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Abstract 

Obstacles often appear unexpectedly in our pathway and these require us to make 

adjustments to avoid collision. Previous research has demonstrated that healthy adults will 

make anticipatory adjustments to gait where they have been told there is the possibility of an 

obstacle appearing. One population that may find this type of anticipatory movement difficult 

is individuals with Developmental Coordination Disorder (DCD). The current study 

considered how individuals with and without DCD adjust to the possibility of an obstacle 

appearing which would require circumvention. Forty four individuals with DCD and 44 age-

matched controls (aged from 7-34 years of age) walked down an 11m walkway under three 

conditions. Initially they were told this was a clear pathway and nothing in the environment 

would change (1, no possibility of an obstacle, no obstacle). They then performed a series of 

trials in which a gate may (2, possibility of an obstacle, obstacle) or may not (3, possibility of 

an obstacle, no obstacle) partially obstruct their pathway. We found that all participants 

increased medio-lateral trunk acceleration when there was the possibility of an obstacle but 

before the obstacle appeared, in addition the typical adults and older children also increased 

step width. When describing circumvention we found that the younger children showed an 

increase in trunk velocity and acceleration in all three directions compared to older children 

and adults. We also found that the individuals with DCD adjusted their path sooner and 

deviated more than their peers. The degree of adjustment to step width in anticipation of an 

obstacle was related to later medio-lateral velocity and timing of the deviation. Therefore, the 

lack of ‘readying’ the system where there is the possibility of an obstacle appearing seen in 

the individuals with DCD and the younger typical children may explain the increased medio-

lateral velocity seen during circumvention.  
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Introduction  

As part of everyday life we negotiate obstacles as we locomote through the environment. The 

ability to avoid both static and moving objects is vital for our safety and efficient passage. 

When confronted with an obstacle a walker needs to adjust and control movement in order to 

side step, step over, change direction or stop. When we approach a stationary object walkers 

are able to pre-plan a movement in order to avoid collision (de Silva, Barbieri, & Gobbi, 

2011; Higuchi, 2013; Huxham, Goldie, & Patla, 2001; Patla & Vickers, 2003). Pre-planning 

movement in this way is convenient but not always possible. On many occasions we need to 

navigate dynamic obstacles that unexpectedly move into our path of travel. For example, 

when a pedestrian appears from an adjoining road or a ball rolls across our path. A number of 

cleverly designed studies have examined how healthy adults do just that (Chen, Ashton-

Miller, Alexander, & Schultz, 1994; Patla, Beuter, & Prentice, 1991; Patla, Prentice, Rietdyk, 

Allard, & Martin, 1999; Weerdesteyn, Nienhuis, Hampsink, & Duysens, 2004). The common 

finding is that participants are able to adjust their movement and react to an obstacle 

appearing suddenly. However, in all of these studies participants the unexpected element is 

when an object will appear not if an object will appear. We know from studies where an 

obstacle is present in the pathway that participants adjust their walking velocity and step 

length which may allow more time for necessary adjustments (Chen, Ashton-Miller, 

Alexander, & Schultz, 1991; Chou & Draganich, 1997; McFadyen & Carnahan, 1997). This 

raises the question as to whether participants, when knowing an obstacle may appear in their 

pathway, adjust their movement in anticipation.  

 

Pijnappels, Bobbert, & van Dieën (2001) compared the kinematics of walking under two 

conditions, unobstructed walking and walking when participants were warned that a trip may 

be induced (forewarning). Participants made no changes to the temporal parameters of 

walking (velocity, step frequency, swing time double support time) but they did show an 

increase in step width during forewarning. In a similar vein, Pater, Rosenblatt, & Grabiner 

(2015) also considered anticipation of a fall while walking on a treadmill. While participants 

walked a perturbation could be introduced, whereby the speed of the treadmill suddenly 

increased. One group of participants were warned about this perturbation (expectation group) 

while another were not (no expectation group). The expectation group fell less often 

following the perturbation compared to the no-expectation group and when they did fall the 

recovery of the expectation group was classified as more typical than the no-expectation 

group. In a recent study we considered this type of ‘anticipation’ in a lower risk scenario that 
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did not involve the possibility of a trip but rather the possibility of needing to circumvent an 

obstacle appearing in the pathway (Wilmut, Du, & Barnett, In Press). We compared trials 

where there was the possibility of an obstacle appearing (a gate which could close and 

partially block the pathway) with trials where there was no possibility of the obstacle 

appearing. We found that adults narrowed their steps and increased medio-lateral acceleration 

in anticipation of the gate closing. It was concluded that these adjustments may enable 

participants to remain central on the pathway thus allowing for a fast adjustment either to the 

right or to the left (Wilmut, Du, et al., In Press). These studies provide an important insight 

into anticipatory control and clearly show some modification of behaviour to ensure safe 

passage, with typical adults changing their movement pattern when faced with the possibility 

of an event (trip or obstacle appearing). Adjusting away from a typical or preferred pattern of 

movement has an associated cost (O'Connor, Xu, & Kuo, 2012), but it would appear in this 

situation, that the benefit of having the motor system ‘ready’ for the event (and therefore, 

ready to avoid collision / tripping) outweighs this cost even when the event occurs on a small 

proportion of trials.  

 

Developmental Coordination Disorder (DCD) describes individuals who present with motor 

coordination which is below the expected level given their age. Figures suggest that almost 

2% of children in the UK present with DCD (Lingam, Hunt, Golding, Jongmans, & Emond, 

2009). These children display difficulties with fine and gross motor tasks (Sugden, 2006) 

which can persist into early adulthood and continue to have a negative impact on everyday 

life (Kirby, Edwards, Sugden, & Rosenblum, 2010). The generation of anticipatory 

movement has been considered in this population. Mon-Williams et al. (2005) and later 

Wilmut & Wann (2008) used a cueing paradigm, whereby participants were either given full 

cue information (exact target location was cued) or partial cue information (direction was 

cued thus highlighting two possible target locations). In both studies children with DCD 

made anticipatory movements following full cues (as did the typically developing 

participants) but did not make any anticipatory adjustments in response to the partial cue 

(while the typically developing participants did). From these results it was concluded that for 

the children with DCD the cost of preparing a movement which then had to be changed 

outweighed the benefits of moving early (Mon-Williams et al., 2005; Wilmut & Wann, 

2008). Essentially this conclusion states that the lack of anticipatory movement in the 

children with DCD was not due to a deficit per se, but rather a specific choice of movement 

selection. The time course over which movements are made and adapted are very different in 
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a discrete grasping task as compared an ongoing walking task. Therefore, whether a similar 

pattern of cost-benefit trade-off is seen in a walking task remains to be seen.  

 

The aims of this study were twofold: Firstly to investigate whether children and adults with 

and without DCD show anticipatory control when there is a possibility of an obstacle 

appearing in the pathway. To do this we compared walking across three conditions: 1. ‘no 

gate’ where there is no possibility that an obstacle will move across the path; 2. ‘gate close’ 

where there is a possibility that a gate will move across the pathway and later in the trial the 

gate does close; and 3. ‘gate open’ where again there is a possibility that the gate will move 

across the pathway but the gate actually remains open. To consider anticipatory control we 

considered movement prior to the point at which gate closure or non-gate closure was 

confirmed. Given that previous studies have highlighted difficulties with anticipatory control 

in this population (Mon-Williams et al., 2005; Wilmut & Wann, 2008) we expect to either see 

a lack of anticipatory control or a different type of anticipatory control in this population. 

Both adults and children with DCD are included in this study because although is it widely 

acknowledged that these children do not grow out of their difficulties (Kirby et al., 2010) 

there is a paucity of research studies focusing on adults with DCD. What does exist suggests 

that the children and teenagers with DCD continue to have difficulties into adulthood and do 

not simply develop more slowly than typical individuals (Wilmut & Byrne, 2014; Wilmut, 

Byrne, & Barnett, 2013). The second aim of this study was to describe the nature of 

circumvention and whether this differs between individuals with and without DCD.  

 

Method 

Participants 

This project was approved by Oxford Brookes University Research Ethics Committee. Forty-

four participants with DCD (aged from 7 to 34 years) and 44 age (to within 6 months) and 

gender matched typically developing individuals were recruited for this study. These 

participants took part in a larger study of which this task was just one that they completed. 

Participants were divided into three age groups: adults (N=30, aged from 18 to 34 years), 

older children (N=30, aged from 12 to 17 years) and younger children (N=28, aged from 7 to 

11 years). Details regarding these participants can be found in Table 1. Participants with 

DCD were recruited from two sources: from a group known to the authors from previous 

studies; and from a local support group for individuals with DCD and their families. All 
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participants with DCD were assessed and selected in line with the DSM-5 criteria for DCD 

and with recent UK guidelines (Barnett, Hill, Kirby, & Sugden, 2015).  

 

To determine motor skill below the level expected for the individual’s chronological age 

(criterion A) we used the test component of the Movement Assessment Battery for Children 

second edition (MABC-2; Henderson, Sugden, & Barnett, 2007) for individuals ≤17yrs of 

age and a combination of this and the Bruininks-Oseretsky Test of Motor Proficiency, Second 

Edition, Brief Form (BOT-2 Brief; Bruininks & Bruininks, 2005) for individuals > 17 yrs. 

Individuals with DCD scored below the 16th percentile on the MABC-2 and below the 18th 

percentile on the BOT-2 Brief. To determine that the motor impairment significantly 

impacted on daily living (criterion B) the MABC-2 Checklist, the DCD-Q (Wilson, Kaplan, 

Crawford, Campbell, & Dewey, 2000) and a telephone interview with the parent was used for 

individuals ≤17yrs of age while the Adult Developmental Coordination Disorder Checklist 

(ADC; Kirby & Rosenblum, 2008) and a telephone interview with the participant was used 

for individuals >17yrs. Telephone interviews were also used to determine that the onset of the 

motor difficultly was in early childhood (criterion C) and that the difficulties were not due to 

a known neurological impairment or intellectual disability (criterion D). The typically 

developing (TD) individuals or their parents completed a telephone interview and the 

MABC-2 Checklist / ADC (depending on age) to confirm that no movement difficulties were 

present.  

 

Given the co-occurrence of motor difficulties and attention difficulties all participants or their 

parents completed either the Strengths and Difficulties Questionnaire (SDQ; Goodman, 1997) 

or the Conners’ ADHD adult rating scales (CAARS; Conners, Erhardt, & Sparrow, 1999). 

Only 10 of the individuals with DCD had high or very high scores on the inattention subscale 

compared to none of the typically developing individuals. Running analyses both with and 

without these individuals with high or very high scores did not alter the outcome of the 

findings and so these individuals were included in the study. 

 
  



Obstacle circumvention in DCD 
 

7 

 

Table 1. Descriptive information for the six cohorts 

 Adults 7-11years 12-17years 

 TD DCD TD DCD TD DCD 

N 15 15 15 15 14 14 

Mean age (yrs:mo) 23:3 25:5 14:7 14:11 9:3 9:3 

Gender ratio (F:M) 2:3 2:3 1:3 1:3 1:6 1:6 

MABC-2 test mean percentile 

(range in brackets) 
- 

1.54  

(0.1-5) 
- 

2.55  

(0.1-5) 
- 

3.71  

(0.5-9) 

BOT-2 test mean percentile 

(range in brackets) 
 

7.07  

(1-18) 
- - - - 

MABC-2 checklist total score - - 0.7 27.6 3.0 25.9 

DCD-Q total score - - 70.2 33.1 65.5 34.6 

ADC total score 21.7 65.9 - - - - 

 

2.2 Apparatus and procedure 

Participants walked barefoot at a comfortable pace along an 11m by 1m walkway made from 

high density foam sports mats. Two rectangular ‘gates’, 60cm wide and 30cm high and 

constructed from the same high density foam material, were positioned on each side of the 

walkway 8m from the start point (see Fig. 1a). A motion sensor was positioned 5m from the 

start point (3m in front of the gates) and this, when triggered would cause either the right or 

left gate to close across the pathway. When the motion sensor was activated there was a delay 

of ~16ms prior to the gate starting to move and the gate took ~1250ms to fully close. 

 

A Vicon Nexus 3D motion capture system with 16 cameras running at 100Hz was used to 

track the movement of reflective spherical markers (9mm in diameter) attached to the skin at 

five bony landmarks: the sacral wand, the second metatarsal head on left and right foot (left 

and right toe marker), and the lateral malleolus on left and right foot (left and right ankle 

marker). Initially participants completed 6 ‘no gate’ trials. On these trials the gates and 

motion sensors were present at the side of the walkway but participants were told that these 

were to be ignored. Participants were instructed to walk the length of the walkway at a 

natural pace. Following these ‘no gate’ trials participants were again instructed to walk from 

the start to the stop point for each trial, and then return to the start by the return path. In ‘gate 

close’ trials the motion sensor was switched and this was then triggered when the participant 

walked passed, once triggered one of the gates (randomly selected) closed forcing 

circumvention (Fig. 1c). Participants were instructed to avoid the gate while continuing their 

passage along the walkway. On ‘gate open’ trials, unbeknown to the participant, the motion 
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sensor was deactivated so that the gates remained stationary throughout the trial allowing for 

unobstructed passage (Fig. 1b). Participants completed 6 ‘gate close’ and 30 ‘gate open’ trials 

with the former interspersed randomly with the latter. This ensured that presence of the 

obstacle in the pathway was unpredictable and so from a participant’s point of view there was 

a possibility that a gate would close on all 36 of these trials. The start point was varied by 

±20cm to avoid the participant starting at a consistent distance from the obstacle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A. bird’s eye view of the set up including the walking path, the return path and the location of the 
sensors and gates. B. Left - a gate open trial, right - a gate close trial. 
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Data analysis 

VICON movement data was smoothed using an optimized low-pass Woltring filter with a 12 

Hz cut-off point and was then processed using tailored Matlab routines. Measurements of 

trunk movement and foot placement were taken. For all trials movement was split into two 

parts: before obstacle trigger (the before phase) defined as the 2m between start of data 

capture and the sensor; and after obstacle trigger (after phase) defined as the 3m between the 

sensor and the gate. 

Spatial-temporal parameters of foot placement: Heel strike (HS) and toe off (TO) events 

were determined based upon an adapted the foot velocity algorithm (O'Connor, Thorpe, 

O'Malley, & Vaughan, 2007). The algorithm was adapted by using the ankle marker (lateral 

malleolus) rather than a heel marker. This was used to analyses each step which fell between 

the start of data capture until the gate was passed. From the timing of HS and TO events two 

measures pertaining to foot placement were determined: Step length: the anterior-posterior 

distance between the front foot ankle marker and the back foot ankle marker at each HS, this 

was normalised to leg length; Step width: the medio-lateral distance between the two ankle 

markers at each HS, this was normalised to hip width.  

Trunk movement: Movement of the sacral marker was taken as an indicator of trunk 

movement. For each step sacral root mean squared velocity (ms-1) and acceleration (ms-2) was 

calculated over the three axes of movement: medio-lateral (ML); anterior-posterior (AP); and 

vertical (V). All trunk movement measured were normalised to leg length as this factor has 

been shown to influence trunk movement (Hsue, Miller, & Su, 2009).  

Path deviation: In order to describe obstacle circumvention measures were taken for the gate 

close condition during the after phase; these are described below. Firstly we determined 

whether or not a deviation occurred, this was done by calculating the medio-lateral position 

over the course of the trial and if in the after phase ML position deviated from ML position in 

the before phase by more than three standard deviations it was recorded as a path deviation. 

From this, proportion of deviation trials was calculated for each participant. For trials where a 

path deviation was apparent, we calculated three more variables: the time left after deviation, 

the time between the start of the deviation and the point at which the participant passed the 

gate; the distance left after deviation, the distance between the participant and the gate at the 

point at which the deviation started; the size of the deviation, the maximum transverse 

distance between the average path prior to deviation and path after deviation. 

 

Statistical analysis 
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Data were analysed in line with the aims of the study. Firstly in order to determine whether 

participants showed any anticipation we considered movement during the before phase across 

the conditions (no gate, open gate and close gate). Essentially this is comparing a condition 

with no possibility of an obstacle (no gate) to two conditions where there is a possibility of an 

obstacle appearing (open gate and close gate). To do this a three-way ANOVA (age x group x 

condition) was used to compare the spatial-temporal parameters of foot placement and the 

trunk movement measures. Secondly, in order to determine how participants moved to 

circumvent an obstacle, we considered movement during the after phase for the gate close 

trials only. To do this two-way ANOVA (age x group) was used to compare trunk movement 

measures and the measures of path deviation. As an attempt to quantify the relationship 

between the anticipatory adjustments in the before phase and the measures of obstacle 

circumvention in the after phase we calculated a percentage adjustment variable for measures 

before the sensor. The mean value of each measure in the possibility conditions (gate open 

and gate close) was subtracted from the value of the measure in the no possibility (no gate) 

condition and then divided by the value of these variables in the no possibility (no gate) 

condition. Correlations were then run between these variables and the measures of object 

circumvention in the after phase. For all statistical analyses Greenhouse-Geisser was reported 

when the assumption of sphericity was violated. Significant main effects were followed up 

with post-hoc tests using a Bonferroni correction to adjust for multiple comparisons and 

significant interactions were followed up with a Pillai’s Trace simple main effects test. Partial 

eta-squared is reported as a measure of effect size and the significance level set at 0.05.  

 

Results  

All participants successfully completed all conditions, in the gate close trials there were no 

collisions and participants circumvented the obstacle rather than stepping over it. 

 

Anticipation of obstacle appearance  

Firstly spatial-temporal parameters of foot placement were considered across age, group and 

condition, data can be found in Figure 2. For step width we found a significant main effect of 

condition [F(1.667,36.709)=4.20, p=.017, ηp2=.05] which was due to a wider step in the gate 

close and gate open condition compared to the no gate condition. A significant main effect of 

age was also found for both measures [step length: F(2,82)=7.31, p=.001, ηp2=.15, step 

width: F(2,82)=12.23, p<.001, ηp2=.23], which was due to a relatively longer and wider step 

in the younger children compared to the older children or adults. In addition, a significant 
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interaction was found for step width between condition and age [F(4,164)=5.18, p=.001, 

ηp
2=.11]. All other effects were non-significant [F<1]. In order to explore the significant 

interactions condition and age were considered for each group separately. For the TD group a 

main effect of condition was found [F(1.398,57.336)=6.03, p=.004, ηp2=.13], which reflected 

that described above and a significant interaction between condition and age was found 

[F(4,82)=4.34, p=.003, ηp2=.18]. Simple main effects demonstrated that this interaction was 

due to an effect of condition (no gate < gate close = gate open) for the adults [F(2,40)=5.82, 

p=.006, ηp2=.23] and the older children [F(2,40)=3.39, p=.044, ηp2=.15] but not the younger 

children [p>.05]. To contextualise this it is a difference in step width of approximately 1.8cm 

in the TD adults and 1.0cm in the older TD children. For the DCD group no significant 

effects were found [p>.05]. 

 

 

Figure 2. Normalised step length and step width across the three conditions before the sensor. Error 
bars show standard error. 
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Secondly we considered trunk movement measures across the same parameters. Data can be 

found in supplementary tables with illustrations of the significant effects of condition in 

Figure 3 (which is collapsed across group). A significant main effect of condition was found 

for ML acceleration [F(1.683,138.03)=25.09, p<.001, ηp2=.23] due to a higher acceleration in 

the gate open and gate close compared to the no gate condition (no gate < gate open = gate 

close). For ML, AP and V velocity and AP and V acceleration the effect of condition was 

non-significant [F<1]. A significant effect of age was found for all measures of velocity [ML: 

F(2,82)=6.96, p=.002, ηp2=.15, AP: F(2,82)=10.94, p<.001, ηp2=.21, V: F(2,82)=5.89, 

p=.004, ηp2=.26] and acceleration [ML: F(2,82)=8.25, p=.001, ηp2=.17, AP: F(2,82)=33.97, 

p<.001, ηp2=.45, V: F(2,82)=21.39, p<.001, ηp2=.34]. Post-hoc tests indicated that all of these 

effects were due to a larger normalised velocity and acceleration in the younger children 

compared to the older children and adults (7-11yrs > 12-17yrs = adults). Finally, a significant 

main effect of group was found for ML velocity [F(1,82)=4.404, p=.039, ηp2=.05] with the 

individuals with DCD showing a higher velocity compared to the TD individuals. For AP and 

V velocity and MP, AP and V acceleration the effect of group was not significant [F<1]. No 

significant interactions were found [F<1].  

 

 

Figure 3. Trunk movement measures before the sensor, data points are collapsed across group. Error 
bars depict standard error.  

 

Circumvention of an obstacle  

Measures were now only considered for gate close trials in the after phase as in the other 

conditions participants passed along the walkway unobstructed. In terms of trunk movement 
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a significant main effect of age was found for all measures of velocity [ML: F(2,82)=47.46, 

p<.001, ηp2=.54, AP: F(2,82)=7.86, p=.001, ηp2=.16, V: F(2,82)=9.05, p<.001, ηp2=.18] and 

acceleration [ML: F(2,82)=14.16, p<.001, ηp2=.26, AP: F(2,82)=14.69, p<.001, ηp2=.26, V: 

F(2,82)=24.09, p<.001, ηp2=.37]. Post-hoc tests indicated that these effects were due to a 

larger normalised velocity and acceleration in the younger children compared to the older 

children or adults (7-11yrs > 12-17yrs = adults). In addition, a significant main effect of 

group was found for ML velocity and acceleration [F(1,82)=7.33, p=.008, ηp2=.08, and 

F(1,82)=4.13, p=.045, ηp2=.05 respectively], in both cases this was due to a higher value in 

the individuals with DCD compared to the TD individuals (DCD > TD). No other significant 

effects of group or interactions between age and group were found [F>1]. These data can be 

found in Table 2. 

 
Table 2. Data for gate open condition only in the after phase between the sensor and the gate. Values are given 
for the three age groups and the two groups (DCD and TD). Standard deviation is given in brackets.  

  Adult 12-17yrs 7-11yrs 
Significant 

effects 

Normalised 

velocity 

ML 
TD 0.12 (0.03) 0.17 (0.04) 0.23 (0.04) Age 

Group DCD 0.13 (0.05) 0.19 (0.05) 0.27 (0.08) 

AP 
TD 1.43 (0.18) 1.29 (0.10) 1.61 (0.25) Age 

 DCD 1.31 (0.16) 1.40 (0.46) 1.82 (0.79) 

V 
TD 0.19 (0.03) 0.171 (0.04) 0.23 (0.06) 

Age 
DCD 0.17 (0.05) 0.17 (0.05) 0.25 (0.13) 

Normalised 

acceleration 

ML 
TD 1.78 (0.54) 1.69 (0.50) 2.15 (0.44) Age 

Group DCD 1.77 (0.56) 1.83 (0.42) 2.75 (0.82) 

AP 
TD 2.42 (0.74) 2.27 (1.70) 3.74 (1.45) Age 

 DCD 2.00 (0.75) 1.73 (0.40) 3.56 (1.82) 

V 
TD 2.66 (0.54) 2.59 (0.87) 3.88 (0.94) 

Age 
DCD 2.38 (0.63) 2.36 (0.64) 3.71 (1.15) 

 

For measures of path deviation a significant main effect of age was found for the distance to 

the gates after the deviation started [F(2,82)=5.52, p=.006, ηp2=.12], with the younger 

children starting their deviation while significantly further from the gates than the older 

children or adults (7-11yrs > 12-17yrs = adults). In addition, a significant main effect of 

group was found for time left after the deviation started [F(1,82)=6.21, p=.015, ηp2=.07] and 

the size of the deviation [F(1,82)=4.66, p=.034, ηp2=.05]. These effects demonstrate that the 

individuals with DCD started their deviation earlier in their movement compared to their 
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peers and they deviated to a greater extent than their peers. No other significant effect of age 

or group was found for the proportion of deviation trials [F<1]. Data can be found in Table 3. 

 
Table 3. Path deviation variables for the three age groups and both the TD and DCD participants. Standard 

deviation is in brackets.  

 

 Adult 12-17yrs 7-11yrs 
Significant 

effects 

Percentage of trials where a 

path deviation was seen (%) 
TD 94 (16) 99 (4) 95 (10)  

DCD 96 (10) 96 (8) 96 (11)  

Time remaining at start of 

path deviation (s) 
TD 2.57 (0.99) 2.99 (0.36) 2.94 (0.35) 

Group 
DCD 3.28 (0.47) 3.18 (0.40) 2.99 (0.69) 

Distance remaining at start of 

deviation (m) 
TD 1.05 (0.31) 1.18 (0.26) 1.28 (0.24) 

Age 
DCD 1.03 (0.28) 1.04 (0.23) 1.24 (0.17) 

Size deviation (cm) 
TD 31.3 (7.40) 31.1 (5.81) 33.8 (5.39) 

Group 
DCD 37.3 (7.83) 34.8 (6.25) 37.3 (7.84) 

 

Relationship between anticipatory adjustments and obstacle circumvention  

The percentage adjustment values for step width and medio-lateral acceleration in the before 

phase were used to consider the relationship between adjustment and circumvention. These 

variables were chosen as they are the two variables which showed anticipatory adjustments. 

Correlations were then run between these variables and the measures of object circumvention 

in the after phase. For step width, the percentage adjustment in the before phase was shown to 

correlate significantly with medio-lateral velocity in the after phase [r=.215 N=88 p=.044] 

and distance from the gates at start of deviation [r=.235 N=88 p=.027]. Scatter plots of these 

significant correlations can be found in Figure 4. No significant correlations were found 

between the percentage adjustment of medio-lateral acceleration and the measures of object 

circumvention.  
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Figure 4. Scatter plots of significant correlations between step width adjustments in the before phase 

and variables in the after phase 

 

Discussion 

The current study considered aspects of anticipation and obstacle circumvention in 

individuals with and without DCD. The first aim of the study was to determine whether these 

individuals show anticipatory adjustments during a walking task when there is a possibility of 

an obstacle appearing. All of the participants (DCD and TD) showed an increase in medio-

lateral acceleration when there was the possibility of an obstacle appearing compared to when 

there was not. In addition, the typical adults and typical older children showed a widening of 

their steps when there was the possibility of an obstacle appearing. These changes to 

movement are similar to adjustments we have seen previously in a study of healthy adults 

using the same methodology (Wilmut, Du, et al., In Press). These adaptations may allow 

participants to ready themselves for a movement to the left or the right. The participants with 

DCD and the youngest typical children only showed a change to medio-lateral acceleration 

and not to step width. This suggests a difference in how these populations ready the motor 

system for a potential event. From their work Mon-Williams et al. (2005) and later Wilmut & 

Wann (2008) concluded that for the children with DCD the cost of preparing a movement 

which then had to be changed outweighed the benefits of moving early (Mon-Williams et al., 

2005; Wilmut & Wann, 2008). Essentially this conclusion states that the lack of anticipatory 

movement in the children with DCD was not due to a deficit per se, but rather a specific 

choice of movement selection. In the introduction we stated that the benefit of ‘readying’ the 

motor system for action in light of the possibility of an event was greater than the cost of 

altering the typical pattern of locomotion in typical adults. We see that again here, where the 
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typical adults and typical older children do change their movement for the gate open and gate 

close trials. However, it seems that in the less mature motor systems of the younger typical 

children and the atypical motor systems of the individuals with DCD this is not the case and 

in fact the benefit of ‘readying’ the motor system for action in light of the possibility of an 

event does not out-weigh the cost of altering a typical pattern of locomotion. This conclusion 

suggests an inflexibility of the motor system (in terms of adjustments to step width) in these 

populations and is one that merits further consideration. 

 

The second interesting question is whether the anticipatory adjustments we saw in the before 

phase relate to the nature of the circumvention in the after phase. We attempted to quantify 

this and demonstrated that the degree of step width adjustments related to both medio-lateral 

velocity and the distance from the gates when deviation started. Participants who showed a 

greater adjustment to step width demonstrated a smaller medio-lateral velocity and smaller 

distance from the gates. Given that previous studies have linked increased medio-lateral 

velocity to poor balance control (Deconinck et al. 2010) this would seem to indicate that the 

anticipatory adjustments are functional in supporting balance control during circumvention. 

The fact that we see no relationship between the change in medio-lateral acceleration in the 

before phase and the measures of circumvention makes it difficult to determine whether the 

one anticipatory change the individuals with DCD do make is linked to a more effective 

circumvention strategy or not. 

 

When considering the nature of circumvention we see that medio-lateral velocity and 

acceleration was higher in the individuals with DCD compared to the typical individuals and 

that the individuals with DCD also started their path deviation earlier in the movement and 

tended to deviate more. These findings demonstrate a clear difference in object 

circumvention in young typically developing children and in individuals with DCD. These 

findings are in line with other observations of obstacle avoidance in this population. 

Deconinck et al., (2010) demonstrate increased medio-lateral velocity in children with DCD 

while stepping over obstacles and we have shown that when navigating through an aperture, 

both children and adults with DCD started their movement adjustment (shoulder rotation to 

fit through the aperture) sooner and rotated to a greater extent than their peers (Wilmut, Du, 

& Barnett, 2015; Wilmut, Du W., & Barnett, In Press, the same group of child participants 

were used in the latter paper as are in the current study). The combination of these findings 

may suggest that individuals with DCD attach higher costs to collision as compared to their 
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peers. This may reflect poor motor control within this population or at the very least 

compensatory behaviour in a group of individuals who have become accustomed to their 

higher propensity for collision. This conclusion sits nicely with a recent explanation of DCD 

which is based on the constraints-based model of motor control (Newell, 1986); Wade & 

Kazeck (2016) state “For children with DCD, the functional constraints of task, environment 

and their understanding of their own limited motor abilities may be a key element in 

accounting for their documented motor difficulties” (pg 9). One final observation regarding 

circumvention is that velocity and acceleration in all three dimensions is higher in younger 

children compared to older children and adults. This may simply indicate a lack of ability in 

young children to specifically control momentum in one direction.  

 

Prior to obstacle trigger, although not related to anticipatory control, we have also shown that 

regardless of the possibility of an obstacle medio-lateral velocity is higher in individuals with 

DCD compared to typical individuals. This mirrors a previous finding that medio-lateral 

velocity (and acceleration) is higher in this same group of children with DCD compared to 

their peers (Wilmut, Du, & Barnett, 2016). In our previous paper we concluded that this 

increased medio-lateral velocity may suggest a deficit in the integration and use of sensory 

information to control gait (this is in line with the suggestion that medio-lateral movement 

during walking relies on the integration of sensory information while anterior–posterior 

movement relies on lower-level propriospinal actions (O'Connor & Kuo, 2009). Functionally 

this suggests that individuals with DCD may have less control over walking as they have 

difficulty integrating information about the environment.  

 

In the current study we have shown differences in the anticipatory mechanisms in individuals 

with DCD compared to typical individuals, with the individuals with DCD failing to show 

key components of anticipatory movement which we suggest are due to a cost-benefit trade 

off. Furthermore, we have provided preliminary evidence that a lack of anticipatory 

adjustments to step width may result in object circumvention which is less controlled.  
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Supplementary Table. Data for the three conditions before the sensor. Values are given for the three age 
groups and the two groups (DCD and TD). Standard deviation is given in brackets.  

 

No gate Gate open Gate close 

Adult 12-17yrs 7-11yrs Adult 12-17yrs 7-11yrs Adult 12-17yrs 7-11yrs 

Normalised velocity 

ML 

TD 
0.12 

(0.04) 

0.10 

(0.02) 

0.14 

(0.03) 

0.12 

(0.03) 

0.10 

(0.03) 

0.14 

(0.02) 

0.12 

(0.03) 

0.11 

(0.06) 

0.14 

(0.03) 

DCD 
0.12 

(0.04) 

0.13 

(0.04) 

0.17 

(0.08) 

0.12 

(0.04) 

0.13 

(0.05) 

0.19 

(0.11) 

0.12 

(0.03) 

0.13 

(0.03) 

0.17 

(0.08) 

AP 

TD 
1.41 

(0.20) 

1.38 

(0.12) 

1.72 

(0.19) 

1.44 

(0.18) 

1.41 

(0.24) 

1.73 

(0.16) 

1.44 

(0.18) 

1.45 

(0.38) 

1.73 

(0.22) 

DCD 
1.41 

(0.20) 

1.39 

(0.27) 

1.76 

(0.89) 

1.32 

(0.17) 

1.39 

(0.20) 

1.97 

(0.82) 

1.44 

(0.18) 

1.38 

(0.21) 

1.91 

(0.78) 

V 

TD 
0.19 

(0.03) 

0.20 

(0.06) 

0.25 

(0.05) 

0.18 

(0.03) 

0.22 

(0.14) 

0.25 

(0.05) 

0.19 

(0.04) 

0.26 

(0.23) 

0.25 

(0.06) 

DCD 
0.19 

(0.03) 

0.20 

(0.06) 

0.26 

(0.10) 

0.17 

(0.04) 

0.18 

(0.05) 

0.24 

(0.09) 

0.19 

(0.04) 

0.18 

(0.05) 

0.24 

(0.10) 

Normalised acceleration 

ML 

TD 
1.46 

(0.54) 

1.47 

(0.45) 

1.84 

(0.49) 

1.78 

(0.52) 

1.79 

(0.68) 

2.18 

(0.45) 

1.76 

(0.53) 

1.71 

(0.62) 

2.14 

(0.59) 

DCD 
1.46 

(0.55) 

1.69 

(0.47) 

2.26 

(1.09) 

1.68 

(0.68) 

1.93 

(0.43) 

2.49 

(0.91) 

1.76 

(0.53) 

1.83 

(0.42) 

2.49 

(0.88) 

AP 

TD 
1.65 

(0.32) 

2.37 

(0.20) 

3.06 

(0.48) 

1.94 

(0.37) 

2.13 

(1.00) 

3.33 

(0.57) 

1.97 

(0.38) 

2.07 

(0.84) 

3.34 

(0.68) 

DCD 
1.60 

(0.38) 

2.24 

(0.53) 

3.29 

(0.84) 

1.65 

(0.30) 

2.02 

(0.52) 

3.57 

(1.50) 

1.65 

(0.31) 

1.99 

(0.43) 

3.42 

(1.47) 

V 

TD 
2.51 

(0.60) 

2.84 

(0.39) 

3.81 

(0.79) 

2.61 

(0.58) 

2.74 

(1.36) 

3.92 

(0.74) 

2.65 

(0.57) 

2.66 

(1.42) 

3.91 

(0.90) 

DCD 
2.51 

(0.59) 

2.85 

(0.74) 

3.53 

(1.31) 

2.41 

(0.59) 

2.39 

(0.51) 

3.82 

(1.30) 

2.64 

(0.57) 

2.39 

(0.59) 

3.85 

(1.68) 

 

 

 




