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We present a three-dimensional non-iterative reconstruction algorithm developed for conductivity imag-
ing with real data collected on a planar rectangular array of electrodes. Such an electrode configuration
as well as the proposed imaging technique are intended to be used for breast cancer detection. The al-
gorithm is based on linearizing the conductivity about a constant value and allows real-time reconstruc-
tions. The performance of the algorithm was tested on numerically simulated data and we successfully
detected small inclusions with conductivities three or four times the background lying beneath the data
collection surface. The results were fairly stable with respect to the noise level in the data and displayed
very good spatial resolution in the plane of electrodes.

Keywords: Electrical Impedance Tomography (EIT); planar electrode arrays; breast cancer detection;
image reconstruction; inverse problem; ill-posed problem; linearisation

AMS Subject Classifications: 31B10; 45Q05; 47A52; 65F20; 65F22

1. Introduction

Electrical Impedance Tomography (EIT) is a technology used to image the distribution of elec-
trical properties such as conductivity and/or permittivity within an object using measurements of
electric currents and voltages on its surface. Since different materials display different electrical
properties, EIT can be used as a method of industrial, geophysical and medical imaging (see,
for example, [1] and the references therein). The application of EIT considered in this paper is
breast cancer imaging.

Breast cancer is routinely investigated by palpation, X-ray mammography or ultrasound imag-
ing with sensitivity rates of up to 90%. The diagnoses, however, yield rather unspecific results.
Only one in five biopsies of suspicious lesions leads to a malignant histological diagnosis [2],
causing unnecessary distress for the patient and significant delays in establishing a diagnosis.
Research is therefore aimed at developing alternative imaging techniques to diagnose malignant
breast tumours more accurately and possibly earlier. Since in vivo studies have discovered a dif-
ference of three times or more in the specific electrical conductivity and permittivity between
healthy and cancerous tissue [3–5], imaging the electrical properties of breast tissues could im-
prove the specificity of mammograms. The advantages (portability, low cost, little or zero pa-
tient discomfort, no known patient risk and no known side effects) of an impedance imaging
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(a) Real experimental setup (b) Thought experimental setup

Figure 1. Layout of the rectangular electrode array of the latest prototype developed at the University of Mainz in collaboration
with Oxford Brookes University: are the active electrodes used for current injection, and are the passive electrodes used
for potential measurements.

system over traditional X-ray mammography could make this technology a welcome addition to
the tools available in the fight against breast cancer. Although much research has been devoted
to both the theoretical and the practical developments of Electrical Impedance Mammography
[6–19], to date, the technique has not reached clinical acceptance because of its sensitivity to
measurement errors, high computational demands and practical issues: errors in electrode posi-
tions or boundary shape, high and uncontrollable contact impedance of the skin (variations of
20% or more).

Several EIT mammographic sensors have been developed recently at the University of Mainz
in collaboration with Oxford Brookes University. In contrast to most previous EIT instruments
designed for breast cancer detection [9], but similar to devices studied by [6, 7, 16, 18, 20, 21],
these mammographic sensors are planar. Detailed descriptions of earlier prototypes can be found
in [22, 23]. The latest design consists of a planar sensing head with 36 disk electrodes of equal
size arranged in a rectangular array of 20 outer (active) electrodes where the external currents
are injected, and 16 inner (passive) electrodes where the induced voltages are measured, see
Figure 1(a). To avoid any problems due to the unknown contact impedance, the voltages are not
measured at the active electrodes, but at the passive electrodes, very high impedance voltage
measurements are taken, and the problem of the unknown contact impedance does not arise.
These voltage measurements are relative to the systems ground. Moreover, the device has a
fixed geometry and the positions of the electrodes are exactly known.

Almost all previous EIT devices [6, 7, 9, 16, 18, 20, 21] use the same electrodes for current
injection and voltage measurement. The excitation current is injected (extracted) at one pair of
electrodes at a time and the resulting voltage is measured at all or some of the remaining elec-
trodes. The novelty of our EIT devices, and hence of the image reconstruction methods proposed
consists precisely in the distinct use of active and passive electrodes. The active electrodes are
used only for current injection while the passive electrodes only for voltage measurements.

In two-dimensions, two different non-iterative algorithms for imaging the conductivity at the
surface using the tomographs designed at the University of Mainz were described in [22, 23]. In
both cases numerical reconstructions had very good spatial resolution, and the algorithms were
robust with respect to errors in the data. A three-dimensional iterative reconstruction method
that enforced sparsity and used an adapted complete electrode model was also applied to these
devices in [24]. Although it produced good images, this iterative procedure proved to be quite
demanding computationally and sensitive to the choice of the regularization parameter.
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The purpose of the current paper is to respond to these issues i.e. the two-dimensional nature of
the first two algorithms and the numerical sensitivity of the sparsity algorithm, by developing a
simple, direct and rapid three dimensional reconstruction algorithm to image the region beneath
the rectangular electrode array. The proposed inversion technique is intended to be used in the
future for conductivity imaging using real data collected by the specific EIT device described
above. The reconstruction method is similar to an approach described in [21] and is based on
linearising the conductivity distribution about a constant approximation in order to reduce the
computational demands.

The structure of the paper is as follows. In Section 2, we present the mathematical formulation
of the inverse problem and of the method proposed to image the conductivity. Section 3 is dedi-
cated to the numerical implementation of the reconstruction algorithm. The performance of the
algorithm is illustrated by showing a number of reconstructions from simulated data in Section
4.

2. Mathematical formulation

Since the EIT sensor is much smaller than the human body to which it is applied, and given
the rapid decay of the induced potentials as we move away from the top surface (see equation
(3)), the mathematical analysis of breast cancer detection can be considered to be the inverse
conductivity problem of EIT on an unbounded domain, specifically the lower half space. Let
Ω = {(x, y, z) : z < 0} ∈ R3 be a conductive object with boundary Γ = {(x, y, z) : z = 0}
and Q ⊂ L∞(Ω) be a set of uniformly strictly positive parameters. Suppose that σ ∈ Q is an
isotropic scalar electrical conductivity distribution and that there are no current sources inside
Ω. A set of L electrodes is placed on Γ in a rectangular array. Let {el}Ml=1 be the set of passive
electrodes (voltage measurement) and {el}Ll=M+1 be the active electrodes (current injection). If
low-frequency currents are applied to the active electrodes, the electric potential u satisfies the
generalized Laplace equation

∇ · (σ(x, y, z)∇u(x, y, z)) = 0 in Ω , (1)

subject to the boundary condition

σ(x, y, 0)
∂u

∂z
(x, y, 0) = j(x, y) on Γ, (2)

where j is the induced current density distribution.
In this paper we restrict our analysis to currents j ∈ L2

�(Γ) with bounded support and to weak
solutions u ∈ H of equation (1) in the lower half-space Ω for which the following point-wise
estimates hold uniformly with respect to the direction of x = (x, y, z):

|u (x)| = O (1/‖x‖) as ‖x‖ → ∞ , (3)

and ∣∣∣∣∂u∂ζ (x)

∣∣∣∣ = O (1/ (‖x‖)) as ‖x‖ → ∞ for ζ = x, y, z . (4)

Here, L2
�(Γ) denotes the space of L2-functions with vanishing integral mean on Γ and H =

H1,α(Ω) is a completion of suitable C∞-functions with respect to the norm ‖ ·‖1,α parametrised
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by the weight function ρα (x, y, z) = (1 + ‖x‖)α with α > 1. Further details on the definition
of the weighted Sobolev spaces H1,α(Ω) and on the derivation of these asymptotic estimates
can be found in [25].

The weak formulation for the boundary value problem (1)-(2) and its properties are well
known. However, we will use the same formulation as in [25], i.e. a function u ∈ H is called a
weak solution of this Neumann boundary problem if

T (σ, u, v) = Lj(v), for any v ∈ H , (5)

where the trilinear form T : L∞(Ω)×H×H → R and the linear form Lj : H → R are defined
by

T (σ, u, v) =

∫
Ω
σ∇u · ∇v dV , (6)

Lj(v) =

∫
Γ
jv dS . (7)

Hence, the solution of the Neumann boundary value problem (1)-(2) is given by u = T−1
σ Lj ,

where T−1
σ ∈ L(H∗,H), the inverse of T (σ, ·, ·), exists and is bounded and continuous [26, 27].

Since in our application the voltages are not measured at the active electrodes, the ave-gap
electrode model [12] can be used. We, therefore, assume that the current density is uniformly
distributed over each active electrode and that it is zero outside of the support of all active
electrodes. Hence, we approximate j in equation (2) by

j(x, y) =

{
Il/Al , (x, y) on el , l = M + 1, . . . , L

0 , otherwise , (8)

where Il is the current sent to the lth active electrode el and Al is the area of el.
In our experimental setup, a basis of current patterns {I1, . . . , IL−M−1} is applied to the

set of L − M active electrodes {el}Ll=M+1. For each current pattern Ik =
(
IkM+1, . . . , I

k
L

)
,

k = 1, . . . , L −M − 1, the resulting potentials Uk =
(
Uk1 , . . . , U

k
M

)
are measured at the set

of M passive electrodes {el}Ml=1. The ave-gap model predicts the voltage measured on each
electrode as the average of the solution uk to (1), (2) and (8) with j = jk over the surface of the
electrode:

Ukl =
1

Al

∫
el

uk(x, y, 0)dS , l = 1, . . . ,M . (9)

The inverse problem is to estimate the conductivity σ(x, y, z) from all L − M − 1 linearly
independent sets of surface measurements.

The reconstruction algorithm presented in this paper is based on the assumption that the spa-
tially varying conductivity is a small perturbation from a constant and known background con-
ductivity σ0, i.e.

σ(x, y, z) = σ0 + δσ(x, y, z) , (10)

where σ = σ0 near Γ. Let us also express the corresponding potential u in terms of u0, the
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solution of (1), (2) and (8) for σ = σ0, as

u(x, y, z) = u0(x, y, z) + δu(x, y, z) . (11)

It is shown in [26, 27] that both the parameter-to-solution map

Aσ : Q→ H , σ 7→ T−1
σ Lj . (12)

and the complete parameter-to-solution map (i.e. forward operator for a single measurement
with current density j)

Aj : Q→ L2,α
� (Γ) , σ 7→ γ ◦ T−1

σ Lj , (13)

are analytic on each uniformly strictly positive open setQ. It therefore follows that δu = O (δσ)

in Ω. Here, γ : H → L2,α
� (Γ) is the trace operator andL2,α

� is the weightedL2
�-space with respect

to ρα.
Our method now follows the approach of Calderón [28]. Inserting equations (10) and (11) into

(1) and simplifying leads to the following linearised equation

∇ · σ0∇δu+∇ · δσ∇u0 = O (δσ) . (14)

We choose a test function v0 ∈ H that is the solution of the following boundary value problem:

∇ · (σ0∇v0(x, y, z)) = 0, in Ω, (15)

σ0
∂v0

∂z
(x, y, 0) = j̃(x, y) =

{
Ĩl/Al , (x, y) on el , l = 1, . . . ,M

0 , otherwise ,
, (16)

where Ĩl is a simulated current applied at the lth passive electrode. More explicitly, u0 is the
(weak) potential created in Ω if it consisted of a material of constant conductivity σ0, while v0

is the induced (weak) potential when currents are applied to this object of uniform conductiv-
ity distribution but reversing the roles of the active and passive electrodes. An illustration of
the thought experimental setup corresponding to the homogeneous forward problem (15)-(16)
is presented in Figure 1(b). There are M − 1 linearly independent simulated current patterns
{Ĩ1, . . . , ĨM−1}, where Ĩi =

(
Ii1, . . . , I

i
M

)
, that can be applied to the M passive electrodes.

We now multiply the expression in equation (14) by this test function v0 and integrate over Ω.
Applying Gauss’s divergence theorem [29] and taking into account the asymptotic behaviour of
weak solutions of (1) and (15) given by equations (3)-(4) yields∫

Γ
n · v0 (σ0∇δu+ δσ∇u0) dS =

∫
Ω

(σ0∇v0 · ∇δu+ δσ∇v0 · ∇u0) dV +O(δσ) , (17)

where n is the outward normal unit vector.
Furthermore, multiplying equation (15) by δu ∈ H and repeating the same steps as above, we

obtain ∫
Γ
n · (σ0δu0∇v0) dS =

∫
Ω
σ0∇δu · ∇v0 dV . (18)
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Inserting this result in equation (17) gives∫
Γ
n ·v0 (σ0∇δu+ δσ∇u0) dS =

∫
Γ
n ·(σ0δu∇v0) dS+

∫
Ω
δσ∇v0 ·∇u0 dV +O(δσ) . (19)

Since both u and u0 satisfy the same Neumann boundary condition (2), it follows that
n · (σ0∇δu+ δσ∇u0)|Γ +O(δσ) = 0 and equation (19) becomes∫

Γ
n · (σ0δu∇v0) dS = −

∫
Ω
δσ∇v0 · ∇u0 dV +O(δσ) . (20)

Within this setting, for fixed Neumann data n · σ0∇u0|Γ = j, equation (20) expresses in weak
form the change in the Neumann-to-Dirichlet map which occurs due to a change in σ0 for some
test function v0 ∈ H that is the solution of equation (15) with Neumann trace n · σ0∇v0|Γ =

j̃ ∈ L2
�(Γ).

Equation (20) is true for any uk and uk0 , (weak) solutions of equation (1) for a given current
pattern jk applied to the active electrodes, and for any vi0, (weak) solution of equation (15)
subject to a current density j̃i corresponding to the i-th simulated current pattern Ĩi applied
at the passive electrodes and given by equation (16). Thus, the linearised problem (20) can be
approximated by the following system of equations

M∑
l=1

∫
el

(
uk0 − uk

)
j̃i dS ≈

∫
Ω
δσ∇vi0 · ∇uk0 dV ,

k = 1, . . . , L−M − 1 and i = 1, . . . ,M − 1 . (21)

Using the ave-gap model for the electrodes, the inverse problem becomes that of finding the
perturbation δσ satisfying the following system of equations

M∑
l=1

(
Uk0,l − Ukl

)
Ĩil =

∫
Ω
δσ∇vi0 · ∇uk0 dV ,

k = 1, . . . , L−M − 1 and i = 1, . . . ,M − 1 , (22)

where

Uk0,l =
1

Al

∫
el

uk0(x, y, 0)dS . (23)

The left-hand side of (22) contains only measured and simulated quantities, Ukl and Uk0,l, respec-
tively, and will be denoted by B(i, k), i.e.

B(i, k) =
M∑
l=1

(
Uk0,l − Ukl

)
Ĩil . (24)

A further simplification that can be introduced to aid the image reconstruction process comes
from the fact that our objective is to identify a small object(tumour) of uniform conductivity
lying within a region (breast tissue) of uniform, but different and known, conductivity. We may
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therefore assume that the conductivity is piecewise constant. In this case the half-space can be
approximated by voxels, {Vn}∞n=1, and thus

δσ(x, y, z) =
∞∑
n=1

δσnχn(x, y, z) ,

where χn is the characteristic function over the nth voxel, i.e.

χn(x, y, z) =

{
1 , (x, y, z) ∈ Vn ,
0 , otherwise ,

However, in practice, we only have a finite number of measurements and, hence, we can recon-
struct the conductivities of a finite number N of voxels, where N ≤ (L−M − 1)× (M − 1).
In this case, equation (22) reduces to an over-determined linear system of equations

B(i, k) =

N∑
n=1

A(i, k, n)δσn , k = 1, . . . , L−M − 1 and i = 1, . . . ,M , (25)

where

A(i, k, n) =

∫
Vn

∇vi0 · ∇uk0 dV . (26)

Note that the matrix A is independent of the measured voltage data and it can be computed in
advance and stored for use with other reconstructions in the same geometry.

Since, the linearized system of equations (25) inherits ill-posedness from the original nonlin-
ear inverse conductivity problem, the matrix A is ill-conditioned and regularization is required.
The system of equations (25) is therefore solved by means of generalized inverse and truncated
singular value decomposition was used as the regularization scheme [31]. In this way very small
singular values (i.e. smaller than a certain threshold ε) will be neglected and will not enter in the
reconstruction.

3. Numerical implementation

3.1. Electrode and voxel configuration

As described earlier, our planar array of electrodes is rectangular and consists of L (= 36) cir-
cular electrodes of radius rl (= 3.5mm), l = 1, . . . , L, which are equally spaced. The distance
between the centres of two adjacent electrodes is d (= 12mm). There are M (= 16) passive
(inner) electrodes and L −M (= 20) active (outer) electrodes. The terms outer and inner are
relative to the positions of the electrodes in the array. As seen in Figure 1(a), all the electrodes
located on the boundary of the rectangular array are active, while the remaining ones are pas-
sive. At this point, it is important to note that this electrode configuration not only provides a
simpler geometry than the hexagonal pattern of the earlier prototypes in [22, 23], but for some
electrical impedance imaging problems in geophysics, archaeology, medical diagnosis and in-
dustrial plant control, an appropriate electrode geometry may be that of a rectangular array of
electrodes placed on a surface plane. For example, rectangular electrode configurations have
been employed before for medical applications such as: breast cancer detection [6, 7, 21, 32],

7



(a) Three-dimensional view (b) Two-dimensional view

Figure 2. Voxel configuration: are the active electrodes, are the passive electrodes, and P1− P5 denote the positions
in the xy-plane where inclusions were placed in our numerical simulations.

respiratory monitoring, functional imaging of the digestive system and peripheral venography
[33], or for engineering and environmental studies (e.g. [34] and the references therein).

For the numerical implementation of our algorithm, we use a layered voxel configuration
similar to the one introduced in [21] and it is depicted in Figure 2(a). There are 52 inner voxels
in each layer:

36 small inner voxels aligned immediately under the electrodes of dimensions 12mm ×
12mm× 2mm, and

16 outer large voxels arranged around the boundary of the electrode array of dimensions
24mm× 24mm× 2mm (i.e. the same height, 2mm, but four times the volume of a small
voxel).

Although our interest is to image the conductivity in the region under the electrode array, the
voxel configuration has to model, nevertheless, an unbounded domain. The reason for intro-
ducing the outer large voxels is to achieve this in a practical manner. As mentioned in Sec-
tion 2, the total number of voxels should satisfy N ≤ (L − M − 1) × (M − 1) = 285.
Hence, since there are 52 voxels per layer, we cannot consider more than 5 layers of voxels
(i.e. N = 5 × 52 = 260 ≤ 285). Note that the number of voxels per layer is determined by
the geometry of the electrode array, while the total number of layers is constrained by the num-
ber of active and passive electrodes, i.e. the total number (=285) of possible combinations of
measured and simulated currents. The height of each voxel layer, however, is not fixed and it
can be adjusted to allow conductivity reconstructions up to the required depths. Most of breast
tumours are located near the skin surface [35]. The results of a clinical study of single-breast
lesions located at least 0.5cm from the skin surface and pectoralis margin and at least 2.0cm
from the nipple showed that the mean distance from the skin surface to the lesion was 0.9cm
(range, 0.5 − 1.7cm) [36]. Therefore, in this approach we chose a voxel configuration which
allows reconstructions up to a depth of 1cm (=5 layers×2mm).

3.2. Computation of matrix A

Before we discuss the construction of matrix A in (26), we need to address the problem of
computing the potentials u0 and v0 for a homogeneous medium.

Let P = (x, y, z) be an interior point in Ω, Q0 = (x′, y′, 0) be a point on the boundary Γ and
Ql = (xl, yl, 0) be the centre of lth electrode. For a constant conductivity distribution σ0, the
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solutions of the two theoretical forward problems, defined by (1), (2) and (8) with j = ji and
(15)-(16) with j̃ = j̃k, are straightforward [29]:

uk0(x, y, z) =
1

2πσ0

∫
Γ

1

rPQ0

jk(x′, y′) dx′ dy′

=
1

2πσ0

L∑
l′=M+1

Ikl′

Al′

∫
el′

1

rPQ0

dx′ dy′ , k = 1, . . . , L−M − 1 , (27)

and, respectively,

vi0(x, y, z) =
1

2πσ0

∫
Γ

1

rPQ0

j̃i(x′, y′) dx′ dy′

=
1

2πσ0

M∑
l=1

Ĩil
Al

∫
el

1

rPQ0

dx′ dy′ , i = 1, . . . ,M − 1 , (28)

where rPQ0
= |P −Q0| =

√
(x− x′)2 + (y − y′)2 + z2.

In order to compute the entries of the matrix A, we have to discretize the volume integral in
(26). To this end, we follow the same approach as in [21] and we divide each of the voxels into
m subvoxels V j

n (j = m = 1 for the inner voxels and j = 1, ...,m = 4 for the outer ones).
Thus, there will be 100 subvoxels of equal volume per layer. The volume of the jth subvoxel of
the nth voxel V j

n is, therefore, V oljn = 12× 12× 2 = 288mm3. Using this dicretization, and the
expressions for uk0 and vi0 given by equations (27) and (28), we obtain the following expression
for the entries of the matrix A by evaluating the integral (26) at the points P jn, the centres of
subvoxels V j

n :

A(i, k, n) =
m∑
j=1

V oljn
(2πσ0)2

M∑
l=1

L∑
l′=M+1

Ĩil I
k
l′

AlAl′
×[

∇P
∫
el

1

rPQ0

dx′ dy′
]
P=P j

n

·
[
∇P

∫
el′

1

rPQ0

dx′ dy′
]
P=P j

n

. (29)

In order to evaluate these entries, we have to compute

∇P
∫
el

1

rPQ0

dx′ dy′ = ∇P
∫
el

1

|(P −Ql)− (Q0 −Ql)|
dx′ dy′ , for l = 1, . . . , L . (30)

These quantities were computed analytically by converting the integrals to cylindrical coordi-
nates as follows. Let (r, θ, z) and (s, ϑ, 0) be the cylindrical coordinates of P̃ = P − Ql and
Q̃0 = Q0 − Ql, respectively. Specifically, Q̃ = (x̃, ỹ, 0), where x̃ = x′ − xl = s cos(ϑ) and
ỹ = y′ − yl = s sin(ϑ). Then, rPQ0

can be expressed in cylindrical coordinates as

rPQ0
= |P̃ − Q̃| =

√
r2 + s2 − 2rs cos(ϑ− θ) + z2 . (31)
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It is clear from symmetry that the following integral is independent of the polar angle θ, i.e.∫
el

1

rPQ0

dx′ dy′ =

∫ rl

0

∫ 2π

0

1√
r2 + s2 − 2rs cos(ϑ− θ) + z2

s ds dϑ

=

∫ rl

0

∫ 2π

0

1√
r2 + s2 − 2rs cosϑ+ z2

s ds dϑ . (32)

Hence,

∇P
∫
el

1

rPQ0

dx′ dy′ =

(
er
∂

∂r
+ ez

∂

∂z

)∫ rl

0

∫ 2π

0

1

rPQ0

s ds dϑ , (33)

with

∂

∂r

∫ rl

0

∫ 2π

0

1

rPQ0

s ds dϑ = 2

√
rl
rκ

[2E (κ)− (2− κ)K (κ)] , (34)

and

∂

∂z

∫ rl

0

∫ 2π

0

1

rPQ0

s ds dϑ =
1

2

√
κ

rrl

[
4zK (κ)− 2i×

(
(r − rl − iz)Π

(
2rl

r + rl − iz

∣∣∣∣κ)
+ (−r + rl − iz)Π

(
2rl

r + rl + iz

∣∣∣∣κ))] , (35)

where κ = 4rrl
(r+rl)2+z2 , and K(κ), E(κ) and Π(n|κ) are the complete elliptic integrals of first,

second and third kind, respectively. Further details about these special functions can be found
in [38]. Both the r-component and the z-component of the gradient given by equations (34)
and (35), respectively, are real valued functions. However, due to numerical inaccuracies in the
computer algorithms used to evaluate these functions, there are always some residual imaginary
parts in the order of the machine precision. To overcome this issue, only their real parts are
considered in further computations.

Note that although in our implementation we preferred to use the above closed form expres-
sions, all these integrals could also be evaluated to great accuracy by using a numerical quadra-
ture method such as boundary elements (see, for example, [37]). This would be more consistent
with the numerical experiments where the forward model is a bounded domain but at the cost of
increased computation time.

3.3. Construction of matrix B

For the construction of matrix B given by equation (24), we need the measured and simulated
voltages, Ukl and Uk0,l, respectively.

In practice, the voltages Ukl are known experimental data. However, as no real data is yet
available, in this paper we simulate the measured voltages numerically as explained in Section
4.

In order to find the values of the simulated voltages Uk0,l given by equation (23), we need to
compute first uk0 (x, y) = uk0 (x, y, z = 0) by evaluating the expression in equation (27) at z = 0.
To this end, we use the same change of variables as in subsection 3.2 and equation (32). Note
that due to the symmetry considerations of the integral (32), the solution uk0 is also independent
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of the polar angle θ. Hence, uk0 (r, θ, z = 0) = uk0 (r), and we obtain

uk0 (r) =
1

2πσ0

L∑
l′=M+1

Ikl′

Al′

∫ rl′

0

∫ 2π

0

1√
r2 + s2 − 2rs cosϑ

s ds dϑ , k = 1, . . . , L−M − 1 .

(36)
The integral in equation (36) can be computed analytically, i.e.∫ rl′

0

∫ 2π

0

1√
r2 + s2 − 2rs cosϑ

s ds dϑ =

2 (r + rl′)E

(
4 r rl′

(r + rl′)
2

)
− 2 (r − rl′)K

(
4 r rl′

(r + rl′)
2

)
. (37)

Once the currents applied at the active electrodes Ikl′ are known from measurements, uk0 can be
estimated in a straightforward way using equations (36)-(37) at different points on the surfaces of
passive electrodes el, l = 1, · · · ,M , and then obtain Uk0,l by evaluating numerically the integral
in equation (23).

The simulated currents Ĩi =
(
Ĩi1, . . . , Ĩ

i
16

)
, i = 1, . . . ,M − 1 = 15, are assumed to be

standard linearly independent trigonometric current patterns, i.e.

Ĩil =

{
cos
(
i(l − 1)2π

M

)
, i = 1, . . . , bM2 c ,

sin
((
i− bM2 c

)
(l − 1)2π

M

)
, i = bM2 c, . . . ,M − 1 ,

(38)

and l = 1, . . . ,M .

4. Numerical examples

In this section, we present some reconstructions obtained by applying the above reconstruction
algorithm to simulated data. The setup of our numerical tests mimicked closely the laboratory
experiments presented in [23, 24]. We considered a rectangular tank of lengthL (= 15cm), width
W (= 15cm) and height H (= 7.5cm) which contained an isotropic medium of conductivity
approximately equal to that of healthy breast tissue, σ0 = 200mS/m. The rectangular array of
electrodes was placed at the centre of the top of the tank (i.e. z = 0cm). The dimensions of
the tank were much larger than those of the electrode array (0.72cm×0.72cm) and of the voxel
configuration (12cm×12cm×1cm) used for conductivity reconstructions, thus approximating an
infinite half space.

Cylindrical inclusions of radii R15 = 1.5mm, R25 = 2.5mm and/or R35 = 3.5mm, heights
h = 5mm and conductivities σ = 800mS/m or 600mS/m were then placed on below posi-
tions P1 − P5 in the xy-plane (see Figure 2(b)) and at different depths z. Note that the largest
cylindrical object R35 has the same radius as the electrodes, while the other two, R25 and R15,
have much smaller radii. P1, P2 and P5 in Figure 2(b) are positions directly below a passive
electrode, while P4 and P5 are positions between the passive electrodes.

To simulate the measured values of the potential on the boundary we first had to solve the
direct problem (1)-(8). In order to avoid inverse crimes and to test the robustness of our inversion
techniques we used EIDORS [39] as a forward solver. EIDORS is a finite element software
package which has no connection with the reconstruction method under consideration. Current
patterns similar to those defined in equation (38) were applied at the active electrodes, Ik =(
Ik21, . . . , I

k
36

)
, k = 1, . . . , L −M − 1 = 19. The direct problem was solved for each of the
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nineteen different current patterns and we obtain the values of the corresponding voltages at the
passive electrodes Uk =

(
Uk1 , . . . , U

k
20

)
, k = 1, . . . , 19, by interpolating the numerical solution

at points on the surface of the electrodes and evaluating numerically the integral in equation
(9). This was the data used by our reconstruction algorithm. The conductivities of all N = 260
voxels were obtained by inverting the over-determined linear system of equations (25). In the
numerical examples considered, singular values smaller than ε = 10−5 were cut off (i.e. 35
singular values were used in the reconstructions).

In EIT a noise level of 1% is reasonable in many circumstances, but in some medical applica-
tions greater accuracy can be achieved [40]. However, since our reconstruction method is quite
stable with respect to the noise level in the data, in all the numerical examples discussed below,
we present reconstruction results for data with 2% additive Gaussian random errors. Note that
in all figures presented below the colour ranges are the same for each subplot. Moreover, the
homogeneity properties of the proposed algorithm are good as, although not displayed here, we
were able to reconstruct an uniform distribution of conductivity of 200mS/m using simulated
data for the tank with no inclusions.

In Figures 3, 4 and 5, we present the conductivity reconstructions for the medium size cylindri-
cal object of radius R25 and conductivity 800mS/m (i.e. four times higher than the background
conductivity) placed below position P1 (i.e. below an electrode and next to an active electrode)
and at depths z = −2, −3 and −6mm, respectively, from the array of electrodes. The position
of the inclusion in the xy-plane was successfully recovered in all three cases but the recon-
structed conductivity values were smaller than the actual conductivity values. This difficulty in
recovering the amplitude of high contrast conductivities is a common feature of EIT lineari-
sation methods, see for example [21, 22, 41]. We also found that estimating the depth of the
inhomogeneity was more ill-posed than reconstructing its position in the xy-plane. For an inclu-
sion placed at this position, the values of the reconstructed conductivities at position P1 were
larger in the upper voxel layers with a maximum value attained in the second layer irrespective
of the depths of the inclusions. However, the deeper the object, the smaller the values of the
reconstructed conductivity. This suggests that some information about the depth location of the
inclusions is present in the data, but as seen from Figures 3(f) and 4(f) there is limited informa-
tion about objects’ heights as it seems as if the inclusion extends over all five voxel layers. This
conclusion is in agreement with our findings in [24].

To test the spatial resolution of our algorithm, we placed cylindrical inclusions of conductivity
800mS/m and of different radii R35, R25 and R15 at position P2 (i.e. below an electrode, but
further away from the active electrodes) and depth z = −3mm. The numerical results can be
found in Figures 6, 7 and 8, respectively. Similar to the previous numerical experiments, the
position of the inclusion in the plane of electrodes was well characterized. The values of the
reconstructed conductivities at position P2 were also smaller than the true ones, but overall
larger in the upper voxel layers with a maximum value attained in the first layer in this case.
Moreover, as expected, the smaller the size of the inhomogeneity, the smaller were the values
of the reconstructed conductivity. Note that, by using the electrode array and the experimental
setup under consideration as well as the proposed three-dimensional reconstruction algorithm,
we managed to detect inhomogeneities which are much smaller in size (i.e. a cylinder of radius
R15 and height 5mm whose conductivity is only four times higher than the background) and up
to larger depths than in [21, 23, 24].

When a cylindrical inhomogeneity of radius R25 and of conductivity 800mS/m was placed
on a position between two electrodes, P3, or in the middle of four neighbouring electrodes,
P4, then the conductivity of all two or four adjacent voxels was much larger than that of the
background, see Figures 9 and 10.

Next we demonstrate that the detection of a small conductive inhomogeneity is not affected
by the presence of a more resistive tissue layer (i.e. the skin) at the surface. To this end, we
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(a) Voxel Layer 1 (b) VoxelLayer 2 (c) VoxelLayer 3

(d) VoxelLayer 4 (e) VoxelLayer 5 (f) σ(|z|) at P1

Figure 3. Conductivity reconstructions for a cylindrical object of radius R25 of conductivity 800mS/m placed at position P1 and
z = −2mm. The thick continuous line in (e) marks the position and the height of the inclusion along the z-axis.

included a 2mm thick resistive layer of conductivity 50mS/m layer directly under the surface.
A cylindrical object of radius R35 was positioned at P1 and z = −4mm. As seen from the
numerical reconstructions presented in Figure 11, the presence of the object is visible and its
position in the xy-plane is well characterized.

The final simulations included in the paper consist of reconstructions of two conductive ob-
jects of radii R25 and R15 placed at positions P5 and P6, respectively, and at the same depth
(z = −3mm). Firstly, in Figure 12 we present the results obtained when the two inclusions have
the same conductivity (800mS/m). In this case, the presence of the smaller cylindrical object
(R15) is slightly shielded by the larger object (R25). Then, in Figure 13 we show the recon-
structions of objects of different conductivities (600mS/m and 800mS/m, respectively) when the
presence of the smaller object is more pronounced.

5. Conclusion

In this article we have presented a three-dimensional non-iterative reconstruction method de-
veloped for conductivity imaging in breast cancer detection using real data from a planar EIT
device developed at the University of Mainz in collaboration with Oxford Brookes University.
The head of the sensor contains both active electrodes, where standard trigonometric current
patterns are applied, and passive electrodes, where the induced voltages are measured, arranged
in a rectangular array. A finite region beneath the surface was discretised into voxels of different
sizes depending on their position relative to the electrode array and their conductivities were de-
termined from the data measured on the electrode array. The reconstruction algorithm is based
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5 (f) σ(|z|) at P1

Figure 4. Conductivity reconstructions for a cylindrical object of radius R25 of conductivity 800mS/m placed at position P1 and
z = −3mm. The thick continuous line in (e) marks the position and the height of the inclusion along the z-axis.

on linearizing the conductivity about a constant value. It is simple, direct and fast, and it allows
reconstructions in real-time.

The performance of the algorithm was tested on numerically simulated data. Small inclusions
of various conductivities placed at several depths were detected and their positions in the plane
of the electrode array were successfully recovered. Although the depth resolution is rather poor,
the reconstructions have good spatial resolution in the xy-plane and are quite stable with respect
to the noise level in the data. The most relevant feature is the fact that it can detect smaller
objects up to larger depths than the other two-dimensional non-iterative approaches developed
for similar planar EIT devices in [23, 24]. In future, we plan to obtain reconstructions from
real data and try to improve the depth resolution of the algorithm by possibly imposing a priori
and/or a posteriori sparsity constraints on the reconstructed conductivity values in each voxel.
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Figure 8. Conductivity reconstructions for a cylindrical object of radius R15 of conductivity 800mS/m placed at position P2 and
z = −3mm. The thick continuous line in (e) marks the position and the height of the inclusion along the z-axis.
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5

Figure 9. Conductivity reconstructions for a cylindrical object of radius R25 of conductivity 800mS/m placed at position P3 and
z = −3mm.
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5

Figure 10. Conductivity reconstructions for a cylindrical object of radius R25 of conductivity 800mS/m placed at position P4 and
z = −3mm.
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5 (f) σ(z) at P2

Figure 11. Conductivity reconstructions for a cylindrical object of radius R35 of conductivity 800mS/m placed at position P1 and
z = −4mm in the presence of a resistive medium (50mS/m) in Voxel Layer 1. The thick continuous line in (e) marks the position
and the height of the inclusion along the z-axis.
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5

Figure 12. Conductivity reconstructions for two cylindrical objects of radii R25 and R15 of conductivities 800mS/m placed at
positions P5 and P6, respectively, and z = −3mm.
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(a) Voxel Layer 1 (b) Voxel Layer 2 (c) Voxel Layer 3

(d) Voxel Layer 4 (e) Voxel Layer 5

Figure 13. Conductivity reconstructions for two cylindrical objects, one of radiusR25 and of conductivity 600mS/m, and the other
of radius R15 and of conductivity 800mS/m, placed at positions P5 and P6, respectively, and z = −3mm.
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