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ABSTRACT 

This paper discusses the emerging network science approach to the study of complex 

adaptive systems and applies tools derived from statistical physics to the analysis of tourism 

destinations. The authors provide a brief history of network science and the characteristics of 

a network as well as different models such as small world and scale free networks, and 

dynamic properties such as resilience and information diffusion. The Italian resort island of 

Elba is used as a case study allowing comparison of the communication network of tourist 

organisations and the virtual network formed by the websites of these organisations. The 

parameters of these networks are compared to networks from the literature and to randomly 

created networks. Computer simulation is used to assess the dynamic properties of these 

networks. The results indicate that the Elba tourism network has a low degree of collaboration 

between members. These findings provide a quantitative measure of network performance. In 

general, the application of network science to the study of social systems offers opportunities 

for better management of tourism destinations and complex social systems. 
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1. INTRODUCTION 

When a researcher chooses a method for studying a phenomenon or a subject, they 

inevitably make assumptions on the nature of the object of study. These assumptions direct 

the way the scholar formulates a research question, structures theories and models, carries out 

their empirical work and interprets empirical evidence. This is also true in the study of 

tourism. This chapter applies network science as both an innovative approach and a set of 

methods to analyze tourism destinations. Network science is a well grounded discipline, 

rooted in the mathematical theory of graphs and statistical physics (Watts, 2004). Network 

science has been used to uncover the structural and dynamic characteristics of a wide range of 

systems, from biological organisms through socio-economic groups, to computerized 

networks (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006). Its application to tourism 

research however, is relatively new. 

The system under investigation is a complex adaptive system (CAS) and includes a 

large number of elements that relate to one another in a nonlinear fashion. The general 

characteristics of a CAS emerge from interactions at a microscopic level in a manner not 

easily predictable by examining the features of the individual elements.  Researchers 

commonly describe a CAS as a network and use graphs to represent the elements of the 

system and their interactions. 

Connections and relationships are among the most important features characterizing the 

shape and behavior of both the physical and the social world. The majority of the natural and 

social sciences are, in essence, founded on the study of relationships. As a result, network 

science is receiving attention from a growing number of scholars interested in researching the 

structural and dynamic properties of networks. A large part of the systems we examine, 
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including biological cells, organizational communication interactions and linguistic texts can 

be conceptualized as sets of ‘objects’ connected by ‘links’: in other words, a network.  

A review of the network research literature shows that the structure (topology) of a 

network is a measurable and, at least to some extent, its properties are predictable and affect 

the overall dynamic behavior of the network. This can be used to explain a wide number of 

processes including the spread of viruses over a computer network or of diseases in a 

population; the formation of opinions by members of a social group; the diffusion of 

information or knowledge; or the robustness of a system to external shocks. These processes 

all exhibit a strong dependence upon the basic topological features of the network 

representing the system under study. Network analysis techniques provide diagnostic tools for 

cataloguing and analyzing the patterns of relationships in networks such as those between 

groups of people or organizations (Caldarelli, 2007) and may be jointly considered to 

constitute a new discipline, network science. Network science is the study of network 

representations of physical, biological, and social phenomena with the objective of devising 

predictive models (Watts, 2004). There are two key research questions in network science: (i) 

the topological measures used to characterize the properties of a network; and (ii) how these 

properties affect the behavior or evolution of the systems under study and the processes 

occurring in them. Answers to these questions, beside their obvious theoretical interest, 

impact upon our ability to engineer and control a complex system; from improving World 

Wide Web searches for tourism products to evaluating the risks of ecological damage as a 

result of human actions through tourism. 

The origins of network science are credited to a 250 year old paper by Leonhard Euler 

(dated 1736) on the Königsberg bridge problem. Surprisingly, these ideas did not find a wider 

audience until the mid 1990s when the availability and accessibility of data and powerful 

computation tools allowed scientists to develop effective models, theories and simulations of 
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the static and dynamic properties of networks. Since then, the contribution of scientists from 

many different disciplines has revealed how behaviors and processes can be described and 

explained by taking into account a system’s general connectivity properties. 

Tourism is no exception here, and there is an emergent literature on the importance of 

the relationships between tourists and service organizations and between tourism companies 

themselves (Lazzeretti & Petrillo, 2006; Morrison, Lynch & Johns2004; Pavlovich, 2003; 

Stokowski, 1992; Tinsley & Lynch, 2001). The main focus in these studies is on tourism 

destinations, thought to be an essential unit of analysis for the understanding of the whole 

tourism system (Buhalis, 2000; Framke, 2002; Georgulas, 1970; Ritchie & Crouch, 2003; 

Vanhove, 2005). However, only a few works are available which examine a tourism 

destination from a network point of view and fewer still use the quantitative methods of 

network science (Baggio, 2008; Pforr, 2006; Scott, Cooper, & Baggio, 2007; Shih, 2006).  

When applied to tourism destinations, quantitative network tools can provide a novel view of 

the destination system and provide managers with the potential to improve functions such as 

the flow of information or the governance of destinations. 

This chapter reviews the application of quantitative methods of analysis to complex networks 

with an application to the tourism field. The chapter specifically focuses on conceptualizing 

tourism destinations as networks by enumerating the stakeholders within the destination and 

the linkages that connect them. The remainder of this chapter is organized as follows. After a 

brief presentation of the concept of a tourism destination and an historical account of network 

studies in the wider literature, the chapter provides an outline of the general theoretical 

framework in which the modern science of networks is embedded. The main models and 

metrics for a static and a dynamic analysis of a complex network are then discussed along 

with guidance on interpreting the metrics in the context of a socio-economic system such as 

tourism. Where possible, examples from the tourism field are given, although examples are 
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also provided from other fields to emphasize the universal applicability of network analysis 

methods. The methods and results presented here also have the objective of contributing, from 

an interdisciplinary viewpoint, to the methodological foundation of tourism (Tribe, 1997).  

 

2. TOURISM DESTINATIONS 

A tourism destination is “a physical space in which a visitor spends at least one 

overnight”. A tourism destination includes tourism products such as support services, 

attractions and tourism resources within one day's return travel time. It has physical and 

administrative boundaries defining its management, and images and perceptions defining its 

market competitiveness. Local destinations incorporate various stakeholders often including a 

host community, and can nest and network to form larger destinations” (UN World Tourism 

Organization (UNWTO, 2002).  

From a more general point of view, this constellation of specialized companies, 

organizations and communities gathered into a confined geographical location (even if its 

boundaries are often poorly defined) can be seen as a form of industrial cluster or district. 

Thus the analysis of a destination’s structure may draw upon the theory of industrial clusters 

including their mechanisms of formation and their evolution (Hjalager, 1999).  

The main models of clusters and networks of companies or organizations have been 

developed by investigating the manufacturing sector, with limited attention to the service 

sectors of the economy including tourism. Tourism destinations, however, differ from a 

‘traditional’ cluster in a number of respects. For example, they differ in how they are formed,, 

their focus on the service component, the characteristics of tourism products and their 

relationships, and the tourism production system itself. Firstly, tourism is essentially a service 

industry in which the product is not well defined and is composed of many different elements 
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(Johns, 1999; Sinclair & Stabler, 1997; Wahab & Cooper, 2001). The tourist usually 

purchases the product in advance and consumes it at the destination. The diversity of elements 

which form the product requires a range of providers which are an integral component of the 

same industry (Gollub, Hosier & Woo 2003). Therefore, the traditional models of industrial 

networks and clusters need modification and adaptation when tourism is the main object of 

study (Gnoth, 2002, 2006). 

Concentration effects in general economic or industrial activities have been studied and 

measured in detail. Theoretical and empirical research has found that agglomeration effects 

generally play a crucial role in determining regional income levels (Brenner & Weigelt, 2001; 

Krugman, 1991), in attracting foreign investment (Barrell & Pain, 1999) and for the 

competitiveness of the area in which they occur (Norton, 1992). Moreover, economic growth 

and geographic agglomeration have been found to be self-reinforcing (Martin & Ottaviano, 

2001). Concentration of industries increases with economic growth, and in turn by reducing 

the cost of innovation in the region where the economic activities converge, further enhances 

growth.  

Models of clusters are based on the premise that firms sited in a geographical area share 

common values, rules and language such that the social environment they form is 

homogeneous. Social, cultural and operational contiguity favors the spread of tacit 

information and knowledge among local actors. This constitutes a competitive advantage for 

the participants in the cluster because this tacit nature of the knowledge makes the 

information difficult to access by elements outside the community (Morrison, 2004; Norton, 

1992). Co-location within a concentrated geographical area is a basis for the development of 

other characteristics of a cluster. For example, an important factor for a functioning cluster is 

the formation of close ties or alliances among the different actors and the establishment of co-

operation in order to improve the competitiveness of the group beyond the incidental (usually 
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external) effects that promote the gathering (Andersson, Schwaag-Serger, Sörvik, & Hansson, 

2004; Mishan, 1971).  

At first approximation, a tourism destination is an example of such a collaborative 

cluster. Mutually dependent attractions, services, transportation and environmental/cultural 

resources emphasize the need for collaboration, driven mainly by customer demand. As Gunn 

states (1997: 108): “A traveler is more likely to seek the great diversity and volume of 

services when they are located together and businesses in such clusters benefit from local as 

well as travel trade”. Destination clusters generally arise spontaneously and evolve and 

change over time, driven by both internal and external factors. They are not isolated entities, 

but open systems with complex linkages to a number of other similar or diverse systems. The 

development of new products and services is very often done in cooperation with other 

ensembles, and the interface between different agglomerations allows the creation of new 

value (Nordin, 2003). 

The terms cluster and district are often used almost interchangeably; however, there are 

fundamental differences between the two concepts as can be seen in the work of two 

influential scholars in this field. Industrial clusters are “geographic concentrations of 

interconnected companies and institutions in a particular field” (Porter, 1998: 78). The basic 

characterizing feature is ‘belonging’ to a specific sector; with the participating firms 

connected by horizontal or vertical relationships and concentrated within a specific area. 

Some external entities such as public institutions may complement them, but the focus 

remains the entrepreneurial and business dimension. On the other hand, the Italian school of 

research interprets a district more widely, as an extension of this specialized spatial 

concentration. Becattini (1990) adds to the focus on industries, a full recognition of the 

importance of the social environment of the area in which the district works. He includes 

regional governments and trade associations and, perhaps more importantly in this age of 



 

 

9 

globalization, the understanding of the role of the linkages with the external world. This 

broader approach seems to be much closer to the reality of these agglomerations and is much 

more suitable as a framework for the study of a tourism destination. 

However, even taking this broader approach the district model needs to be adapted in 

order to be used as a framework in the tourism field. As discussed above, the tourism product 

is primarily a service product, with the qualities of intangibility, inseparability, heterogeneity 

and perishability and therefore different from industrial goods (Vanhove, 2005). In addition, 

both time and space separate the purchase and the consumption of a tourism product, so that 

potential visitors are not able to fully assess product attributes prior to consumption (Burns, 

1999; Cooper, Fletcher, Gilbert, Fyall & Wanhill 2005; Mill & Morrison, 1992). 

A tourism destination, when interpreted as a district, is composed of two main classes of 

interacting components (Antonioli Corigliano, 1999, 2000; Capone, 2004; Lazzeretti & 

Petrillo, 2006; Stamboulis & Skayannis, 2003):  

1. A large endowment of resources: natural, cultural, artistic, but also artificially built 

resources such as museums, theme parks or sport complexes; and 

2. A network of groups of actors: economic, non-economic and institutional, whose 

prevalent activity is providing tourism-related services to visitors and travelers. 

In a Porterian cluster, the stakeholders of a destination district include only those whose 

core activity is tourism. However in the tradition of the Becattinian School, the stakeholders 

would also include the local social system, the various institutional entities (such as local, 

regional and national government, associations and the community) and other organizations 

whose activity, although not directly of a touristic nature, is deemed essential for the 

successful functioning of the system as a tourism destination. In this approach, and in the age 

of the Internet, the geographical delimitation of the destination can be relaxed somewhat since 



 

 

10 

virtual groupings with entities external to the specific area will be established, thus 

overcoming the need for a strict physical proximity. 

A tourism destination is not a static system but evolves over time passing through 

different evolutionary phases. The analysis of the development of tourism destinations is an 

important theme in tourism studies. The literature on this subject is built around the idea of a 

tourism area life cycle (TALC) originally proposed by Butler (1980). This model is created by 

applying theories of the evolution of product life cycles to the development cycle of a tourism 

destination. These theories date from the 1950s and were well established in consumer 

marketing studies by the time Butler adapted the framework. A new product is launched, 

achieves acceptance and growth until competitors gain market share (Gardner, 1987); then, 

innovation or repositioning is necessary to withstand a decline in sales and profits. Butler 

applies these principles to dynamic, market-driven tourism development and suggests that 

successful destinations pass through a sequence of growth stages: exploration, involvement, 

development, consolidation, and then stagnation followed by either a decline or rejuvenation. 

These stages follow an s-shaped logistic curve similar to the one used to describe the general 

evolution of an industrial district.  

The TALC model is effective as a general model of the behavior of tourism districts 

(Agarwal, 2002; Baum, 1998; Cooper & Jackson, 1989) although it has been subject to a 

number of criticisms (Butler, 2005a, 2005b).  The concept of a tourism destination implies a 

systematic approach in tourism studies: an approach in which the main focus is on activities 

and strategies to foster the development of an area as an interconnected system of actors, 

cooperating in order to supply integrated tourist products to a consumer. 
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3.  NETWORK SCIENCE 

The historical development of network science reveals a number of streams of thought 

(Scott, Baggio, & Cooper, 2008a; Scott, Cooper & Baggio 2007). The first approach is 

mathematically-based social network analysis, which considers the abstract characteristics 

and properties of ideal networks as found in the work of Burt (1992; 1997). The second is a 

qualitative social science-based approach in which a network is viewed as an analogy for the 

interactions between individuals in a community, such as the policy networks approach of 

Rhodes (1990; 1997). The third is the physicist’s view of complex networks explored in the 

framework of statistical physics and complexity theory (Albert & Barabási, 2002; Boccaletti 

et al., 2006). While each of these three streams has advantages for the study of tourism, this 

chapter focuses on the third stream of thought. 

A drawing in which the various elements are shown as dots and the connections among 

them as lines linking pairs of dots is representative of a network. This drawing, a 

mathematical abstraction, is called a graph and the branch of mathematics known as graph 

theory establishes a framework and provides the formal language to describe it and its 

features. Euler (1736) began this tradition in the 18th century and König (1936) established it 

more formally at the beginning of 20th century. The tradition provides a broad set of tools for 

analyzing graphs and the networks represented by them. The application of networks to the 

social sciences using graphs and related tools (i.e. social network analysis) also developed in 

the first half of 20th century (Barnes, 1952; Moreno, 1934; Radcliffe-Brown, 1940; Simmel, 

1908). The basic idea underpinning social network theory is that the structure of social 

interactions influences individual decisions, beliefs and behavior (Scott, 2000). Analyses are 

conducted on patterns of relationships rather than concentrating upon the attributes and 

behaviors of single individuals or organizations (Wasserman & Galaskiewicz, 1994). By the 

end of the 1990s, the methods and potential of social network analysis were well established 
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and formalized (Freeman, 2004; Scott, 2000; Wasserman & Faust, 1994; Wellman & 

Berkowitz, 1988), and network analysis was adopted as a diagnostic tool in applied fields 

such as management and organization studies (Cross, Borgatti & Parker 2002; 

Haythornthwaite, 1996; Tichy, Tushman & Fombrun 1979). Social network analysis studies 

however, while useful, tended to view the social system as static and were often criticized on 

the basis that they ignored the dynamic nature of organizations and groups. 

At the same time, scientists were examining many natural and artificial systems and had 

documented dynamic behavior that was non-linear and indeed exhibited complex or chaotic 

patterns over time. This led, in the second half of the 20th century, to detailed study and 

modeling of such nonlinear complex systems. The consideration of the dynamic properties of 

networks began in the 1960s with the seminal work of Erdös and Rényi (1959, 1960, 1961) 

who presented a model of a random network. The authors showed that dynamic growth in the 

number of connections gives rise to phenomena such as the formation of giant fully connected 

sub-networks, which seem to arise abruptly when some critical value of link density is 

attained. This finding attracted the interest of statistical physicists, who were accustomed to 

the analysis of critical transitions in large systems.  

Three provocative papers in the late 1990s placed the analysis of networked systems in 

the context of statistical physics, providing a strong theoretical basis to these investigations, 

and justifying the search for universal properties of networked objects (Barabási & Albert, 

1999; Faloutsos, Faloutsos & Faloutsos 1999; Watts & Strogatz, 1998). The models proposed 

in this context have made it possible to describe the static, structural and dynamic 

characteristics of a wide range of both natural and artificial complex networks. They have also 

highlighted the linkage between the topological properties and the functioning of a system, 

almost independent of the nature of the system’s elements (Boccaletti et al., 2006; Caldarelli, 

2007; Watts, 2004). There is a growing literature applying these methods to the exploration of 
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social and economic systems, driven by the interest in self-organizing processes and the 

emergence of ordered arrangements from randomness (Ball, 2003; Castellano, Fortunato & 

Loreto 2009; Stauffer, 2003). 

3.1. Complexity and Network Science: The Theoretical Framework 

No formal designation of a complex adaptive system is available despite a growing 

literature and debate. Instead, many authors characterize a system as complex and adaptive by 

listing the properties that these systems exhibit (see for example Cilliers, 1998; Levin, 2003; 

Ottino, 2004). The most common and significant properties are:  

 The system is composed of a large number of interacting elements; 

 The interactions among the elements are nonlinear; 

 Each element is independent of the behavior of the system as a whole, it reacts only to 

locally available information; 

 The system is usually open and in a state far from equilibrium; and 

 The history of complex systems is important, their future behavior depends upon this 

history and is particularly sensitive to it. 

Researchers can consider many real world ensembles as complex adaptive systems, and 

in economics “even the simple models from introductory economics can exhibit dynamic 

behavior far more complex than anything found in classical physics or biology” (Saari, 1995: 

222). 

The tourism sector shares many of these characteristics. A tourism destination 

encompasses many different companies, associations, and organizations and their mutual 

relationships are typically dynamic and nonlinear (Michael, 2003; Smith, 1988). The response 

of individual stakeholders to inputs from the external world or from within the destination 

may be largely unpredictable (Russell & Faulkner, 2004). During the evolution of the 
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destination system it is possible to recognize several reorganization phases in which new 

structures emerge such as the development of a coordinating regional tourism organization. 

Besides these particular or unique behaviors however, the system as a whole may follow 

general laws. Models such as the one by Butler (1980), although discussed, criticized, 

amended and modified (Butler, 2005a, 2005b), generally provide meaningful descriptions of a 

tourism destination and, in many cases, prove to be useful tools for managing destination 

development despite the peculiarities of individual case studies. There are other more detailed 

studies which assess the ‘complex’ nature of tourism systems, both in a qualitative and a 

quantitative way (Baggio, 2008; Farrell & Twining-Ward, 2004; Faulkner & Russell, 1997). 

One theoretical framework used to study complex systems comes from the realm of 

statistical physics and interprets the microscopic behavior of the large numbers of elements 

which constitute a complex system through macroscopic (statistical) approximations (Amaral 

& Ottino, 2004). In particular, it provides a theoretical foundation to the study of phase 

transitions (such as the one that occurs to water when passing from liquid to solid or vapor) 

and the critical conditions governing them. The statistical physics approach allows for the 

analysis of data, development and evaluation of models and simulations of complex systems 

with the help of tools such as nonlinear time series analysis, cellular automata, and agent-

based models (see Shalizi, 2006 for an excellent review). 

Two important concepts stem from the statistical physics tradition: universality and 

scaling (Amaral & Ottino, 2004). Universality is the idea that the general properties exhibited 

by many systems are independent of the specific form of the interactions among their 

constituents. This suggests that the findings from one type of system may directly translate 

into the understanding of many others. Scaling laws govern the variation of some distinctive 

parameters of a system, with respect to its size, and the mathematical expression of these laws 
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applied to complex and chaotic systems involves a power law that researchers now consider 

to be a characteristic signature of self-similarity. 

3.2. Characterization of Complex Networks 

Born at the conjunction of disciplines such as physics, mathematics, biology, sociology 

and economics, network science employs specific terminology and methods. Moreover 

researchers in this young discipline frequently propose new definitions, algorithms and 

interpretations, resulting in a lack of consistency and thus creating difficulties in approaching 

the topic. Boccaletti et al. (2006) and da Fontoura Costa (2007) discuss this situation 

extensively as do Caldarelli (2007) and Dorogovtsev and Mendes (2003). 

Mathematically speaking, a network is represented by a graph G which is an ordered 

pair G: = (V,E) (Bollobás, 1998). The following conditions apply: V is a set, its elements are 

called vertices or nodes; E is a set of pairs of distinct nodes, called edges or links. The number 

of nodes n is called the order of the graph and the number of edges m is called size. The 

degree of a node is the number of edges connecting it to some other nodes. A node (also 

called vertex or actor) can represent simple objects (a word in a semantic network) or 

complex ones (a firm or a biological individual). The latter is used when we want to 

concentrate on the overall properties of the ensemble rather than on an individual’s behavior. 

A link (also termed edge or tie) denotes some type of relationship between two nodes. 

This relationship can include a simple information exchange, a chemical reaction, a force or a 

road. Links can be symmetric (an information exchange) or directed (a flight from one airport 

to another) and can be assigned a weight w, that is a measure of strength, importance or value. 

The characteristics of links are also transferred to the whole graph. We thus speak of 

undirected (symmetric), directed, weighted graphs or combinations of these (e.g. directed 

weighted graph). The graph can also be represented by an nn matrix A, called an adjacency 
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matrix. If there is an link from some node x to some node y, then the element ax,y has a value 

different from 0. Its value will be 1 for unweighted graphs, w for weighted graphs. If the 

graph is undirected, A is a symmetric matrix. There is a full correspondence between a graph, 

a network and an adjacency matrix; therefore the three terms are used indiscriminately. In 

particular the identification between a graph and an adjacency matrix brings the powerful 

methods of linear algebra or use by a network scientist for the investigation of network 

characteristics. Figure 1 gives an example of different types of networks and their adjacency 

matrices. 

 

Figure 1 here. 

 

The inter- and multi-disciplinary origin of network science has led, as previously 

discussed, to a wide variety of quantitative measurements of a network’s topological 

characteristics (see da Fontoura Costa, Oliveira Jr, Travieso, Rodrigues, Villas Boas, Lucas 

Antiqueira, Viana & Correa da Rocha 2007 for a thorough review). The literature on complex 

networks commonly uses the following measures to describe a network’s structure. In the 

following formulas: n = number of nodes; m = number of links; k = nodal degree (number of 

links a single node has); d = distance (length of shortest path connecting any two nodes); the 

subscript i (or j) refers to a generic node. Based on the adjacency matrix (aij is an element of 

the matrix), m and k can be calculated as follows: 


i j
ijam

 and 


i
iji ak

. 

The main network metrics are: 
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 density: the ratio between m  and the maximum possible number of links that a graph may 

have: )1(
2



nn
m


; 

 path: a series of consecutive links connecting any two nodes in the network, the distance 

between two vertices is the length of the shortest path connecting is them, the diameter of a 

graph is the longest distance (the maximum shortest path) existing between any two 

vertices in the graph: )max( ijdD  , the average path length in the network is the 

arithmetical mean of all the distances: 




ji

ijd
nn

l
)1(

1

. Numerical methods, such as the 

well-known Dijkstra's algorithm (Dijkstra, 1959), are used to calculate all the possible 

paths between any two nodes in a network. 

 clustering coefficient: represents the degree of concentration of the connections of the 

node’s neighbors in a graph and gives a measure of local inhomogeneity of the link 

density. It is calculated as the ratio between the actual number ti of links connecting the 

neighborhood (the nodes immediately connected to a chosen node) of a node and the 

maximum possible number of links in that neighborhood: )1(
2



ii

i
i kk

t
C

. For the whole 

network, the clustering coefficient is the arithmetic mean of the Ci: 


i
iC

n
C 1

; 

 proximity ratio: the ratio between clustering coefficient and average path length 

normalized to the values that the same network would have in the hypothesis of a fully 

random distribution of links: randrand lC
lC

/
/



; 

 efficiency (at a global Eglob or local Eloc level): a measure of the capability of the networked 

system (global) or of a single node (local) to exchange information. 
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



ji ij

glob dnn
E 1

)1(
1

. 




ml lmii

iloc dkk
E ',

1
)1(

1

; for the whole network its average 

(called local efficiency of the network) is: 


i
ilocloc E

n
E ,

1

; 

 assortative mixing coefficient: gauges the correlation between the degrees of neighboring 

nodes. If positive, the networks are said to be assortative (otherwise disassortative). In an 

assortative network, well-connected elements (those with high degrees) tend to be linked to 

each other. It is calculated as a Pearson correlation coefficient; dgi is the degree of node i, 

dni the mean degree of its first neighbors:










i
i

i
i

i
i

i

dndndgdg

dndndgdg
r

22 )()(

))((

; the standard 

error can be calculated by using the bootstrap method (Efron & Tibshirani, 1993). 

The distribution of the degrees of the nodes of a network is an important parameter of a 

network topology. This is usually expressed as a statistical probability distribution P(k), that 

is for each degree present in the network, the fraction of nodes having that degree is 

calculated. The empirical distribution is then plotted and fit to find a functional (continuous) 

relationship using a cumulative version of the degree distribution P(>k).  This analysis gives 

the probability (fraction) of nodes having degree greater than a certain value (from the list of 

the values existing in the network). 

A complex network exhibits, in many cases, some form of substructure. Local 

subgroups can have a ‘thickening’ of within-group connections while having less dense 

linkages with nodes outside the group (see Figure 2). The study of this modular structure of 

communities has attracted academic attention, since communities are a common trait of many 

real networked systems and may be central to the understanding of their organization and 

evolution. For example, a community’s social structure is revealed through the 

communication patterns within it. 
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Figure 2 here 

 

Different definitions of modularity exist and researchers in this discipline have proposed 

several methods to measure it. These methods rely on numerical algorithms that can identify 

some topological similarity in the local patterns of linking (Arenas, Danon, Díaz-Guilera, 

Gleiser & Guimera 2004; Danon, Díaz-Guilera, Duch & Arenas 2005). In all of them 

however, a measure called the modularity index is used to gauge the effectiveness of the 

outcomes (Clauset, Newman & Moore 2004; Girvan & Newman, 2002). It is defined as: 
 
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, where eii is the fraction of edges in the network between any two vertices 

in the subgroup i, and ai is the total fraction of edges with one vertex in the group. In other 

words, Q is the fraction of all edges that lie within a community minus the expected value of 

the same quantity in a graph in which the nodes have the same degrees but edges are placed at 

random. All of the metrics described in this section can be calculated with the help of standard 

software packages such as as Pajek (Batagelj & Mrvar, 2007) or Ucinet (Borgatti, Newman & 

Moore 1992). 

3.3. Network Models 

After Euler (1736), probably the most important advancement in the study of networks 

is the work done by Erdös and Rényi. In a series of papers (Erdös & Rényi, 1959, 1960, 1961) 

they propose a model (ER model) in which a network is composed of a set of nodes and the 

links are placed randomly between pairs of nodes with probability p. The resulting degree 

distribution (in the limit of large numbers of nodes and links) follows a Poisson law with a 

peak k (the average degree of the network): 
k

k

e
k
k

kP 


!
)(

. 



 

 

20 

Diameter, clustering coefficient and average path length of an ER network are 

proportional to the number of nodes and the probability p. The network also shows an 

interesting behavior when the connection probability increases. Above a certain critical 

threshold pc , a giant cluster forms. This giant cluster is a very large group of connected nodes 

encompassing most if not all of the nodes (depending on the value of p>pc). Below pc the 

network is composed of several disconnected subgraphs. 

In the late 1990s, three influential papers (Barabási & Albert, 1999; Faloutsos et al., 

1999; Watts & Strogatz, 1998) presented empirical evidence of networks exhibiting 

topological characteristics different from those hypothesized by Erdös and Rényi. Watts and 

Strogatz (1998) discuss networks in which, contrary to what was expected from an ER model, 

the clustering coefficient was much higher, and, at the same time, the average path length 

remained small. Reminding them of the Milgram experiment (Milgram, 1967), they named 

these networks small-world (SW) networks. In a small-world network, as happens in many 

social networks, any two nodes are likely to be connected through a very short sequence of 

intermediate neighbors. Many examples of real world networks have this characteristic (da 

Fontoura Costa et al., 2008). 

 

Figure 3 here. 

 

On the other hand, Faloutsos et al. (1999) and Barabási and Albert (1999) found 

evidence of networks having a degree distribution quite different from the random Poissonian 

ER distribution. Their networks exhibit a power-law scaling: P(k)  k- with an exponent  > 

1. In other words, in their networks, a small fraction of nodes have a large number of 
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immediate neighbors (often called hubs), while a large number of nodes have a low degree 

(see Figure 3). 

These networks are called scale-free (SF) because they do not have a distinctive ‘scale’; 

a typical number of connections per node as is found in a Poissonian ER network in which the 

average (mean) degree characterizes the distribution. The SF model, first proposed by 

Barabási and Albert (1999), is a dynamic model. The power-law degree distribution is 

obtained if we consider a network as formed by adding nodes at successive time intervals, and 

adding links with a preferential attachment mechanism. A new node will connect with higher 

probability nodes with high degrees. A large number of real networks demonstrate this kind 

of rich-get-richer phenomenon although several additions and modifications are required to 

account for the differences measured between the theoretical model and the real networks. 

This basic model is modified in a number of ways: by introducing a fitness parameter 

which increases the probability that a newly added node will be selected by subsequent nodes; 

an aging limitation for which a node’s capability to accept connections ends at a certain time 

interval (age); or an information constraint which puts a limit on the number of nodes a 

newcomer may connect to. Moreover, even in networks that are not growing by the addition 

of nodes, links can be added, deleted or moved (rewired) to adapt the network to specific 

conditions. Thus other mechanisms, besides the preferential attachment family, exist that are 

able to generate a power-law degree distribution (Albert & Barabási, 2002; Bornholdt & 

Schuster, 2002; Caldarelli, 2007; Dorogovtsev & Mendes, 2003; Durrett, 2006; Li, Alderson, 

Tanaka, Doyle & Willinger 2005; Newman, 2003b). Mixed topologies have also been studied, 

both as abstract models (Mossa, Barthélémy, Stanley & Amara  2002) and empirical 

observations (Baggio, Scott and Wang 2007; Pennock, Flake, Lawrence, Glover & Giles 

2002). The main characteristic of these networks is that they have a degree distribution which 

follows a power law for the most part, but also has a bending or cut-off point. In statistical 
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physics, power laws are associated with phase transitions (Landau & Lifshitz, 1980; Langton, 

1990) or with fractal and self-similarity characteristics (Komulainen, 2004). They also play a 

significant role in the description of those critical states between a chaotic and a completely 

ordered state, a condition known as self-organized criticality (Bak, 1996; Bak, Tang & 

Wiesenfeld 1988). In other words finding a power law is one more confirmation of the 

complexity of networked systems. 

As previously noted, many real networks exhibit scale-free properties. Tourism-related 

examples include the world-wide airport network (Guimerà & Amaral, 2004); the websites of 

a tourism destination (Baggio, 2007); the structural properties of inter-organizational 

networks within destinations (Scott, Baggio & Cooper, 2008b); the paths followed by tourists 

reaching a destination by car (Shih, 2006); or the world-wide flows of tourist arrivals 

(Miguéns & Mendes, 2008). Many of these networks also exhibit small-world properties. 

This wide variety of network models and empirical cases can be summarized using the 

classification proposed by Amaral, Scala, Barthélémy & Stanley (2000). These authors use 

the degree distribution P(k) to identify three broad classes of networks: 

o Single-scale: the degree distribution behaves exponentially (or with Gaussian or 

Poissonian tails). Members of this class are the random ER graphs and small-world 

networks. The latter, even if characterized by large clustering coefficients and short 

average path lengths still exhibit a Poissonian degree distribution; 

o Scale-free: the dynamic networks unveiled by Barabási with a power-law degree 

distribution. They are characterized by having few nodes which act as very 

connected hubs and a large number of low degree nodes. No characteristic mean 

nodal degree (scale) exists. These networks grow with the addition of new nodes and 

new links that follow specific mechanisms such as the preferential attachment in 

which a new node has a higher probability of attaching to an already highly 
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connected node. This is the case of the tourism web network analyzed by Baggio 

(2007) and the Australian destinations studied by Scott, Cooper and Baggio (2008b); 

o Broad-scale: a large class of networks with mixed types of degree distributions. 

Most of these have a basic power-law shape with a sharp cut-off of the low degree 

tail (exponential or Gaussian decay). Examples are the airport networks of China (Li 

& Cai, 2004) and India (Bagler, 2008) or the flow of tourists across countries 

(Miguéns & Mendes, 2008). 

Clearly the literature on complex networks demonstrates the strong relationship 

between the topological structure and the functioning of the system described. It also provides 

useful measures of the structural characteristics of the diverse networked systems presented 

here based on a variety of models. 

3.4. Dynamic Processes 

A complex system is a dynamic entity: think of economies, companies or tourism 

destinations as living organisms existing in a state quite far from a static equilibrium. The 

only time in which they are in a full static equilibrium is when they are dead (Jantsch, 1980; 

Ulgiati & Bianciardi, 1997; Weekes, 1995). In the literature, the growing interest in 

development of models for a tourism destination (Butler, 2005a, 2005b), or the numerous 

methods devised to forecast some characteristic such as tourist demand (Song & Li, 2008; 

Uysal & Crompton, 1985; Witt & Witt, 1995, 2000) are good testimonials of the dynamic 

nature of these systems and the appeal of the study of these characteristics. 

Analysis of the topological properties of complex networks provides interesting and 

useful outcomes from a theoretical point of view. It is no surprise to find that this area has 

received a great deal of attention. The growth processes of all the basic network types 

discussed in the previous section (the random (ER) graphs and the different types of scale-free 
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networks) have been studied. In this section we describe two dynamic processes which may 

occur to, and within, a network and which are significant for a tourism destination, our unit of 

analysis. These are resilience and diffusion of information. 

The first characteristic, a system’s resilience, is verified in many real-world systems. It 

is defined as “the capacity of a system to absorb disturbance and reorganize so as to still retain 

essentially the same function, structure, identity, and feedbacks” (Walker, Holling, Carpenter 

& Kinzig 2004: 2). In a complex network this can be assessed by looking at how its structural 

characteristics change when links or nodes are removed from the network. Several numerical 

simulations have shown that the behavior of a complex network that is under attack is 

strongly dependent upon its basic topology (Albert, Jeong & Barabási 2000; Boccaletti et al., 

2006; Crucitti, Latora, Marchiori & Rapisarda 2004). As an example, the use of the efficiency 

of a network as a metric to compare different conditions results in a situation similar to Figure 

4. 

 

Figure 4 here. 

 

In the case of a purely random removal, the efficiency of a SF network decreases at a 

much lower rate than an ER network. The scale-free topology adds robustness to the system. 

When the high degree nodes are targeted, the attack proves to be much more disruptive if the 

attack is directed toward the hubs of an SF network. Removing just a small fraction of these 

(less than 15%) can completely destroy connectivity and leave the system as a set of isolated 

islands. Models based on this type of analysis could explain the resilient behavior of tourism 

systems after suffering major shocks such as the 9/11 attacks on the USA (see also Baggio, 

2008). 
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A mathematical representation of a system can be used to perform simulations of 

processes. A simulation can be a powerful tool to create different scenarios and the numerical 

methods invented have been transformed into computer programs and used in a wide number 

of disciplines. For systems such as social groups, this technique is, in many cases, the only 

one available to perform experiments and to study different settings (Axelrod, 2006; Gilbert, 

1999; Inbar & Stoll, 1972). Obviously, as the most important literature on the subject reports 

(e.g. Balci, 2003; Gilbert, 1999; Stauffer, 2003), when a social system is involved some 

precautions must be taken. In order to ensure the reliability and validity of the results, some 

conditions must be met: a strong conceptual model is the most important prerequisite, along 

with the credibility which may derive from the specific techniques used, and the comparison 

with other analytical results available, or real responses of the system (Adrion, Branstad & 

Cherniavsky 1982; Balci, 2003). If this happens, numerical simulations of socio-economic 

systems can provide very effective tools to support management practices. These represent a 

significant departure in approach from the usual, and open the way for the adaptive approach 

advocated by those convinced that a tourism destination is a complex, and sometimes even 

chaotic, system that should be dealt with in a non-deterministic way (Farrell & Twining-

Ward, 2004; Faulkner & Russell, 1997; Russell, 2006). 

The second characteristic is the diffusion of information through a network. In a tourism 

destination, the diffusion of information or knowledge is a crucial process for balanced 

development. Here, the determinants favoring this process are of paramount importance 

(Argote, Beckman & Epple 1990; Cooper, 2006; Cooper & Scott, 2005). The network effects 

of this process are well known (Valente, 1995; Wendt & Westarp, 2000), but the possibility of 

a numerical simulation in the framework of network science can be of great theoretical and 

practical value. 
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Figure 5 here. 

 

Consider the diffusion of a message in a network and observe the influence of the 

network topology. Epidemiological diffusion is a well-known phenomenon for which 

complete mathematical models have been devised (Hethcote, 2000). It has been known since 

the work of Kermack and McKendrick (1927) that the process shows a clearly defined 

threshold condition for the spread of an infection. This threshold depends on the density of the 

connections between the different elements of the network. However, this condition is valid 

only if the link distribution is random (as in an ER network). In some of the structured, non-

homogeneous networks that make up the majority of real systems such as SF networks, this 

threshold does not exist (see Figure 5). Once initiated, the diffusion process unfolds over the 

whole network (Pastor-Satorras & Vespignani, 2003). 

4.  METHODOLOGICAL ISSUES 

Two key issues need consideration in progressing network science and the study of 

tourism. The first of these is the epistemological legitimacy of applying the laws and methods 

of physics to a social activity such as tourism. The second relates to the practicalities of 

collecting data pertaining to a network. 

4.1. Epistemology 

Applying the laws and methods of physics to a socio-economic system such as a 

tourism destination may raise an issue of epistemological legitimacy and is an area where 

there is little relevant prior literature. There is a variety of works dealing with these questions 

for both natural and social sciences, examining the attitudes and positions of researchers with 

regard to their approaches and methodologies (Durlauf, 1999; van Gigch, 2002a, 2002b). The 

specific problem of the applicability of a physical approach to social systems however, is 
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rarely discussed and if so, usually as a secondary topic. Physicists do not seem to feel the 

need to epistemologically justify their use of the knowledge and tools of physics in 

investigating other fields. Justifications and discussions are the job of the epistemologist and 

usually come very late in the development of a field of study. Certainly justifications are not 

considered necessary when, as in the case of network science, a discipline is still in a very 

early stage of development.  

From a sociologist’s perspective however, the application of physical network theory 

may be rejected as irrelevant because it fails to address the recursive agency in the behavior of 

groups of people. Recursive agency refers to the ability of individuals to recognize their 

networked relationships and take proactive steps to change or modify their behavior. Thus, a 

sociologist may refuse the use of physical laws to model human behavior on the grounds that 

such laws do not apply. 

One of the reasons for this refusal can be that a non-physicist has, sometimes, a 

mistaken idea of what physics is. Bernstein, Bernstein, Lebow, Stein and Weber (2000), for 

example, consider that sociologists mistakenly believe that the ideas of physics are mainly 

those of Newtonian mechanics where single or small sets of particles are studied. Such 

particles have well defined characteristics (mass, velocity, energy) and their equations of 

motion can be described and investigated. Consequently, a key objection of sociologists is 

that a social actor is completely different from these homogeneous particles, and thus the 

methods of physics are too simplistic a representation to use in social science. 

However, the aims of physicists are not about achieving such individual predictive 

outcomes. In studying a socio-economic system we can focus upon its global behavior and the 

possibility of making predictions at a system level rather than seeking to predict the conduct 

of single elements (individual actors). This aim seeks to understand how regularities emerge 

out of the apparently erratic behavior of single individuals (Majorana, 1942). From this 
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perspective, a comparison of theoretical predictions with empirical data has two key 

objectives: (i) of verifying whether the trends seen in the data are compatible with a 

reasonable conceptual modeling of the idealized actors: and (ii) whether there is some level of 

consistency or if additional factors are required to provide a fuller explanation. 

In these circumstances, as Castellano et al. (2009) note, only high level characteristics, 

such as symmetries, energy balance, or conservation laws are relevant. These, as the findings 

of statistical physics show, do not depend on the individual details of the system but possess 

some universal characteristics. Thus, if the aim is to examine such global properties, it is 

possible to “approach the modelization of social systems, trying to include only the simplest 

and most important properties of single individuals and looking for qualitative features 

exhibited by models” (Castellano et al., 2009: 592). These considerations lead us to justify the 

application of the laws and methods of statistical physics to the study of a socio-economic 

system such as a tourism destination, with the condition that the quantitative techniques rely 

on sound and accepted qualitative interpretations of the phenomena as described in this 

chapter. 

The vast theoretical and empirical literature accumulated in recent years has shown 

network science to be an effective tool for understanding complex systems. The empirical 

study described in this chapter gives us an example of the application of network analysis 

methods to a tourism destination. 

4.2. Data Collection 

Fully enumerating the data relating to the totality of a network (nodes and links) is not 

possible on many occasions.  This failure is especially true for social and economic systems, 

and is certainly the case for a tourism destination. Using sampling to study complex networks 

is possible but this requires careful application. Standard statistical considerations apply as 
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long as we are considering a system in which the elements are placed at random, as in the case 

of an ER network, and where the significance of the sample is assessed with standard methods 

(Cochran, 1977). We have seen however, in the previous section, that the effects of removing 

links or nodes from a non-homogeneous system such as an SF network can lead to dissimilar 

results and is ‘element dependent’.  As a result, a sample of a network missing some critical 

hubs leads to erroneous conclusions about its topology. 

The literature on the subject is not extensive. The problem has been highlighted only as 

a consequence of recent discoveries in the field. It has been found that in the case of a 

structured network (scale-free, for example) it is not possible to easily determine the 

significance of a sample collected. Depending on the results of the analysis of the data 

available, the researcher needs to judge and make an educated guess of the final topology 

exhibited by the whole population; the whole network. In the cases in which this is possible, 

then, what can be done is to know how some of the main network metrics vary with the size 

of the sample and the topology of the network. 

For example, according to the literature, in the case of a SF network, degree distribution 

exponent and average path length decrease when nodes or links are sampled, assortativity 

coefficient has little or no change and the clustering coefficient decreases when nodes are 

sampled, but increases when links are sampled (Kossinets, 2006; Lee, Kim & Jeong 2006; 

Stumpf & Wiuf, 2005). 

 

5.  A CASE STUDY: A TOURISM DESTINATION 

This section describes a specific case using the network analysis methods described 

above. The case covers the Italian tourism destination of the island of Elba.  Elba’s location is 

in the centre of the Tyrrhenian Sea and it is a typical sun and sand destination. Elba’s 

economy depends mainly on the wealth generated by about half a million tourists spending 
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some 3 million nights per year. Elba was selected for study as it is geographically distinct, has 

accessible records concerning tourism actors and has a scale suitable for detailed examination. 

The core tourism organizations (such as hotels, travel agencies, associations, public bodies), 

were identified from the official local tourism board and form the nodes of the network. The 

connections among them were enumerated by consulting publicly available documents such 

as membership lists for associations and consortia, commercial publications, ownership and 

board of directors records. The data obtained and its completeness were validated with a 

series of structured and unstructured interviews with a selected sample of local 

‘knowledgeable informants’ who included the directors of the local tourism board and of the 

main industrial associations, or consultants active in the area. These interviews revealed a 

very limited number of links that were not previously discovered and it seems reasonable to 

assume that the final network layout has a completeness of about 90%. All the links are 

considered undirected and of equal weight. The network thus obtained is depicted in Figure 6. 

 

Figure 6 here. 

 

Table 1 summarizes the metrics calculated for this network.  As a comparison the 

second column contains the values calculated for a random (ER) network of the same order 

and size (the values are averages over 10 realizations). The last column of Table 1 reports 

typical values for social networks published in the literature (see for example Albert & 

Barabási, 2002; Boccaletti et al., 2006; Dorogovtsev & Mendes, 2002; Newman, 2003b). 

The degree distributions (differential and cumulative) for the network are shown in Figure 7. 

The shape of the distribution follows a power law P(k)  k-. The exponent (and its standard 
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error), calculated following the procedure proposed by Clauset, Shalizi and Newman (2009) is 

 = 2.32±0.27. 

 

Figure 7 here. 

Table 1 here. 

 

The density of links is quite low, considering that the values found in the literature for 

the social networks studied are typically of the order of 10-1 – 10-2 (Albert & Barabási, 2002; 

Boccaletti, Latora, Moreno, Chavez & Hwang 2006; Caldarelli, 2007). The percentage of 

nodes without connections is very high (39%). This results in a sparse network, also 

confirmed by the small value of the clustering coefficient. The efficiency of the Elban 

network is consequently quite low, both at a global and a local level. Another value which is 

different from what would have been expected for a socio-economic network such as Elba, is 

the assortativity coefficient. This, as seen in section 3, represents the tendency of a node to 

connect with nodes having similar degrees. The correlation has been found to be positive for 

many of the social networks examined by the literature (Newman, 2002), and, while debated 

by some authors (Whitney & Alderson, 2006), this positive correlation is generally considered 

to be a distinguishing characteristic of social networks with respect to other systems. On the 

other hand, the calculated values for diameter and average path length seem to be in line with 

those of other real social systems and sensibly smaller than those exhibited by a random 

network. This indicates a certain level of compactness of the Elban network, at least for its 

central connected core. This is also confirmed by the proximity ratio which indicates a good 

level of ‘small-worldness’ of the network. 
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The modularity of the network was calculated by dividing its actors with respect to the 

type of business (e.g. hospitality, associations, food and beverage services) and geographical 

location (Elba’s municipalities) (Table 2). As a comparison, the modularity was investigated 

using Clauset et al.’s (2004) algorithm which partitions the network on the basis of its 

connectivity characteristics, without supposing any division in advance (CNM in Table 2).  

 

Table 2 here. 

 

Table 2 shows the number of clusters identified (groups) and the modularity index. The 

last row reports the values calculated (CNM) for a network of the same order as the Elban 

network with a randomized distribution of its links (values are averages over 10 iterations). 

To better compare the different results, the last column of the table contains the average 

modularity over the groups (modularity/number of groups). All groups have a very low 

modularity. In one case (grouping by type), the negative value indicates that the actors tend to 

have more connections outside the group to which they belong than with businesses within 

the group. The higher values found by the CNM algorithm confirm that division by 

geography or by type of business does not imply any strong clustering in these groups. In 

other words, no well-defined business-type or geographical groupings can be found in the 

destination. The fact that the randomized network has a lower but similar modularity with 

respect to that obtained by using the community detection algorithm on the original network 

is an indication that a distinct modular structure exists even if it is not very well defined or 

highly significant (Guimera & Amaral 2004). In this socio-economic system, the topology 

generated by its degree distribution induces a certain level of self-organization which goes 

beyond pre-set differentiations (by geography or type) of the agents. 
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5.1. The Topological Analogy: An Example (Real and Virtual) 

As a further example of the outcomes of the application of network science to a system 

such as the Elban tourism network, consider the virtual network among Elban tourism 

companies. The websites belonging to the tourism stakeholders were identified. Only full 

websites, with their own address were considered, discarding sets of pages embedded in the 

portals of other organizations. The web network (WN) was built by listing all the hyperlinks 

among them. This was accomplished by using a simple crawler and complementing the data 

obtained with a manual count of the hyperlinks to overcome the limitations of the program 

used (such as the impossibility of finding hyperlinks embedded in Flash applications or Java 

applets) (Baggio, 2007). Table 3 shows the topological characteristics of the WN network 

compared with those of the real network (TN) described in the previous section. 

Apart from scale factors, most of the values have differences which are lower than an 

order of magnitude. Since in a complex network, the distributions of these metrics are not 

normal, a simple comparison of their averages (arithmetic means) is an insufficient way of 

establishing similarities or dissimilarities. Here some researchers consider that the 

Kolmogorov-Smirnov (KS) statistic is able to provide trustworthy results (Clauset et al., 

2009; Leskovec & Faloutsos, 2006). The KS D-statistic gives the maximum distance between 

the cumulative probability distributions of empirical data F(x) and G(x) over the entire x 

range: )()(max xGxFD x  . This statistic is nonparametric and as it is insensitive to 

scaling issues, it compares only the shapes of the empirical distributions (Siegel & Castellan, 

1988). 

 

Table 3 here. 
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The values for the D-statistics calculated when comparing the distributions of the Web 

network with those of the real network are the following: degree = 0.119; clustering 

coefficient = 0.147; local efficiency = 0.125. For comparison, the same values have been 

calculated for a random sample (RN) of the same size as WN, extracted from the real one. 

The values (averages over 10 realizations) are: degree = 0.147; clustering coefficient = 0.178; 

local efficiency = 0.184. The consistently lower values of the D-statistic in the case of the web 

network (with respect to the random sample) are a good confirmation of the likeness of their 

structural characteristics. 

A strand of literature considers virtual networks as representations of the social 

relationships among the actors who originating them. In essence: “computer networks are 

inherently social networks, linking people, organizations, and knowledge” (Wellman, 2001: 

2031). Even if some argue that that the links are created in a rather unpredictable way, and it 

is not possible to find unambiguous meanings (Thelwall, 2006), private or public 

organizations and companies consider a hyperlink as a strategic resource, and the structure of 

this network is created by specific aims o communication, rather than by accidental choices 

(Park & Thelwall, 2003; Vaughan, Gao & Kipp 2006). 

Based on these considerations and the network analysis, it is possible to formulate the 

following conjecture: the network of websites belonging to a cluster of (tourism) companies is 

a reliable sample of the whole socio-economic network formed by them. The obvious 

limitation is that the area taken into account must show a significant diffusion of the Internet 

and the Web. Yet nowadays, for a large part of the World, this is not a severe limitation. 

Rather than more or less ‘randomly’ sampling a socio-economic network with the usual 

investigation methods (Marsden, 1990), the Web provides us with a relatively fast, easy and 

objective way of sketching the main characteristics of such networks. The literature has 

produced much evidence on the issue of network sampling and the effect it might have on the 
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topological characteristics of the whole network (Kossinets, 2006; Lee et al., 2006). This must 

be taken into account in deriving the insights provided by the methods of network analysis. 

5.2. Dynamic Processes 

Through their mathematical representation, networked systems are excellent candidates 

for numerical simulations. Indeed simulation is receiving increased attention as a powerful 

method to support complex analysis and planning activities for social and economic systems. 

Information and knowledge flows in a destination are important factors for the general well-

being of the system and the manner in which the diffusion unfolds influences the competitive 

advantage of individual actors and their future planning. Productivity, innovation and 

economic growth are, in fact, strongly influenced by these processes, and the way in which 

the spread occurs can determine the speed by which individual actors perform and plan their 

future actions at the destination. In other words, the structure of the network will be influential 

in determining the efficiency of the destination’s attempts to share knowledge and innovate 

(Argote & Ingram, 2000).  

A computer simulation can help assess the efficiency of information flows across the 

destination and test the capability of the system to react to changes in its structural 

parameters. Here, simple epidemiological model can be employed where nodes are either 

‘susceptible’ to receiving information or already ‘infected’ by it (i.e. they have received it). 

Despite its simplicity, this model is a reliable approximation and quite suitable to describe a 

knowledge transfer process (see for example Barthélemy, Barrat, Pastor-Satorras & 

Vespignani 2005; Xu, Wu and Chen 2007). The simulation was conducted as follows: within 

a network, one randomly chosen stakeholder starts the spread by infecting a fraction ki of its 

immediate neighbors. At each subsequent time step, each infected element does the same until 

all the network nodes have been infected and the process ends. In this study, the model was 

run by adopting two different configurations.  
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In the first case, the capacity of a stakeholder to transfer knowledge (spread infection) is 

used as a parameter for the model. It is defined as a probability p(ki) which determines the 

number of neighbors infected by a single actor. This justifies an important difference between 

the diffusion of information and knowledge and the spread of viruses. Viruses are 

indiscriminate, infecting any susceptible individual. Knowledge, on the other hand, is 

transferred only to a limited set of the individuals with which an actor has interactions 

(Huberman & Adamic, 2004). 

Particular actors then can have different absorptive capacities (Cohen & Levinthal, 

1990; Priestley & Samaddar, 2007). Absorptive capacity refers to different capabilities to 

acquire and retain the knowledge available to an actor due to the associated costs or their 

internal functioning, and to transfer it to other actors. In tourism, this issue is crucial for the 

large number of small businesses that typically rely on external contacts for information. In 

the reasonable assumption that p(ki) depends on the size of the stakeholder, the network nodes 

were divided into three classes: large, medium and small (in our case we have the following 

proportions: large = 8%, medium = 17%, small = 75%). The values for p(ki) used in the 

simulations run are (arbitrarily) set as: p(klarge) = 1, p(kmedium) = 0.8, and p(ksmall) = 0.6.  

The second type of simulation aims at testing the influence of a network’s structure, and 

particularly how the cohesion among stakeholders can affect the knowledge transfer process. 

In this case the experiment was performed with a modified version of the original network 

obtained. This was achieved by rewiring the connections while leaving unchanged the original 

connectivity (i.e. the number of immediate neighbors of each stakeholder and overall density 

of linkages), in order to obtain a higher clustering coefficient and a higher efficiency. The 

algorithm used is similar to the one proposed by Maslov and Sneppen (2002). The new 

network has a clustering coefficient C = 0.274 and a mean local efficiency Eloc = 0.334, as 

opposed to the original one whose values are C = 0.084 and Eloc = 0.104 (only the fully 
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connected component of the Elban network was used, i.e. all isolated nodes were removed). 

As a comparison, a random network (same order and density, and random distribution of 

edges) was used. The time of peak diffusion, which can be used as an indicator of the process 

efficiency, decreases by 16% when comparing the random network with the Elban network 

containing different actors’ capabilities. This is to be expected, due to the non-homogeneity of 

the network. When changing to equal capabilities (the original Elban network), a 22% 

reduction in the time of peak diffusion is found. A further consistent decrease (52%) is found 

when the local densities (clustering) are increased. Figure 8 shows the cumulative number (as 

a percentage of total) of stakeholders that are infected as function of time for the different 

simulations preformed. 

 

Figure 8 here. 

 

 

Therefore, the interventions made have a significant impact on the information diffusion 

process. The spread of knowledge is faster if the network’s connections are not distributed at 

random (scale-free in our case), knowledge improves if all the stakeholders have equal 

absorptive capacities (the maximum) and is even more enhanced when the extent of formation 

of local groupings (collaborative communities) increases. 

5.3. Discussion 

The Elban tourism destination network is a complex network whose main traits are 

common to many other natural and artificial systems. Its scale-freeness has been assessed. 

Despite this similarity, the structure differs from those exhibited by other complex systems, 

mainly in its high degree of sparseness and very low degree of local clustering. In tourism 
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terms this means that the local stakeholders exhibit a very low degree of collaboration or 

cooperation. A quantitative measurement for this feature is naturally derived from the metrics 

used for the network analysis. In particular, as argued elsewhere (Baggio, 2007), the 

clustering coefficient (very low in this case) can be used as a measure of the extent of the 

degree of collaboration, and the assortativity coefficient (very low and negative) can be 

thought of as representing the tendency to form such collaborative groups. The qualitative 

knowledge of the destination (Pechlaner, Tallinucci, Abfalter & Rienzner 2003; Tallinucci & 

Testa, 2006) and the data gathered during the interviews conducted at the destination 

substantiate the interpretation given. This apparent lack of collaboration among operators 

belonging to the same type has proved to be detrimental when considering the capacity for 

innovation which might help the operators face the challenges of the contemporary, highly 

competitive and globalized market. It has been shown, in fact, that a collaborative approach 

and intense information exchange, even in seemingly competitive organizations such as the 

group of Sydney hotels described by Ingram and Roberts (2000), may allow a valuable 

amalgamation of best practices, with the result of improving the performance and profitability 

of the whole group and its members. The low level of modularity unveiled further confirms 

this reading. It is interesting to note that in the results of the analysis, the highest modularity 

value is obtained with the usage of a generic numeric algorithm (Clauset et al., 2004). This 

community structure, in the common understanding of the phenomenon (Arenas et al., 2004), 

can be considered better than those which can be found based on the other criteria used: type 

of business and geographical location within the destination.  

Both the number and the composition of the clusters identified are different (Table 2). 

The system, in other words, exhibits self-organization properties which lead to the formation, 

to some extent, of an agglomeration of ties and produces a number of informal communities 

and an informal community structure. It can be concluded that the information contained in 
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the geographical or business typology data does not fully represent the communality 

characteristics, and the modularity solutions found in this way are non optimal.  Minerba, 

Chessa, Coppola, Mula and Cappellini (2008) report findings that, for a different social 

network, support the evidence in the present study. 

From a destination management viewpoint, this result is important. The result provides 

indications on how to optimize performance of aspects of the network, for example, optimal 

communication pathways or even productivity in collaborations, overcoming rigid traditional 

subdivisions. The study implies a more practical tool to support the ideas and practices of an 

adaptive approach to the management of a tourism destination (Farrell & Twining-Ward, 

2004). 

A word of caution is necessary when considering extending the considerations made on 

network clustering and modularity to other cases. It has been shown, for example, that 

significant values for the clustering coefficient can also be accounted for by a simple random 

graph model (i.e. in which edges are placed at random), under the constraint of a fixed degree 

distribution P(k). The emergence of this effect is a statistical fluctuation caused by the form of 

the degree distribution in networks with a finite number of elements (Newman, 2003a; 

Newman, Strogatz and Watts 2001). A correct interpretation of the result, therefore, can only 

be achieved by complementing the quantitative assessment with a deep knowledge of the 

social system under study. Typically this comes from a tradition of qualitative investigation. 

Studies of the real and the virtual networks of Elban tourism stakeholders demonstrate 

the value of the network method for study of a CAS. Even with the limitations discussed 

previously, it has been possible to formulate a conjecture – the similarity between the 

topologies of the two networks – which can prove extremely useful in speeding up and easing 

the process of collecting data to perform network analyses for socio-economic systems such 

as tourism destinations.  
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The analysis of this information diffusion process provides us with some more 

important results. The simulated measurements of the speed of diffusion confirm the 

improvement in the efficiency of the whole process due to the existence of a structured 

network instead of a randomly linked system. Two conceptually different situations were 

simulated. The first considered the stakeholders of the destination as elements with different 

capabilities to acquire and consequently retransmit information or knowledge. The second 

assessed the effects of a change in the topology of the network obtained by optimizing it with 

respect to its efficiency. The results show a clear improvement in diffusion speed when all the 

actors are considered to have the same capacity to transfer information or knowledge. This is 

an important finding for destination managers. Putting in place measures and actions aimed at 

reducing the differences in the absorptive capacities of destination stakeholders can have a 

highly beneficial impact on the overall system. However, the results indicate that a similar 

effect, but with an even higher magnitude, can be obtained by optimizing network efficiency. 

The exchange of information among the nodes is much improved if the connectivity of the 

network is modified so as to increase the local efficiency, and consequently the clustering 

coefficient. 

An important antecedent for the spread of knowledge in a socio-economic system, such 

as a tourism destination, is the presence of a structured topology in the network of relations 

that connect the different stakeholders, and more than that, the existence of a well-identified 

degree of local cohesion. This conclusion supports the notion that destination stakeholders 

should form clusters to both compete and cooperate in order to exchange knowledge and 

hence raise the overall competitiveness of the destination. Quantitative network methods can, 

therefore, not only assess this effect, but, more importantly, give practical indications on how 

to improve the process. By performing different simulations with different sets of initial 

parameters (distribution of absorptive capacities or different levels of clustering), it is possible 
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to obtain different settings and evaluate the effects of the choice of parameters on the final 

result. 

6.   CONCLUSION 

This paper describes the methods and the techniques that network science provides for 

the study of complex adaptive systems and as an example of their application, the case of a 

tourism destination has been discussed along with some of the implications of this approach.  

Network analysis methods are undoubtedly an intriguing and intellectually stimulating 

exercise. Physicists know however, that no matter how sophisticated and effective theoretical 

techniques can be, they have little value when applied to a phenomenon without coupling 

them with sound physical interpretations. Translating into the language of social science this 

means that a thorough knowledge of the object of analysis is crucial to obtain meaningful 

outcomes both from a theoretical and a practical point of view. This knowledge results from 

applying qualitative methods. As Gummesson (2007: 226) points out, “By abolishing the 

unfortunate categories of qualitative/quantitative and natural sciences/social sciences that 

have been set against each other, and letting them join forces for a common goal – to learn 

about life – people open up for methodological creativity, therefore qualitative and 

quantitative, natural and social are not in conflict but they should be treated in symbiosis”.  

In the 21st Century, the strong focus on issues such as partnership, collaboration, 

cooperation and the benefits of the tools available for the investigation of the relationships 

between the elements of a socio-economic system have been discussed in general 

management studies. The implications go well beyond the simple study of networks. These 

methods have the strong potential to inform a wide number of concerns such as the use of 

technology, the study of epidemiological diffusion (from diseases to marketing or policy 

messages), the formation of consensual opinions and the impacts of these on organizational 

structure and performance (Parkhe, Wasserman & Ralston 2006). 
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In this respect, the methods of network science can prove beneficial in deepening the 

knowledge of the whole system and, coupled with more traditional procedures, can provide 

powerful tools to enable those adaptive management practices considered by many the only 

practical way to steer the collective efforts of multiple organizations (Bankes, 1993; Farrell & 

Twining-Ward, 2004; Holling, 1978; Ritte, Wilkinson & Johnston 2004). 

The possibility of using quantitative techniques to analyze the relationships between 

tourism operators opens new pathways for the researcher interested in the structure, the 

evolution, outcomes, effectiveness and the governance of the system. This work, therefore, 

strongly supports the idea that triangulation of research methods can give the clues necessary 

to improve the analysis of tourism systems and their components (Davies, 2003). Further 

research in this area will first need to confirm the results obtained so far by increasing the 

number of examples studied. The methods employed in this chapter clearly require some 

additional refinement both from a practical and a theoretical point of view. The ever growing 

number of studies in network science on the dynamic evolution of a complex networked 

system may suggest new models and new approaches which will need careful consideration 

before they are applied to the field of tourism. As a final point, it is a firm conviction of the 

authors that a more rigorous establishment and adoption of methodological tools such as those 

used in this work can be a powerful way to help tourism research transition towards a less 

undisciplined array of theories and models (Echtner & Jamal, 1997; Tribe, 1997). 
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Figure 1 Different graphs: undirected (A), directed (B), weighted undirected (C) and 

weighted directed (D) with their adjacency matrices 
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Figure 2 A modular network with a strong modularity (modularity index = 0.57). Dotted 

lines mark the three communities characterized by having a denser set of links inside 

them than towards other components of the network 
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Figure 3 Degree distributions: Poissonian (A) and Power-law (B). The distributions refer 

to networks of the same order (1000 nodes) and size (3000 links) and are drawn on a 

chart with logarithmic axes. While the Poisson distribution shows a characteristic curved 

shape, the power-law distribution is a straight line 
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Figure 4 Effects of random (errors) and targeted removals (attacks) for random (ER) and 

scale-free (BA) networks (f is the fraction removed) on the efficiency (E) of the system 

(adapted from Boccaletti et al., 2006). The BA network shows a better capacity to absorb 

random removals than an ER network, but is much more sensitive to targeted attacks to 

the high degree nodes 
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Figure 5 Fraction of infected individuals () as a function of spreading rate () for a SF 

network (solid line) compared to an ER network (dotted line) (after Pastor-Satorras & 

Vespignani, 2003). In an ER network the presence of a threshold for initiating the 

diffusion is evident while an SF network is lacking a critical onset of the epidemic 
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Figure 6 The Elba destination network 

 

Figure 7 The degree distributions of Elba destination network. P is the frequency of nodes 

having degree k (A) or greater than k (B, the cumulative distribution) 
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Figure 8 Cumulative percentage of informed stakeholders for the simulations performed: 

rewired network (RW), Elba network with equal probability of transmission (EN), with 

probabilities scaled according to stakeholder size (EDiff) and a network of same size with 

a random distribution of links (Rnd). Curves are averaged over 10 realizations of the 

simulations. 
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Table 1 

Elba destination network metrics compared with a random network of the 

same order and size and with typical values for social networks 

 

Metric Elba network Random Social networks 

No. of nodes 1028 1028  

No. of links 1642 1642  

Density 0.003 0.003 10-1 - 10-2 

Disconnected nodes 37% 3%  

Diameter 8 13 10 

Average path length 3.16 5.86 10 

Clustering coefficient 0.050 0.003 10-1 

Proximity ratio 34.09 N/A 102 - 103 

Average degree 3.19 3.25  

Global efficiency 0.131 0.169 10-1 

Local efficiency 0.062 0.003 10-1 

Assortativity coefficient -0.164±0.022 0.031±0.033 10-1 (>0) 
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Table 2  

Elba network modularity analysis 

Grouping No. of groups Modularity Average Modularity 

Geography 9 0.047 0.0052 

Type 8 -0.255 -0.0319 

CNM 11 0.396 0.0360 

CNM (random) 12 0.367 0.0306 
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Table 3  

Topological characteristics of the real (TN)  

and the virtual (WN) Elban networks 

Metric TN WN 

Number of nodes 1028 468 

Number of edges 1642 495 

Density 0.003 0.005 

Disconnected nodes 37% 21% 

Diameter 8 10 

Average path length 3.16 3.70 

Clustering coefficient 0.050 0.014 

Degree distribution exponent 2.32 2.17 

Proximity ratio 34.10 12.21 

Average degree 3.19 2.12 

Global efficiency 0.131 0.170 

Local efficiency 0.062 0.015 

Assortativity coefficient -0.164 -0.167 
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