

P [c1][c2] ≈ P [c2][c1] (23)
P [c1][c2] ≈ P [c1 ∧ c2] (24)

P [true] ≈ P (25)
P [false] ≈ FALSE (26)

3. Laws of ∗:

(P ∗Q) 4 P (27)
Q 4 P ⇒ P ∗Q ≈ Q (28)

P ∗ P ≈ P (29)
P ∗ TRUE ≈ TRUE ∗ P ≈ P (30)

P ∗ FALSE ≈ FALSE ∗ P ≈ FALSE (31)
P ∗Q ≈ Q ∗ P (32)

(P ∗Q) ∗R ≈ P ∗ (Q ∗R) (33)

4. Laws of #:

P#(X • c1) 4 P (34)
P#(X • c1) 4 P#(X • c2), if (c1 ⇒ c2) (35)
P#(X • c1) 4 Q#(X • c1), if P 4 Q (36)
P#(X • c1) 4 P#(X • c2), if c1 ⇒ c2 (37)
P ≈ TRUE#(V ars(P) • Pred(P)) (38)

P#(∅ • True) ≈ P (39)
P#(X • False) ≈ FALSE (40)

P#(X • c1)#(Y • c2) ≈ P#(X ∪ Y • c1 ∧ c2) (41)
P#(X • c1)#(Y • c2) ≈ P#(Y • c2)#(X • c1) (42)

5. Laws of ⇓ and ⇑:

(P ⇓ ∅) ≈ P (43)
(P ⇓ X) ⇓ Y ≈ (P ⇓ Y) ⇓ X (44)
(P ⇓ X) ⇓ Y ≈ P ⇓ (X ∪ Y) (45)

(P ⇑ ∅) ≈ P (46)
(P ⇑ X) ⇑ Y ≈ (P ⇑ Y) ⇑ X (47)
(P ⇑ X) ⇑ Y ≈ P ⇑ (X ∪ Y) (48)

6. Laws connecting ∗ with others:

P [c] ∗Q ≈ (P ∗Q)[c] (49)
(P ⇑ X) ∗Q ≈ (P ∗Q) ⇑ X (50)
(P ⇓ X) ∗Q ≈ (P ∗Q) ⇓ X (51)

(P ∗Q) ⇑ X ≈ (P ⇑ XP) ∗ (Q ⇑ XQ) (52)
(P ∗Q) ⇓ X ≈ (P ⇓ XP) ∗ (Q ⇓ XQ) (53)

(P ↑ X) ∗Q ≈ ((P ∗Q) ↑ X) ⇓ V ars(Q) (54)

7. Laws connecting ⇑, ⇓ and ↑:

(P ⇑ X\U) ⇓ (U\X) ≈ P (55)
(P ⇓ X\U) ⇑ U\X) ≈ P (56)

(P ↑ x) ⇓ (V ars(P ↑ x)) ≈ P (57)
P ⇑ X ≈ (P ↑ X) ⇓ ((V ars(P ↑ X))−X↑) (58)

8. Laws connecting # with others:

P#(X • c) ≈ P [∃X · c] (59)
P ⇓ (xs\x) ≈ P#({x : T} • (xs ≈ {x}) (60)

P ⇑ x\xs ≈ P#({xs : P(T)} • (∀x ∈ xs · Pred(P)) (61)
P [c] ≈ P#(∅ • c) (62)

P ≈ TRUE#(V ars(P) • Pred(P)) (63)
P ∗Q ≈ P#(V ars(Q) • Pred(Q)) (64)

P ↑ X ≈ P#(V ars(P ↑ X) • Pred(P ↑ X)) (65)

9. Laws connecting [c] with ⇑, ⇓ and ↑:

P [c] ⇑ X ≈ (P ⇑ X)[c⇑] (66)
P [c] ↑ X ≈ (P ↑ X)[c↑] (67)
P [c] ⇓ X ≈ (P ⇓ X)[c⇓] (68)

Fig. 6. Laws of Pattern Operators

(⇐) Let m |= P ↑ V . By Definition 2, there is an
assignment α such that

[[Pred(P ↑ V)]]mα = true. (71)

Let α(vsi) = Ai. Equ (71) means that the following
predicate is true in model m for all a1 ∈ A1, · · · , ak ∈ Ak.

∃vk+1 · · · ∃vn · p(a1, · · · , ak, vk+1, · · · , vn)

Let ak+1, · · · , an be the witnesses for vk+1, · · · , vn in the
above. Then, we have that p(a1, · · · , an) is true in model m.
Define assignment α′(vi) = ai for each i ∈ 1 . . . n. We have
that [[p(v1, v2, · · · , vn)]]mα′ = true. That is, m |= P .

(3) Generalisation.
(⇒) Algebraic law (58) in Fig. 6 states that

P ⇑ X ≈ (P ↑ X) ⇓ (V −X↑),

where V = V ars(P ↑ X) and X↑ is X with all the variables
lifted.

Using reflexivity of 4 on this and proof (2), we get for all
valid Y that (P ↑ X) ⇓ Y 4 (P ↑ X) 4 P . Since 4 is
transitive, and taking Y = ∅, we have P ⇑ X 4 P . By the
definition of the 4 relation, we have that for all models m
that m |= P ⇑ X ⇒ m |= P .

(⇐) We prove the statement for a single variable v. The
general statement can then easily be proved by induction on
the number of variables in the set X .

Let v ∈ V ars(P). Assume that m |= P . By definition, there
is an assignment α such that [[Pred(P)]]mα = true. Let α′ =
α[vs := {a}], where a = α(v). Then, α′ is an assignment for
P ⇑ v. By the definition of Pred(P ⇑ V), we have

[[Pred(P ⇑ v)]]mα′ = [[∀v ∈ vs · Pred(P)]]mα′

= [[∀v ∈ {a} · Pred(P)]]mα′ = [[Pred(P)]]mα = true.

By the definition of |=, we then have that m |= P ⇑ v.
Proof: of Theorem 4

In each case, the (⇐) case is similar to the (⇒) case.

18

(1) Restriction.
(⇒): Let m ∈ [[P [c]]]. By definition of the denotational

semantics of a pattern, we have that m |= Spec(P [c]). That
is, there is an assignment α such that [[Pred(P) ∧ c]]mα =
true. This means [[Pred(P)]]mα = true and [[c]]mα = true. The
former means that m |= Spec(P), thus m ∈ [[P]]. And, the
latter means m |= c. Therefore, we have that m ∈ {m|m ∈
[[P]] ∧m |= c}.

(2) Extension.
(⇒): Let m ∈ [[P#(V •c)]]. By definition, we have that m |=

Spec(P#(V • c). Thus, there is an assignment α such that
[[Pred(P)∧∃V ·c]]mα = true. This means [[Pred(P)]]mα = true
and [[∃V · c]]mα = true. The former means that m |= Spec(P),
so m ∈ [[P]]. The latter means that m |= (∃V · c). Therefore,
we have that m ∈ {m|m ∈ [[P]] ∧m |= ∃V · c}.

(3) Flattening.
(⇒): Let m ∈ [[P ⇓ x]]. By definition, we have that m |=

Spec(P ⇓ x). This means there is an assignment α such that
[[Pred(P)∧x = {x′}]]mα = true. This means [[Pred(P)]]mα =
true and [[x = {x′}]]mα = true. The former means that m ∈
[[P]]. The latter means that m |= x = {x′} for some x′, which
is equivalent to m |= ||x|| = 1. Therefore, m ∈ {m|m ∈
[[P]] ∧m |= ||x|| = 1}.

APPENDIX 3: THE USE OF SPASS THEOREM PROVER

We have employed SPASS Theorem Prover in the analysis
of the validity of pattern compositions. In this section, we give
the details about how SPASS is used, i.e. the input to SPASS
Theorem Prover and the corresponding output generated by
SPASS, for the examples and case study reported in the paper.

A. Proof of Lost Soundness

The input to SPASS for proving the lost of soundness of
the pattern composition (e) of the motivative example is listed
below. It consists of three parts:

1) A list of symbol declarations. It contains the declarations
of components in the patterns.

2) A list of axioms. It contains the consistency and com-
pleteness constraints on UML models, and the specifi-
cation of the patterns.

3) A list of conjectures to be proved. It is the condition of
lost of soundness.

begin_problem(CA).

list_of_descriptions.
name({*Composite Adapter*}).
author({*Ian Bayley*}).
status(unsatisfiable).
description({* Attempt to show that the composition (f) of
Composite and Adapter in IEEE paper is invalid *}).
end_of_list.

list_of_symbols.
functions[

(component,0),
(composite, 0),
(leaf, 0),
(target, 0),
(adapter, 0),
(adaptee, 0)

].

predicates[

(Class,1),
(Associated,2),
(Inherit,2),
(AggComp,2),
(IsAbstract,1),
(IsInterface,1)
].

end_of_list.

list_of_formulae(axioms).
formula(forall([x,y], implies(Inherit(x,y),

not(Inherit(y,x))))).
formula(forall([x,y,z], implies(and(Inherit(x,y),

Inherit(y,z)), Inherit(x,z)))).

formula(and(
Class(leaf),
Class(component),
Class(composite),
Inherit(leaf,component),
Inherit(composite,component),
AggComp(composite,component),
not(AggComp(leaf,component)),
IsAbstract(component)

)).

formula(and(
Class(target),
Class(adapter),
Class(adaptee),
Inherit(adapter,target),
AggComp(adapter,adaptee)

)).

end_of_list.

list_of_formulae(conjectures).

formula(not(
and(
equal(target, leaf),
equal(component, adapter)

))).
end_of_list.

end_problem.

The theorem prover was invoked via its web interface by
submitting the above input. The prover executed for 0.01
seconds and generated the following output.

WebSPASS - Interactive SPASS

Input Form Submission

You are running ’Mozilla/5.0
(Macintosh; Intel Mac OS X 10_9_4)
AppleWebKit/537.78.2 (KHTML, like Gecko) Version/7.0.6
Safari/537.78.2’ from ’81.109.126.224’

Your WebSPASS form submission is now being processed...

--------------------------SPASS-START-----------------------
Input Problem:
1[0:Inp] || -> Class(target)*.
2[0:Inp] || -> Class(adapter)*.
3[0:Inp] || -> Class(adaptee)*.
4[0:Inp] || -> Class(leaf)*.
5[0:Inp] || -> Class(component)*.
6[0:Inp] || -> Class(composite)*.
7[0:Inp] || -> IsAbstract(component)*.
8[0:Inp] || -> Inherit(adapter,target)*.
9[0:Inp] || -> AggComp(adapter,adaptee)*.
10[0:Inp] || -> Inherit(leaf,component)*.
11[0:Inp] || -> Inherit(composite,component)*.
12[0:Inp] || -> AggComp(composite,component)*.
13[0:Inp] || -> equal(target,leaf)**.
14[0:Inp] || -> equal(adapter,component)**.
15[0:Inp] || AggComp(leaf,component)* -> .
16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
17[0:Inp] || Inherit(U,V)* Inherit(W,U)* -> Inherit(W,V)*.
This is a first-order Horn problem containing equality.
This is a problem that has, if any, a finite domain model.
There are no function symbols.

19

The conjecture is ground.
The following monadic predicates have finite extensions:

IsAbstract, Class.
Axiom clauses: 15 Conjecture clauses: 2
Inferences: ISpR=1 ISpL=1 IORe=1
Reductions: RFRew=1 RBRew=1 RFMRR=1 RBMRR=1 RObv=1

RUnC=1 RTaut=1 RFSub=1 RBSub=1 RCon=1
Extras : Input Saturation, Always Selection, No Splitting,

Full Reduction, Ratio: 5, FuncWeight: 1, VarWeight: 1
Precedence: div > id > Class > Associated > Inherit > AggComp

> IsAbstract > IsInterface > adaptee > adapter > target
> leaf > composite > component

Ordering : KBO
Processed Problem:

Worked Off Clauses:

Usable Clauses:
7[0:Inp] || -> IsAbstract(component)*.
6[0:Inp] || -> Class(composite)*.
5[0:Inp] || -> Class(component)*.
4[0:Inp] || -> Class(leaf)*.
3[0:Inp] || -> Class(adaptee)*.
14[0:Inp] || -> equal(adapter,component)**.
13[0:Inp] || -> equal(target,leaf)**.
12[0:Inp] || -> AggComp(composite,component)*.
20[0:Rew:14.0,9.0] || -> AggComp(component,adaptee)*.
11[0:Inp] || -> Inherit(composite,component)*.
10[0:Inp] || -> Inherit(leaf,component)*.
21[0:Rew:14.0,8.0,13.0,8.0] ||

-> Inherit(component,leaf)*.
15[0:Inp] || AggComp(leaf,component)* -> .
24[0:Res:21.0,16.1] || Inherit(leaf,component)* -> .
25[0:Res:21.0,17.1] || Inherit(leaf,U)*

-> Inherit(component,U).
22[0:Res:21.0,17.0] || Inherit(U,component)

-> Inherit(U,leaf)*.
16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
17[0:Inp] || Inherit(U,V)* Inherit(V,W)*

-> Inherit(U,W)*.
SPASS V 3.0
SPASS beiseite: Proof found.
Problem: /tmp/webspass-webform_2014-09-15_

23:42:42_5970l.txt
SPASS derived 6 clauses, backtracked 0 clauses and

kept 18 clauses.
SPASS allocated 559 KBytes.
SPASS spent 0:00:00.01 on the problem.
0:00:00.00 for the input.
0:00:00.00 for the FLOTTER CNF translation.
0:00:00.00 for inferences.
0:00:00.00 for the backtracking.
0:00:00.00 for the reduction.

Here is a proof with depth 1, length 8 :
8[0:Inp] || -> Inherit(adapter,target)*.
10[0:Inp] || -> Inherit(leaf,component)*.
13[0:Inp] || -> equal(target,leaf)**.
14[0:Inp] || -> equal(adapter,component)**.
16[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
21[0:Rew:14.0,8.0,13.0,8.0] || -> Inherit(component,leaf)*.
23[0:Res:21.0,16.0] || Inherit(leaf,component)* -> .
26[0:MRR:23.0,10.0] || -> .
Formulae used in the proof: axiom3 axiom2 conjecture0 axiom0

--------------------------SPASS-STOP------------------------

SPASS proved that the condition of lost soundness is true,
thus the composition is not sound. It is consistent with the
manual proof given in Section V-D.

B. Proof of RHF Soundness

The input for analysing the soundness of RHF design is of
the same structure as the previous section shown below.

begin_problem(RHF).

list_of_descriptions.
name({*Request Handling Framework*}).
author({*Ian Bayley*}).
status(unsatisfiable).

description({* Attempt to show that the RHF composition
is valid *}).

end_of_list.

list_of_symbols.
functions[
(client,0),
(command,0),
(concreteCommand,0),
(invoker,0),
(receiver,0),
(commandProcessor,0),
(componentCP,0),
(originator,0),
(memento,0),
(caretaker,0),
(context,0),
(strategy,0),
(concreteStrategy,0),
(component,0),
(composite,0),
(leaf,0)
].

predicates[
(Class,1),
(Associated,2),
(Inherit,2),
(AggComp,2),
(Creates,2),
(IsAbstract,1),
(IsInterface,1)
].
end_of_list.

list_of_formulae(axioms).
formula(forall([x,y], implies(Inherit(x,y),

not(Inherit(y,x))))).
formula(forall([x,y,z], implies(and(Inherit(x,y),

Inherit(y,z)), Inherit(x,z)))).

formula(and(
AggComp(invoker,command),
Inherit(concreteCommand,command),
Associated(concreteCommand,receiver),
Associated(client, receiver),
Creates(client, concreteCommand)
)).

formula(
Associated(commandProcessor, componentCP)
).

formula(and(
Creates(originator, memento),
AggComp(caretaker, memento)
)).

formula(and(
AggComp(context,strategy),
Inherit(concreteStrategy,strategy)
)).

formula(and(
Inherit(leaf,component),
Inherit(composite,component),
AggComp(composite,component),
not(AggComp(leaf,component)),
IsAbstract(component)
)).

end_of_list.

list_of_formulae(conjectures).

formula(not(exists([Application],and(
equal(command,caretaker),
equal(command, componentCP),
equal(originator, Application),
equal(client, commandProcessor),
equal(originator, Application),
equal(leaf, concreteCommand),
equal(component, command),
equal(commandProcessor, context),
equal(caretaker, command)

20

)))).
end_of_list.

end_problem.

The execution of the the SPASS theorem prover on the
above input takes 0.01 seconds to conclude that ”Completion
found”, which means no proof of the conjecture. In other
words, the condition of lost soundness cannot be proved from
the pattern specification and consistency and completeness
constraints.
WebSPASS - Interactive SPASS

Input Form Submission

You are running ’Mozilla/5.0
(Macintosh; Intel Mac OS X 10_9_4)
AppleWebKit/537.78.2 (KHTML, like Gecko) Version/7.0.6
Safari/537.78.2’ from ’81.109.126.224’
Your WebSPASS form submission is now being processed...

------------------------SPASS-START-----------------------
Input Problem:
1[0:Inp] || -> IsAbstract(component)*.
2[0:Inp] || -> Inherit(leaf,component)*.
3[0:Inp] || -> Inherit(composite,component)*.
4[0:Inp] || -> AggComp(composite,component)*.
5[0:Inp] || -> AggComp(context,strategy)*.
6[0:Inp] || -> Inherit(concreteStrategy,strategy)*.
7[0:Inp] || -> Creates(originator,memento)*.
8[0:Inp] || -> AggComp(caretaker,memento)*.
9[0:Inp] || -> Associated(commandProcessor,componentCP)*.
10[0:Inp] || -> AggComp(invoker,command)*.
11[0:Inp] || -> Inherit(concreteCommand,command)*.
12[0:Inp] || -> Associated(concreteCommand,receiver)*.
13[0:Inp] || -> Associated(client,receiver)*.
14[0:Inp] || -> Creates(client,concreteCommand)*.
15[0:Inp] || -> equal(command,componentCP)**.
16[0:Inp] || -> equal(commandProcessor,client)**.
17[0:Inp] || -> equal(originator,originator)*.
18[0:Inp] || -> equal(leaf,concreteCommand)**.
19[0:Inp] || -> equal(command,component)**.
20[0:Inp] || -> equal(commandProcessor,context)**.
21[0:Inp] || -> equal(command,caretaker)**.
22[0:Inp] || AggComp(leaf,component)* -> .
23[0:Inp] || Inherit(U,V)* Inherit(V,U)* -> .
24[0:Inp] || Inherit(U,V)* Inherit(W,U)* -> Inherit(W,V)*.
This is a first-order Horn problem containing equality.
This is a problem that has, if any, a finite domain model.
There are no function symbols.
The conjecture is ground.
The following monadic predicates have finite extensions:

IsAbstract.
Axiom clauses: 17 Conjecture clauses: 7
Inferences: ISpR=1 ISpL=1 IORe=1
Reductions: RFRew=1 RBRew=1 RFMRR=1 RBMRR=1 RObv=1

RUnC=1 RTaut=1 RFSub=1 RBSub=1 RCon=1
Extras : Input Saturation, Always Selection,

No Splitting, Full Reduction, Ratio: 5,
FuncWeight: 1, VarWeight: 1

Precedence: div > id > Class > Associated > Inherit
> AggComp > Creates > IsAbstract > IsInterface
> leaf > composite > command > component
> concreteStrategy > strategy > commandProcessor
> context > caretaker > memento > originator
> componentCP > receiver > invoker > concreteCommand
> client

Ordering : KBO
Processed Problem:

Worked Off Clauses:

Usable Clauses:
32[0:Rew:29.0,26.0] ||

-> IsAbstract(componentCP)*.
18[0:Inp] ||

-> equal(leaf,concreteCommand)**.
27[0:Rew:20.0,16.0] ||

-> equal(context,client)**.
29[0:Rew:21.0,15.0] ||

-> equal(caretaker,componentCP)**.

28[0:Rew:27.0,20.0] ||
-> equal(commandProcessor,client)**.

30[0:Rew:29.0,21.0] ||
-> equal(command,componentCP)**.

31[0:Rew:29.0,25.0] ||
-> equal(component,componentCP)**.

14[0:Inp] ||
-> Creates(client,concreteCommand)*.

7[0:Inp] ||
-> Creates(originator,memento)*.

13[0:Inp] ||
-> Associated(client,receiver)*.

12[0:Inp] ||
-> Associated(concreteCommand,receiver)*.

36[0:Rew:28.0,9.0] ||
-> Associated(client,componentCP)*.

33[0:Rew:29.0,8.0] ||
-> AggComp(componentCP,memento)*.

34[0:Rew:27.0,5.0] ||
-> AggComp(client,strategy)*.

38[0:Rew:30.0,10.0] ||
-> AggComp(invoker,componentCP)*.

39[0:Rew:31.0,4.0] ||
-> AggComp(composite,componentCP)*.

6[0:Inp] ||
-> Inherit(concreteStrategy,strategy)*.

37[0:Rew:30.0,11.0] ||
-> Inherit(concreteCommand,componentCP)*.

40[0:Rew:31.0,3.0] ||
-> Inherit(composite,componentCP)*.

42[0:Rew:18.0,22.0,31.0,22.0] ||
AggComp(concreteCommand,componentCP)* -> .

44[0:Res:37.0,23.0] ||
Inherit(componentCP,concreteCommand)* -> .

48[0:Res:40.0,23.0] ||
Inherit(componentCP,composite)* -> .

46[0:Res:37.0,24.1] ||
Inherit(componentCP,U)* -> Inherit(concreteCommand,U).

50[0:Res:40.0,24.1] ||
Inherit(componentCP,U) -> Inherit(composite,U)*.

43[0:Res:37.0,24.0] ||
Inherit(U,concreteCommand) -> Inherit(U,componentCP)*.

47[0:Res:40.0,24.0] ||
Inherit(U,composite)* -> Inherit(U,componentCP).

23[0:Inp] ||
Inherit(U,V)* Inherit(V,U)* -> .

24[0:Inp] ||
Inherit(U,V)* Inherit(V,W)* -> Inherit(U,W)*.

Given clause: 32[0:Rew:29.0,26.0] ||
-> IsAbstract(componentCP)*.

Given clause: 18[0:Inp] ||
-> equal(leaf,concreteCommand)**.

Given clause: 27[0:Rew:20.0,16.0] ||
-> equal(context,client)**.

Given clause: 29[0:Rew:21.0,15.0] ||
-> equal(caretaker,componentCP)**.

Given clause: 28[0:Rew:27.0,20.0] ||
-> equal(commandProcessor,client)**.

Given clause: 30[0:Rew:29.0,21.0] ||
-> equal(command,componentCP)**.

Given clause: 31[0:Rew:29.0,25.0] ||
-> equal(component,componentCP)**.

Given clause: 14[0:Inp] ||
-> Creates(client,concreteCommand)*.

Given clause: 7[0:Inp] ||
-> Creates(originator,memento)*.

Given clause: 13[0:Inp] ||
-> Associated(client,receiver)*.

Given clause: 12[0:Inp] ||
-> Associated(concreteCommand,receiver)*.

Given clause: 36[0:Rew:28.0,9.0] ||
-> Associated(client,componentCP)*.

Given clause: 33[0:Rew:29.0,8.0] ||
-> AggComp(componentCP,memento)*.

Given clause: 34[0:Rew:27.0,5.0] ||
-> AggComp(client,strategy)*.

Given clause: 38[0:Rew:30.0,10.0] ||
-> AggComp(invoker,componentCP)*.

Given clause: 39[0:Rew:31.0,4.0] ||
-> AggComp(composite,componentCP)*.

Given clause: 6[0:Inp] ||
-> Inherit(concreteStrategy,strategy)*.

Given clause: 37[0:Rew:30.0,11.0] ||
-> Inherit(concreteCommand,componentCP)*.

Given clause: 40[0:Rew:31.0,3.0] ||
-> Inherit(composite,componentCP)*.

21

Given clause: 42[0:Rew:18.0,22.0,31.0,22.0] ||
AggComp(concreteCommand,componentCP)*+ -> .

Given clause: 44[0:Res:37.0,23.0] ||
Inherit(componentCP,concreteCommand)*+ -> .

Given clause: 48[0:Res:40.0,23.0] ||
Inherit(componentCP,composite)*+ -> .

Given clause: 46[0:Res:37.0,24.1] ||
Inherit(componentCP,U)*+ -> Inherit(concreteCommand,U).

Given clause: 50[0:Res:40.0,24.1] ||
Inherit(componentCP,U)+ -> Inherit(composite,U)*.

Given clause: 23[0:Inp] ||
Inherit(U,V)*+ Inherit(V,U)* -> .

Given clause: 57[0:Res:6.0,23.0] ||
Inherit(strategy,concreteStrategy)*+ -> .

Given clause: 43[0:Res:37.0,24.0] ||
Inherit(U,concreteCommand)+ -> Inherit(U,componentCP)*.

Given clause: 47[0:Res:40.0,24.0] ||
Inherit(U,composite)*+ -> Inherit(U,componentCP).

Given clause: 24[0:Inp] ||
Inherit(U,V)*+ Inherit(V,W)* -> Inherit(U,W)*.

Given clause: 60[0:Res:6.0,24.0] ||
Inherit(strategy,U)+ -> Inherit(concreteStrategy,U)*.

SPASS V 3.0
SPASS beiseite: Completion found.
Problem: /tmp/webspass-webform_2014-09-16_

00:02:27_14946l.txt
SPASS derived 31 clauses, backtracked 0 clauses and

kept 41 clauses.
SPASS allocated 568 KBytes.
SPASS spent 0:00:00.01 on the problem.
0:00:00.00 for the input.
0:00:00.00 for the FLOTTER CNF translation.
0:00:00.00 for inferences.
0:00:00.00 for the backtracking.
0:00:00.00 for the reduction.

----------------------SPASS-STOP-----------------------

