
Transaction processing 
in consistency‑aware user’s applications 
deployed on NoSQL databases
María Teresa González‑Aparicio1, Adewole Ogunyadeka2, Muhammad Younas2*, Javier Tuya1 
and Rubén Casado3

Background
Data storage and processing needs of modern Internet services such as social networks, 
online shopping, data analytics and visualization have necessitated new kind of storage 
systems, called NoSQL (Not Only SQL) databases. Such databases use new techniques 
that support parallel processing and replication of data across multiple nodes in order to 
ensure improved performance and availability of data [1].

Unlike relational databases [2], NoSQL databases process and manage big data which 
is characterised by 3Vs (Volume, Variety, Velocity) [3]. NoSQL databases are required 
to support a variety of applications that need different levels of performance, consist-
ency, availability and scalability [4]. For example, social media such as Twitter and Face-
book [5] generate terabytes of daily data which is beyond the processing capabilities of 
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relational databases. Such applications need high performance but may not need strong 
consistency.

Different vendors design and implement NoSQL databases differently. Indeed, there 
are different types of NoSQL databases such as document databases, key-value data-
bases, column stores and graph databases. But their common objective is to use data 
replication in order to ensure high efficiency, availability and scalability of data. Majority 
of NoSQL databases support eventual consistency instead of strong consistency. They do 
not support database transactions which ensure strong data consistency. Eventual con-
sistency guarantees that all updates will reach all replicas after a certain delay. It works 
for certain applications such as social media, advertisement records, etc. But some of 
the user’s applications need strong data consistency. That’s, bank account data must be 
consistent whenever any updates are made to data. In other applications, such as online 
multiplayer gaming applications usually store profile data of a large number of users that 
require strong consistency. Therefore, NoSQL databases would be useful for managing 
data in such applications. However, the lack of support for transactions, table joins and 
referential integrity in NoSQL databases, mean that they are not suitable for applications 
such as banking, online gaming, etc. Such applications require all data replicas should be 
made instantly consistent and applications should have the latest version of the data in 
the case of any updates.

The work presented in this paper is built on our ongoing project on NoSQL databases 
[6, 7]. This paper investigates into the transaction processing of the two representatives 
and widely used NoSQL Document and Key-value databases; MongoDB and Riak. Mon-
goDB is used by various industries and organizations such as Bosch, CERN, eBay, Expe-
dia, etc. Similarly, Riak is used by Best Buy, NHS (U.K.), ShopKeep and so on. MongoDB 
and Riak follow different models and design principles. The former follows document 
database model while the latter is a key-value database.

We propose new transaction models (or schemes) in order to provide NoSQL data-
bases with transactional aspects as well as to analyze the effects of transactions on 
data consistency and efficiency. Implementing transactions in NoSQL databases is not 
trivial. The 3Vs characteristics of NoSQL databases make it difficult to apply transac-
tion models. Similarly, the distinct underlying models and design principles significantly 
complicate the process of transaction processing in NoSQL databases. Building transac-
tion models and implementing them involve various factors. Transactions must adhere 
to certain transaction properties or correctness criteria such as Atomicity, Consistency, 
Isolation, Durability (ACID), semantic atomicity, eventual consistency and so on [6]. 
They should cater for concurrent execution of requests accessing and modifying shared 
data. Locking, optimistic protocols, and Snapshot Isolation are some of the possible 
techniques used to ensure concurrency in databases. It is also required to provide ways 
for recovering transactions from failures in order to maintain the correctness of applica-
tions and data, for example, using forward or backward recovery mechanisms. Our work 
focuses on implementing transaction properties and the concurrency aspects. Recovery 
is crucial to transaction processing but it is beyond the scope of this paper.

The main contributions of this paper are described as follows.
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  • It examines the characteristics, types, models, and architectures of NoSQL data-
bases. The objective is to offer an insight into the issues that impede transaction pro-
cessing in NoSQL databases.

  • It develops new systems in order to implement transactions in two different NoSQL 
databases, MongoDB and Riak, which are widely used in the industry. The new sys-
tems provide such databases with stronger consistency.

  • It evaluates the proposed transaction schemes using the YCSB+T benchmark [8] 
which is based on Yahoo! Cloud Services Benchmark (YCSB). Evaluation provides 
interesting results and observations:

  • The proposed systems ensure strong consistency in MongoDB and Riak.
  • Explore the effect of strong consistency on the efficiency in MongoDB and Riak.
  • Analyse the level of consistency in two MongoDB and Riak.

The remainder of the paper is structured as follows. “Analysis of NoSQL databases” 
section presents an analysis of the NoSQL databases and identifies issues related to 
transaction processing in such databases. “Related work” section reviews related work. 
“The transaction model and properties” section presents the proposed transaction 
model and transaction properties. “Transactional system for MongoDB” and “Transac-
tional system for Riak” sections respectively describe the implementation of transactions 
in MongoDB and Riak. “User application scenarios” section describes the evaluation 
process and results. “Evaluation benchmark and experiments” section concludes the 
paper.

Analysis of NoSQL databases
NoSQL databases are designed in order to store, process and manage big data which is 
generally characterised by 3Vs (Volume, Variety, Velocity). Volume refers to the amount 
of data being stored and processed. NoSQL big data is always growing and is very large 
in size, for example, in Petabytes and Exabyte. Such data is replicated across different 
nodes and is processed in parallel. Variety refers to the various kinds of data structures 
such as structured, semi-structured and unstructured data. NoSQL databases do not 
have (rigid) schema structures and can handle de-normalized data. Velocity represents 
the speed at which data is generated (from different sources) and is captured or pro-
cessed by the NoSQL databases.

Based on the characteristics of data and applications, various kinds of NoSQL data-
bases have been developed. Different NoSQL databases follow different data models and 
architectures.

Data models and types of NoSQL databases

Depending on the type of application requirements, different types of NoSQL data-
bases implement the 3Vs characteristics differently. Unlike relational databases, which 
are built on sound mathematical and theoretical model [2], NoSQL databases do not 
have standard or widely accepted model. Despite the differences in the design of differ-
ent NoSQL databases, they all have simple data model and do not support transactions. 
They lack support for complex queries such as joins across tables. While relational data-
bases rely heavily on normalization and referential integrity, NoSQL databases are not 
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strictly normalized. Generally, NoSQL databases do not implement multi-key transac-
tions. A multi-key transaction is an operation that involves multiple data items, which 
are atomically grouped and processed in a single operation. Most NoSQL databases offer 
simple put and get operations which usually involve a single key operation. The most 
common types of NoSQL databases are as follows:

  • Documents databases: These databases typically store data in a JSON-like (JavaScript 
Object Notation) structure. Each document contains one or more fields. Each docu-
ment has an associated key and documents are allowed to have different field attrib-
utes. Examples of document databases include, MongoDB and CouchDB.

  • Key-value databases: These are the most basic form of NoSQL databases where each 
record is stored as a key-value pair with the value being opaque to the system. As 
such, each record can only be queried by the key which ensures fast access to keys. 
Examples of key-value databases are: Riak, DynamoDB [9], Voldemort and Redis.

  • Column stores: These store and manage structured and semi-structured data that 
can scale to very large number of nodes. Unlike the key-value systems, each record 
can accommodate multiple columns (attributes) and columns can be grouped 
together to form column families. Examples are HBase, BigTable and Cassandra.

  • Graph databases: These represent relationships between objects in a graph struc-
ture. Nodes represent objects while edges represent relationships. Graph databases 
are useful when relationships between data objects are possibly more important than 
data. Examples are Neo4j and Giraph.

The work presented in this paper focuses on the MongoDB and Riak which respec-
tively belong to the Document and Key-Value classes of NoSQL databases. Table 1 pre-
sents a brief summary of the similarities and differences between MongoDB and Riak. 
Table 1 shows that MongoDB and Riak do not support transactions nor do they support 
normalization. They both are schema free and follow the eventual consistency model.

Architecture of NoSQL databases

NoSQL databases generally follow loosely coupled architecture [10] instead of tightly-
coupled architecture as in relational databases. This allows NoSQL databases to separate 
system state from application state and to achieve high efficiency and scalability [11]. For 
example, MongoDB [12] architecture includes configuration server, router and database 

Table 1 Main features of MongoDB and Riak

Features Riak MongoDB

Model Key‑value Document

Replication Peer‑to‑peer Master–slave

Data schema Schema‑free Schema‑free

Standard data types No Yes

Consistency Eventual Eventual

Transactions No No

Normalization No No

Sharding No Yes
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servers. The configuration server manages meta-data and stores information on data 
location in a cluster, while the router intercepts queries and directs them to appropriate 
nodes. Google system follows loosely coupled architecture which consists of Google File 
System (File tier) [13], Bigtable (record manager) [14], and Megastore (for transaction) 
[15]. Other examples of key-value databases, following loosely coupled architecture, are 
Spanner [16], G-Store [17], Deuteromony [18], CloudTPS [19], and ReTSO [6, 20].

Research issues

The underlying data models make it difficult to implement transactions in NoSQL data-
bases. The main issues, pertaining to transaction processing, are as follows:

  • The adoption of simple data model with little or no normalization of data: NoSQL 
data do not follow standard principles of normalization. This is to simplify data parti-
tioning across multiple nodes into various shards. The partitioned data tends to have 
a shard key which determines the placement of data. However, de-normalised data 
may result in inconsistency and lack of integrity among data entities.

  • Replication of data: In NoSQL, data are replicated over multiple nodes in order to 
provide high availability and efficiency. However, replication complicates the process 
of ensuring data consistency when data are concurrently read/updated by multiple 
requests (or transactions).

  • Lack of support for join operations and the inadequacy for formulating complex que-
ries: The de-normalizing and flattening out data into a single table imply that join 
operations are not required. Though this simplifies query processing, it lacks the 
power and flexibility of designing useful queries which are available in relational 
databases.

  • Relaxation of consistency and integrity and lack of multi-key (and cross tables) trans-
actions: NoSQL databases support relaxed (or eventual) consistency. Strong consist-
ency can be achieved when data is manipulated by an individual (or single) operation. 
Consistency and integrity are not supported when multiple (or group of ) operations 
manipulate shared data.

Related work
The original models of NoSQL databases do not support transactions, as described 
above. In order to address this issue, various transactional systems have been emerged 
for NoSQL databases. Depending on the data models and architectural styles existing 
approaches handle transactions at three different levels such as middleware, data store, 
and client side. Examples of middleware transactional systems include, Deuteromony 
[18], G-Store [17], Google Megastore [15], and CloudTPS [19]. Systems such as Span-
ner [16], and Granola [21] handle transactions at the data store level. ReTSO [20] handle 
transactions at the client side.

Unlike our approach, existing transactional systems neither implement semantic 
atomicity nor context-aware consistency. In addition, they do not support multi-key 
transactions the way we have implemented them in the NoSQL database. For instance, 
based on middleware approach, Deuteronomy [18] separates the transactional com-
ponent from the data component. In contrast to the approach proposed in this paper, 
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Deuteronomy makes use of locking mechanism to manage concurrency and ensure con-
sistency. Locking is useful but it has negative effects on the performance of transactions.

G-Store [17] proposes a key grouping protocol to group keys for applications that need 
multi-key transactions. Transactions are limited to within a group and G-Store cannot 
provide transactions across groups. Megastore [15], uses entity groups formation similar 
to G-store. But in Megastore, group formation is static and an entity belongs to a single 
group throughout the life span of that entity. As such, ACID transactions can only take 
place within specified groups.

CloudTPS [19], like Deuteronomy, make use of two layers architecture which includes 
LTM (Local Transaction Manager) and the cloud storage. Transactions are replicated 
across LTMs to preserve consistency in the presence of failures. ReTSO [20], similar to 
this system, makes use of Snapshot Isolation to ensure consistency. However, ReTSO is 
limited to single-key transactions and does not support multi-key transactions.

Various models and techniques have been developed in order to evaluate the per-
formance of MongoDB in comparison with relational as well as NoSQL databases. For 
instance, experiments in [22] show a comparison between the performance of MongoDB 
and a well-known relational database, SQL Server. The results show that MongoDB 
runs faster for most operations including ‘inserts’ and ‘updates’. However, SQL server 
performed better for more complex operations on non-indexed attributes. In [23], the 
authors compare the performance of MongoDB with the performance of Cassandra (a 
well-known column-oriented NoSQL database). The experiments show that MongoDB 
has a lower processing time than Cassandra for ‘read’ operations while Cassandra per-
forms better when executing ‘write’ operations. However, the experiments carried out 
in [24] show slightly different results when the performance of MongoDB is compared 
with Hadoop. They show that Hadoop outperforms MongoDB in terms of performance 
latency for both ‘read’ and ‘write’ operations.

Furthermore, Riak has also been analysed in different research studies [25–27], by tak-
ing into account various factors such as the trade-off between CAP properties (Consist-
ency, Availability, Partition tolerance) and performance. For instance, the work in [25] 
compares Cassandra, MongoDB and Riak. This comparative evaluation shows that gen-
erally Cassandra performs better for read-only, write-only and read/write operations 
than the MongoDB and Riak. However, compared to MongoDB, Riak shows better per-
formance. Moreover, as the level of consistency increases then the number of operations 
per second (or throughput) decrease in Cassandra and Riak, for example, 25% decrease 
happens in Cassandra and 10% decrease happens in Riak. Authors in [26] studied the 
latency of databases, which is measured as the time required to perform a specific oper-
ation over a database. If the number of operations is very high, it means that the data-
base starts being saturated. Therefore, it has a negative impact on the execution latency 
of database operations. Though, studies like [25] and [26] provide useful insights into the 
comparison of NoSQL databases various other factors, such as database architectures, 
data models and query capabilities, could have been taken into account in the evaluation 
process [27].
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The transaction model and properties
This section describes the fundamental concepts, definitions and properties of transac-
tions which are implemented in the proposed transaction processing systems.

NoSQL transactions

A NoSQL transaction (denoted as NST) is defined as the execution of an application 
which comprises a sequence of operations that provide transitions between (semanti-
cally) consistent states of the NoSQL data.

Definition 1 A NST can be formally defined as a tuple, NST = (OP, PaO), where OP is 
a set of operations, OP = {OPi | i = 1…n}, and PaO is a partial ordering of the operations 
which determines their order of execution. For instance, OPi > OPj represents that OPi 
executes before OPj.

OPi
r[DE] represents a read operation of NST; meaning that NST reads a data entity, 

DE, from a NoSQL database. OPi
w[DE] represents a write operation of NST; meaning 

that NST writes (updates) a data entity, DE, to a NoSQL database. Such operations 
(OPi

r[DE] and OPi
w[DE]) are used to model the CRUD (Create, Read, Update and Delete) 

operations which are most commonly implemented in NoSQL systems such as Riak and 
MongoDB.

Further, OPi
r[DE] represents the Read (of CRUD) and OPi

w[DE] represents the Create, 
Update or Delete operation (of CRUD). OPi

r[DE] reads data without any modification to 
the data, DE. OPi

w[DE] writes data DE, i.e., data can be modified through Create, Update 
or Delete operation.

In addition, to data read/write operations, NST is also associated with (control) opera-
tions which include: begin or start, commit and abort. These are explained as follow.

Begin or start operation

The execution of each NST must be marked through begin or start operation. That is, 
NST should begin first before any of its operations (OP = {OPi | i = 1…n} ∈ NST) can be 
executed.

Commit and abort operations

Each NST terminates with either a commit or an abort operation. If NST is successfully 
executed then it terminates with a ‘commit’ operation. If NST cannot be successfully 
executed then it terminates with an ‘abort’ operation.

For example, NST for a banking transaction (as in YCSB +  T benchmark [8]) com-
prises a sequence of operations. After starting execution (Begin) it can read records 
(OPi

r[DE]) of bank accounts, deducts money (OPi
w[DE]) from one account and deposits 

(OPi
w[DE]) that money into another account. If all these operations are successful then 

NST is committed (Cmt). Otherwise, NST is aborted (Abt).

Properties of transactions

Each NST is required to follow certain properties. The properties adopted in the pro-
posed transaction models are explained as follows.
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Atomicity requires that all the operations of a transaction must successfully execute or 
not at all. In other words, a transaction is considered as an atomic unit of work. Semantic 
Atomicity allows flexibility in that depending on semantics (requirements) of a transac-
tion, some operations must execute successfully while others may not. Consistency states 
that data must be consistent before and after the execution of a transaction. That is, any 
updates made to data by a transaction should be consistently (and instantly) reflected in 
the database. Eventual  [28, 29] or flexible consistency requires that all updates will reach 
all replicas after a certain delay. Some of the replicas might be inconsistent during the 
‘delay’ period. Isolation requires that transactions must not expose their intermediate 
results to other transactions which are concurrently running and possibly sharing data. 
Durability requires that results of a completed transaction must be made permanent in a 
database so as to provide recovery in the event of failures.

Durability is supported by almost all NoSQL databases. But majority of them do not 
follow atomicity or semantic atomicity (of multiple operations) as they do not support 
transactions. In terms of isolation and consistency, different NoSQL databases adjust the 
level of consistency differently. The parameters, N, W and R are generally used to adjust 
the level of consistency with respect to the efficiency of read and write operations [6]. ‘N’ 
represents the number of replicas of each data item that the NoSQL database will main-
tain. ‘R’ represents the number of replicas that the application will access when reading 
the data item. ‘W’ represents the number of replicas of the data item that must be writ-
ten before the write can complete.

In order to ensure strong consistency, N = W; that is, all replicas of the data item need 
to be updated (written) before the data item can be accessed by an application. However 
such level of consistency results in poor efficiency as all replicas need to be synchro-
nized. Weaker level of consistency can be achieved by setting W < N, such as W = 1 
and N = 3 (assume that the number of replicas is 3). In this case, write operation has 
to update one replica of the data item. Other replicas can be updated after certain delay 
and made consistent (which is the case of eventual consistency).

Note that in the current NoSQL databases, strong consistency (with N  =  W) is 
ensured when data is manipulated by a single CRUD operation, e.g., OPi

w[DE]. How-
ever, strong consistency is not supported when multiple CRUD operations are executed 
together as a transaction. For instance, when executing multiple operations OPi

r[DE], 
OPi

w[DE], OPi
w[DE] as a part of transaction, NST. This is because they do not support 

transactions.
In the following we develop new transaction systems that enforce the transaction 

properties in NoSQL databases MongoDB and Riak.

Transactional system for MongoDB
We implement the transaction model in the MongoDB in such a way that fully enforces 
the ACID properties and with a strong consistency (i.e., N = W). However, implement-
ing ACID transactions is complex as MongoDB does not provide support for such trans-
actions. Our approach is to implement transactions as Multi-Key transactions [7] using 
the Snapshot Isolation technique [30]. Snapshot Isolation is an optimistic concurrency 
control technique which allows for higher concurrency. A multi-key transaction is an 
execution of a cloud application that involves multiple data key items and comprises 
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different operations. A multi-key transaction provides transitions between consistent 
states of the shared data and follows the ACID properties of transactions.

The proposed transaction system follows loosely coupled architecture in order to 
separate the implementation of transactional logic from the underlying data structure 
of MongoDB. Figure  1 represents the architecture which comprises three main com-
ponents: Transaction Processing Engine, Data Management Store, and Times Stamp 
Manager. Due to space limitation, we briefly explain the main functions of each of these 
components.

Transaction processing engine (TPE)

The TPE is responsible for implementing Multi-Key transactions in the system. In order 
to run NoSQL operations (OPi

r[DE], OPi
w[DE]) as a transaction, clients (applications) 

submit their requests to the TPE. TPE receives such requests from clients and manage 
them as transactions. TPE also maintains data schema which is required for transac-
tion processing and management. Note that MongoDB is a schema free database. TPE 
also defines relationships between different data entities (DE). This is to enforce integ-
rity constraints and strong consistency. Based on the relationships between data enti-
ties, TPE facilitates join operations which are not implicitly supported in MongoDB. The 
ability for the TPE to facilitate join expressions means that complex operations can be 
implemented by the system and these operations can be implemented atomically, i.e., 
with transactional semantics. This feature is absent from existing NoSQL databases.

Fig. 1 Architecture of the proposed system for MongoDB
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Data management store (DMS)

This component is implemented as part of the MongoDB. DMS stores all the data persis-
tently. This component is highly scalable in order to meet big data storage requirements. 
It replicates data in terms of different replicas in order to ensure improved efficiency, 
high availability and fault tolerance. Further, the DMS implements the Snapshot Isola-
tion protocol in cooperation with the Time Stamp Manager (TSM) in order to provide 
concurrency of transactions.

Times stamp manager (TSM)

The TSM manages the ordering and scheduling of transactions in the proposed sys-
tem. It interacts with DSM and TPE in order to schedule the execution of the different 
operations (Begin, OPi

r[DE], OPi
w[DE], Cmt and Abt) of a transaction. The objective is to 

maintain consistency of data when concurrently manipulated by different transactions. 
Concurrency is provided through the implementation of the Snapshot Isolation tech-
nique. This is a non-blocking protocol and provides higher concurrency and high effi-
ciency in transactions processing.

Based on the above implementation of the transaction system we conduct various 
experiments which are described in “Evaluation benchmark and experiments” section.

Transactional system for Riak
Transactional system for Riak is implemented differently than that of the MongoDB. This 
is due to the differences in the data models and types of MongoDB and Riak as high-
lighted in Table 1 above. Transactional system for Riak implements semantic atomicity 
and flexible or context-aware consistency. In other words, depending on the semantics 
and contextual information different applications are provided with different levels of 
atomicity and consistency.

Note that the focus of this paper is not to compare the implementation of transactions 
in Riak with MongoDB. Rather the paper aims to compare the effect of implementing 
transactions in individual NoSQL databases of Riak and MongoDB.

Figure 2 represents the architecture and the main components of the proposed system. 
It is based on a loosely coupled architecture in order to separate the implementation of 
transactional logic from the underlying data structure of Riak. The main components 
described as follows.

Coordinator

Coordinator manages the overall execution of CRUD operations (OPi
r[DE], OPi

w[DE]). 
It ensures that every CRUD operation is executed in such a way that the outcome of the 
whole operation is correct and that the desired context is also fulfilled. It interacts with 
the ‘Data and Semantic Rules’, which contains information about data design and related 
semantic rules. This module provides information about the different types of data the 
application should handle and the relationships between them. Semantic rules are used 
to establish and identify relationships between data entities. These are also used to help 
in establishing semantic atomicity of CRUD operations when executed as a transaction.



Page 11 of 18González‑Aparicio et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:7 

Context controller

This deals with managing contextual information related to the execution of CRUD 
operations and the data. We define two classes of context information: system context 
and client (or application) context. System context information can come from (Riak) 
system configuration—i.e., the way it is configured to execute CRUD operations and to 
manage the data internally, such as configuring the level of consistency using N, W, R 
parameters; creating and processing different replicas of the same data; and the distribu-
tion of replicas among different nodes. Client context information is related to the appli-
cation needs such as the level of consistency (they require), required response time, and 
the level of atomicity (semantic atomicity).

Transaction 
Controller 

… 

A 

Nodes 

Coordinator
Model 
Data + 

Semantic 
Rules 

Client Manager 

Context  
Controller 

Operation 
Controller 

Data Items 

B D C E 

D1 D2 D3 

Client 1 Client 2 Client  n 

D1 D2 D1 D2 D1 D3 

Fig. 2 Architecture of the proposed system for Riak
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Operation controller

It provides an interface or interaction between the Coordinator and the Riak database 
which is represented as the lower layer in Fig.  2. It enables communication with Riak 
when CRUD operations are executed by the Coordinator. It also provides Coordinator 
with information about the states (existing and new states) of the Riak database.

Transaction controller

In collaboration with the above modules, Transaction Controller deals with the trans-
actional features of the CRUD operations—i.e., CRUD operations can be successfully 
executed if it meets the required context and transactional properties. If not, then the 
operations have to be rolled back in order to maintain the required level of consistency. 
For instance, a banking transaction (as described above) requires strong consistency and 
atomicity. Therefore, all the operations of a banking transaction should be successfully 
completed in order to ensure consistency of data across bank accounts.

User application scenarios
This section explains the implementation of an online multi-player gaming application 
hosted on both MongoDB and Riak NoSQL databases. The implementation is provided 
as a proof of concept. It is based on the architecture of both MongoDB and Riak, which 
has been described in “Transactional System for MongoDB” and “Transactional system 
for Riak” sections respectively (see Figs. 1, 2).

MongoDB implementation

In the MongoDB implementation, the user data (user profiles, attributes and gaming 
information) is stored in the DMS layer. Recall that the DMS is a highly scalable com-
ponent and stores data persistently for the system. This allows the system to be able to 
effectively manage user information for high number of users. In MongoDB, players pro-
file can be stored as a document and each user/player is identified by the document ID.

A game is played by multiple users who come together to start a new game. The ID 
and profile of each of these users are sent to the TPE. During the progress of a game, 
changes to player information should be transactional to maintain consistency of the 
ongoing game. Recall that the TPE manages transactions for the system and the TPE 
stores schema information. Therefore, the TPE is in charge of implementing all user 
interactions, transactional semantics and applications schema information. The TPE 
interacts with the TSM to manage ordering and scheduling of user requests during a 
game. This will help to manage the consistency of the gaming application. Information 
that transcends a game (such as player profile or player ratings) is then stored back at the 
DMS for future games. Note that the implementation is used as a proof of concept and 
does not provide full implementation of a gaming application.

Riak implementation

In Riak implementation, the coordinator supervises the whole process of different mod-
ules involved in processing a transaction. In the prototype implementation, operations 
are treated as transactions in order to guarantee consistency of information such as 
user ID and profile. For this reason, every operation or a set of operations are controlled 



Page 13 of 18González‑Aparicio et al. Hum. Cent. Comput. Inf. Sci.  (2017) 7:7 

by a module named as “Transaction Controller”. During this process, (user) data are 
retrieved, stored or removed from/to the database by the module “Operation Control-
ler” in relation to the game status and player’s profile management. At the end, player’s 
profile must be in consistent with the final results.

Evaluation benchmark and experiments
This section presents the evaluation benchmark and the experimental results in order 
to evaluate the transactional systems of Riak and MongoDB. During this process, data 
concurrency has been implemented with Snapshot Isolation in these databases. Moreo-
ver, each of them has been developed with a different architecture (“Transactional Sys-
tem for MongoDB” and “Transactional system for Riak” sections) and implementation 
(“Evaluation of the MongoDB transactional system” and “Evaluation of the riak transac-
tional system” sections).

Evaluation benchmark

We adopt the YCSB+T benchmark [8], which is an extension of the Yahoo! Cloud Ser-
vices Benchmark (YCSB) benchmark. YCSB+T takes into account transactions. But 
YCSB is applicable to evaluating single NoSQL operation rather than a group of opera-
tions (as in transactions).

We use the closed economy workload of the YCSB+T benchmark, in order to quan-
tify database anomalies. This provides an environment for executing multiple concur-
rent transactions on NoSQL data. Transactions can perform conflicting operations on 
shared data, e.g., OPi

r[DE] and OPi
w[DE] concurrently access same data entity, DE. This 

may introduce in data inconsistency.

Evaluation of the MongoDB transactional system

The MongoDB transactional system is implemented using Python language and Mon-
goDB was used as a data store. The implementation is carried out on a 16 GB RAM PC 
and Windows OS. The following experiment is conducted in order to evaluate the effi-
ciency of the transactions and their impact on ensuring strong consistency.

Experiment 1

This experiment evaluates the efficiency of transactions and the consistency by taking 
into account the number of transactions and the time taken to process such transactions.

The number of transactions per client is 100. The number of clients varies from 1 to 
32. That is, with one client the system executes 100 transactions (per sec) and with 32 
clients the system executes 3200 transactions (per sec). The results are shown in Table 2 
and Fig. 3. These take into account transactional and non-transactional (simple CRUD) 
operations. It considers the configuration of MongoDB where the number of replicas is 
3 (i.e., N = 3). As described above (see “Properties of transactions” section), the differ-
ent NoSQL databases assign different values to the parameters, N, W and R in order to 
adjust the level of consistency with respect to the efficiency of read and write operations 
[6].

The column ‘No of Clients’ in Table 2 shows the number of clients concurrently sub-
mitting transaction requests to the system. ‘Update only’ column shows the efficiency of 
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the operations without transactions. In other words, the level of consistency is weaker. 
The column ‘Transactions’ shows the efficiency of transactions with strong consistency 
(where W = N=3; the number of replicas is 3). As shown in the results that transactions 
incur extra processing time compared to simple ‘Update only’ (or Write) operations but 
they enforce 100% consistency. ‘Update only’ operation can update data but without 
transactions. In other words, transaction properties such as atomicity, consistency, etc. 
are not enforced. The processing overhead of transactions is incurred due to the coor-
dination of transaction operations on the data. However, this is to consistently reflect 
updates in the different replicas of the shared data.

Evaluation of the Riak transactional system

The Riak transactional system is implemented with Oracle Java 7 as the programming 
language, and the NoSQL key/value Riak (by Basho) 2.1.1 as a database. The experiment 
has been conducted using the following hardware/software features: a CPU core with 
2.4 GHz Intel(R) Core(TM) i7-5500, the operating system Ubuntu 14.04 LTS of 64 bits.

Table 2 Efficiency of transactions in MongoDB

No of clients Update only (sec.) Transactions (sec.)

1 0.008 0.027

2 0.006 0.021

4 0.005 0.021

8 0.005 0.022

16 0.006 0.059

32 0.007 0.04
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Fig. 3 Execution time per transaction in MongoDB
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Experiment 2

We take the same measures as in Experiment 1. That is, the number of transactions per 
client is 100. The number of clients varies from 1 to 32. Again, with one client the system 
executes 100 transactions (per sec) and with 32 clients the system executes 3200 transac-
tions (per sec).

The results are shown in Table 3 and Fig. 4. ‘Update only’ and ‘Transactions’ columns 
represent the same information as in experiment 1. ‘Update only’ operations update data 
but without following transactions rules (properties). Using ‘Transactions’ data is read 
and update by following the rules of transaction properties (see “Properties of transac-
tions” section).

As shown in the results, transactions incur extra processing time compared to simple 
‘Update only’ (or Write) operations but they enforce 100% consistency. If the number of 
transactions and clients is smaller (2 clients) then transactions do not incur much pro-
cessing overhead. However, when the number of clients increases from 16 to 32, then 
the transaction execution time also increases. This is due to the fact that transactions 
manipulate shared data which generate conflicts between different transactions. Similar 
to MongoDB, the processing overhead of transactions is incurred due to the coordina-
tion of transaction operations on the data.

Table 3 Efficiency of transactions in Riak

No of clients Update only (sec.) Transactions (sec.)

1 0.012 0.03

2 0.018 0.034

4 0.028 0.05

8 0.05 0.085

16 0.094 0.159

32 0.176 0.348
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Fig. 4 Execution time per transaction in Riak
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Analysis of the data consistency in MongoDB and Riak

We evaluated the level of consistency in MongoDB and Riak. That is, the consistency of 
the NoSQL database (MongoDB and Riak) should be guaranteed every time a transac-
tion is executed. We evaluate the consistency by including ‘read’ operations which read 
shared data that is possibly updated by ongoing (running) transactions. The experimen-
tal results are shown in Fig. 5. The figure shows the number of ‘read’ operations that may 
read inconsistent data—i.e., data which is updated by transactions. In other words, the 
data may or may not be correct as it is read from an ongoing transaction. The experi-
ment shows that if the numbers of clients ranges from 1 to 4 and the number of transac-
tions ranges from 100 to 400 then there is not much difference in the level of consistency 
between MongoDB and Riak. However, if the numbers of clients increases to 8 (or 
above) then Riak tends to ensure better consistency than MongoDB.

As shown in Fig. 5, there is a noticeable difference in the number of read consistencies 
(#total reads vs #read inconsistencies) between MongoDB and Riak when the number of 
clients increases above 16. Firstly, in MongoDB, the number of read consistencies is 468 
(1600–1132) and 531 (3200–2669) for 16 and 32 clients respectively. Secondly, in Riak 
the number of read consistencies is 648 (1600–952) and 812 (3200–2388) for 16 and 
32 clients respectively. This fact implies that the number of read consistencies approxi-
mately increase 1.13 (531/468) and 1.25 (812/648) times when number of clients in the 
system fluctuate from 16 to 32, in MongoDB and Riak respectively.

From another point of view, it is highly likely an increase in the percentage of read 
inconsistencies in both systems as the number of concurrent requests grow, MongoDB 
(16 clients: 71% [1132/1600*100]; 32 clients: 83% [2669/3200*100]) and Riak (16 cli-
ents: 59% [952/1600*100]; 32 clients: 75% [2388/3200*100]). As a result, this fact high-
lights that both transactional systems cause different number of read consistencies 
(or read inconsistencies) states in the NoSQL databases. Therefore, these data could 
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provide an insight in how much important a transactional management model (semantic 
atomicity+context-aware consistency with multi-key) would be.

Conclusion and future work
NoSQL databases play a prominent role in big data storage and processing and are 
used in various business, commercial and social applications such as Twitter, Facebook, 
Google mail, and Yahoo, to name a few. They have become champion of high efficiency 
and availability of big data but at a loss of strong data consistency, data normalization 
and transactions. In order to minimise the impact of such a loss, this paper addressed 
the issue of transactions and data consistency in NoSQL databases in general and Mon-
goDB and Riak in particular.

In this paper we have examined the issues that impeded the transaction processing 
in NoSQL databases and have developed transactional systems for two distinct NoSQL 
databases, MongoDB and Riak. The transactional systems were implemented as proto-
type systems that process transactions, manage the concurrency of multiple transac-
tions, and maintain the consistency of data stored in MongoDB and Riak. This paper 
also discussed the implementation and simulation of an online multi-player game appli-
cation which uses Riak and MongoDB as data stores. The implementation follows the 
transaction model developed for the individual database. In each of the implementa-
tions, NoSQL databases (Riak and MongoDB) act as a stable storage for the user’s appli-
cation (i.e. application data is stored persistently in the NoSQL database). During this 
procedure, data in relation to player’s profile should be kept in consistency according 
to the game’s rules. For this reason, operations are treated as transactions in order to 
be performed or roll backed in case of rule violations. Moreover, the developed systems 
were evaluated using a transaction processing benchmark of YCSB+T. Various experi-
ments were conducted in order to evaluate the efficiency and consistency of transaction 
processing in MongoDB and Riak.

The experiments provided some useful insights into the performance and level of con-
sistency. It is observed that transaction processing systems incur performance overhead 
but they are crucial for NoSQL database applications that need strong consistency. Thus 
transactional guarantees (atomicity, consistency, etc.) do not need to be abandoned 
when implementing high performance applications in NoSQL databases. Focusing only 
on performance and compromising on consistency can lead to serious issues, for some 
applications, in NoSQL databases. One example is the Flexcoin (a Bitcoin exchange) that 
was closed down in March 2014 due to hacking. One of the issues was associated with 
the design of MongoDB which did not have sufficient mechanisms in place for ensuring 
consistency and concurrency [31].

Our future work plans to fully implement user’s (gaming) application and to evaluate 
transaction systems using a real life big data set in the experimentation. We also plan to 
empirically evaluate the proposed systems in terms of consistency and performance in 
other user’s applications that need strong consistency of data.
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