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Why Metabolic Systems Are Rarely Chaotic

Tjeerd olde Scheper
Department of Computing, Oxford Brookes University, Wheatley Campus, Oxford OX33 1HX, UK

Abstract

One of the mysteries surrounding the phenomenon of chaos is that it can rarely be found in biological systems. This

has led to many discussions of the possible presence and interpretation of chaos in biological signals. It has caused

empirical biologists to be very sceptical of models that have chaotic properties or even employ chaos for problem

solving tasks. In this paper, it is demonstrated that there exists a possible mechanism that is part of the catalytical

reaction mechanisms which may be responsible for controlling enzymatic reactions such that they do not become

chaotic. It is proposed that where these mechanisms are not present or not effective, chaos may still occur in biological

systems.

Key words: Control of Chaos, Rate Control, Biological Complexity, Chemical Chaos

1. Introduction

In biology, it can be argued that virtually all
chemical reaction steps are under some form of en-
zymatic control. This can be analysed to determine
the rate of production of the different metabolites
and then modelled using traditional Michaelis-
Menten type kinetics [1]. More recently, the total
flux of a chemical pathway can be analysed using
control analysis which allows the relative efficiencies
of each intermediate step to be quantified [2]. Even
though these pathways are of tremendous complex-
ity, they appear to be stable [3]. Chaos occurs in
chemical (and physical) processes regularly and it
seems that biochemical processes can either prevent
it from occurring or have evolved to avoid chaotic
domains.

Because there appears to be little indication for
chaotic behaviour to be a particularly bad (or pos-
sibly good) survival trait, it is assumed that the
biochemical catalytical process itself avoids chaotic

Email address: tvolde-scheper@brookes.ac.uk (Tjeerd
olde Scheper).

domains by virtue of its specific organisation. En-
zymatic processes control the rate of production of
their substrates and it is suggested in this paper that
this is a built-in safeguard that limits the system to
stable dynamics.

It is assumed that the Michaelis-Menton model is
sufficiently accurate to describe the rate of reaction
which depends non-linearly on the substrate con-
centrations. The Michaelis-Menton model exhibits
rate saturation at higher concentrations of the sub-
strates and it is this concept that will be used to
describe a rate control method for chaotic control.

v =
S Vm

S + Km

(1)

The Michaelis-Menton equation (1) describes a
rate curve v where S is the substrate concentration
and Km the Michaelis constant with Vm the limiting

rate. For this equation, it is assumed that enzyme-
substrate reactions, as part of the catalytical pro-
cess, are so rapid that the process is at virtual equi-
librium. This effectively means that the breakdown
of the enzyme-substrate complex into the product is
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the rate limiting step of the catalysis [2]. Although
this is only a conceptual model of enzyme activity
because it assumes that the rates are close to equi-
librium, it seems to be adequate for most reaction
rate analysis problems. The steady state assumption

implied by this can only be true if indeed most of
these problems are near steady-state or in a state
which is indistinguishable from a steady state. This
may seem to be an arbitrary distinction but its rele-
vance can be more readily understood if it is consid-
ered that a system in steady-state and a controlled
chaotic system are dynamically similar. A chaotic
system that is under control of some effective control
method, shows the same dynamical properties as a
stable system because the control method forces the
system to revert to more classical dynamics. Only
careful analysis, and interference with the control
method, will show the difference. This property of
chaotic control is one of the reasons why chaotic con-
trol has been studied in great depth and has been
used to control different systems [4].

The aim of controlling chaotic dynamic systems
is, generally, to stabilise specific points or orbits
within the phase space. The chaotic nature of a sys-
tem can thus be reduced to stable states. Different
methods have been developed that are either vari-
ations on the OGY system of control [5,6] or delay
control [7,8,9]. The OGY control methods require
knowledge of the unstable periodic orbits (UPOs)
contained in the attractor. Therefore, an analytical
understanding of the chaotic system is necessary to
control the system. The delay control method uses
the control function F (y) = K(y(t)−y(t−τ)) which
does not require any knowledge of the UPOs but it
needs appropriate choices for the control constant
K and the delay τ . If the choices for K and τ are
not correctly chosen then the system will not sta-
bilise into an orbit. Note that some chaotic systems
can not be stabilised using the single delay control
method such as the Lorenz system [10] due to the
fact that these contain negative Floquet exponents
but these systems can be controlled by an extended
delayed feedback control [11,9].

To study the possibility that metabolic processes
contain a mechanism to prevent chaotic states from
developing, two different biochemical kinetic models
will be shown to be readily controlled using the novel
rate control method described in this paper. Addi-
tionally, the principles of the rate control method of
chaotic control are outlined using two classic chaotic
models.

2. Rate Control

In this section, a novel method of chaotic control
is presented that does not depend on a priori knowl-
edge of the presence of unstable periodic orbits in
a chaotic system. Additionally, it requires only the
current state of each of the variables by limiting the
relative rate of expansion of each of those variables.
An extensive analysis of this method (including an
analysis of the method in terms of the Lyapunov ex-
ponents) is in preparation [12]. This will also demon-
strate how the rate control method can overcome
the limitations of the single delay control method for
specific chaotic systems, such as the Lorenz system.

Consider the form of n linear rate equations that
govern a particular dynamic system:

ẋ1 = F1(x1) + G1(x2)

ẋ2 = F2(x2) + G2(x2)

...

ẋn = Fn(xn) + Gn(xn)

In this case, the system depends on one of the
functions F or G to grow or decrease at some rate.
Additionally, either function may be non-linear and
may depend on more than one variable. If one con-
siders the nature of a chaotic flow equation, in the
range where stretching and folding occurs, i.e. where
the local Lyapunov exponents tend to have at least
one positive value, the global behaviour is domi-
nated by some of the n equations. These tend to be
the non-linear parts of the system that allow the sys-
tem to expand at an exponential rate. The local rate
of expansion is proportional to the local behaviour
of each of the variables. If a chaotic system is near
an unstable periodic orbit, it can be kept near or on
this orbit by small proportional adjustments to one
or more of the variables. This is the principle of the
OGY method of control. In rate control, the expo-
nential expansion of the system away from the orbit
is used to limit the rate of expansion, thereby pre-
venting the chaotic system from leaving the orbit.
Note that the rate control method does not neces-
sarily target specific orbits.

To achieve a rate control of a chaotic system, the
rate of expansion can be estimated from the growth
terms in each equation of the system. By determin-
ing the current proportion of the variable of the
space it occupies, a measure for each variable can be
found, e.g. for the Rössler system,

2



dx

dt
= −(y + z) (2)

dy

dt
= x +

y

α
(3)

dz

dt
=

β

α
+ (z x) − (γ z) (4)

the growth term for equation (4) is (z x) (and an
additional constant term). The proportion of each
of these two variables to the growth rate is given by

qx =
x

x + µx

and qx =
z

z + µz

(5)

where µx and µz are constant. For this non-linear
equation, the divergence of the two variable x and
z determines the increase in rate of growth of the z

variable itself. Therefore, by limiting the (x z) term
in proportion to the divergence rate, the system
should be stabilised. To express this in more gen-
eral terms, the following equation describes a generic
rate control function for the divergence of x and z:

σ(x, z) = f eξ qx qz = f e

{

ξ(x z)

(x z + x + z + µ)

}

(6)

where µ is a constant and ξ and f are variable scalars
that can be used to stabilise different orbits. This
rate control function can be used in many different
chaotic systems of which two examples are presented
below before the rate control is applied to biochem-
ical models. The rate control function is capable of
both limiting the rate of expansion of a variable as
well as promoting the rate of expansion which can
also lead to the stabilisation of an unstable periodic
orbit depending on the local dynamics.

3. Application of rate control to chaotic

systems

3.1. Rössler system

To demonstrate the rate control on a flow system,
the Rössler system [13] was modified to include the
rate control function (6). The rate function may be
applied to all the three Rössler variables but it is suf-
ficient to apply the rate control to the third z vari-
able alone. The resulting modified rate controlled
Rössler system is then as follows:

σ(x, z) = f e

ξ(xz)

(x z + x + z + µ) (7)

dx

dt
= −(y + z) (8)

dy

dt
= x +

y

α
(9)

dz

dt
=

β

α
+ (σ(x, z) z x) − (γ z) (10)

where the Rössler variables are α = 5, β = 1 and
γ = 5.7 and where the rate control parameter ξ can
be variable but by default f = 1, ξ = −1 and µ =
150. With any appropriately chosen value for µ, the
parameter ξ may be varied resulting in different un-
stable periodic orbits to become stabilised. In figure
1 the evolution of the Rössler z variable is shown
when ξ = −1.5 and with the rate control enabled at
timestep 50. The system rapidly becomes stabilised
into a stable one period. The rate control function σ

is shown in figure 2 and is constant at 1 until the z

variable increases rapidly, it then decreases in pro-
portion to the change in z and thereby “slows” down
the z variable. This results in the system becoming
stable periodic. By changing the rate parameter ξ,
it is possible (whilst all other parameters and ini-
tial conditions are the same) to stabilise different
unstable periodic orbits. In figure 3 are shown three
orbits that can be stabilised when the values for ξ

are −1.5,−1.0 and −0.4. From right to left can be
seen the stable period 1 orbit for ξ = −1.5, two or-
bits of the stable period 4 orbit for ξ = −0.4, the
period 1 orbit when ξ = −1.0 and the other two or-
bits of the period 4 for ξ = −0.4. It can be recog-
nised from these two figures that the shape of the
Rössler attractor is stretched in the x and y plane
when ξ < 1.0. Otherwise, it has a shape similar to
the chaotic attractor, including stretching and fold-
ing when x > 0 and y > 0.

3.2. Ikeda map

To demonstrate that the rate control method ap-
plies to chaotic maps as well as flows, the rate con-
trol is introduced in the Ikeda map. The Ikeda map
is a good example of a complex chaotic map that
contains several points of nonlinearity [14]. By plot-
ting the real and imaginary parts of the complex
equation

z(n + 1) = a − b zne
iκ−

iη

1 + |zn|2 (11)

3
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Figure 1. Rössler z variable rate controlled into unstable
periodic orbit. Super-imposed, starting at value 1, is the
rate control function σ.
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Figure 2. Evolution of the control function σ for the Rössler
model, here ξ = −1.5. The control is turned on at time
t = 50.

with x = Re(z) and y = Im(z), the Ikeda map can
be described as

φ = κ −
η

(1 + x2
n + y2

n)
(12)

xn+1 = a + b(xn cosφ − yn sin φ) (13)

yn+1 = b(xn sin φ + yn cosφ) (14)

with a = 1, b = 0.9, κ = 0.4 and η = 6.0. The
rate control equation (6) is applied to both xn and
yn by limiting the function φ (12). The function φ

therefore becomes

φ ′ = κ −
η

(1 + σ(xn, yn)x2
n + σ(xn, yn)y2

n)
(15)

where the rate control parameters are chosen to be
µ = 5 and ξ is variable.
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0
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10

12

14

−0.4 

−1.5 −1.0 

Figure 3. Phase space plot of x versus z for three differ-
ent unstable periodic orbits within the Rössler attractor,
ξ = −1.5 (period 1), ξ = −0.4 (period 4) and ξ = −1 (pe-
riod 1) respectively from right to left.

Some resulting unstable periodic orbits are shown
in figure 4 where three different orbits, two period
three orbits and a period six orbit, are indicated
on top of the uncontrolled Ikeda map. Orbits are
stabilised depending on the proximity of the system
to the orbit when control is enabled. The control
is initially disabled and becomes enabled after 5000
iterative time steps. The resulting evolution of the x

variable of the Ikeda map for ξ = 2 is shown in figure
5 where the map will very quickly stabilise into the
three orbit when control is enabled.

The rate control function σ that is applied to the
map is shown in figure 6, where the control function
is equal to one when rate control is disabled and
becomes periodic when control is enabled and sta-
bilised. Note that σ is close to one for two of the un-
stable points, which implies that the local dynamics
is small (i.e. one of the local Lyapunov exponents is
small positive), not much rate control is needed to
prevent the system from leaving the orbit. The third
unstable point requires a relative large limitation of
the expansion rate for σ = 0.4.

4. Control of a chemical oscillator

The relevance of rate control of chaos to the bio-
chemical processes can be illustrated by introduc-
ing rate control to the growth terms of a known
multi-variable chemical model. No assumptions on
the properties of the control parameters are initially
made but different values for the control parame-
ters ξ and f , see equation (6), have been tested. The
model described below is a three variable model that

4
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Figure 4. Ikeda attractor with three different unstable pe-
riodic orbits, ξ = 2 (3 orbit, circles), ξ = 2.25 (3 orbit,
squares) and ξ = 1.75 (six orbit, diamonds).
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Figure 5. Evolution of controlled x variable of the Ikeda
map, control is turned on at 5000.
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Figure 6. Rate control variable σ of the Ikeda map, with
control enabled at time step 5000.

is derived from a two-variable autocatalator system
[15]. It has six reaction steps with rates given by
law-of-mass-action kinetics:

P → A Rate= k0 p0

P+C → A+C Rate= kc p0 γ

A → B Rate= ku α

A+2B → 3B Rate= k1 α β2

B → C Rate= k2 β

C → D Rate= k3 γ

This system is considered to be open with a con-
stant precursor p0. In a dimensionless form the last
three relevant rate equations can be written as:

d a

d t
= u (k + c) − a − a b2 (16)

s
d b

d t
= a + a b2 − b (17)

d
d c

d t
= b − c (18)

where

a =

√

k1 ku

k2
2

α, b =

√

k1

ku

β, c =

√

k1 k2
3

ku k2
2

γ

(19)

are dimensionless concentrations and t = ku τ is di-
mensionless time. The parameters d = 0.02, k = 65
and s = 0.005 are dimensionless and derived from
the original rate equations [15]. The parameter u

shows asymptotic behaviour when varied through
a supercritical Hopf bifurcation at u = 0.016, fol-
lowed by a period doubling cascade that begins at
u = 0.143. For 0.1534 < u < 0.1551, the system
is chaotic [15]. For the subsequent simulations, the
value of u = 0.154, well inside the chaotic range.

To introduce the rate control method, the propor-
tional quantities qa, qb, qc are determined in equa-
tions (20), (21) and (22). For variable a, the rate of
growth is given by the term u (k + c), for variable
b the rate of growth is given by the term (a + a b2)
and for variable c the rate of growth is given by the
term b. Apart from equation (17), the rate of growth
is given by a single variable. It can therefore be ex-
pected that the rate of growth of equation (17) may
diverged faster than the other two. The complete
rate control of these equations can now be formu-
lated, including the rate equations σn, as follows.

5



qa =
a

a + µa

(20)

qb =
b

b + µb

(21)

qc =
c

c + µc

(22)

σa(qc) = fa eξa qc (23)

σb(qa, qb) = fb eξb qa qb (24)

σc(qb) = fc eξc qb (25)

d a

d t
= σa(u (k + c)) − a − a b2 (26)

s
d b

d t
= σb(a + a b2) − b (27)

d
d c

d t
= σc b − c (28)

Note that the rate control functions σn will be
equal to 1 when control is disabled. When control is
active, it will vary around the value 1 depending on
the rate of expansion. For this model, µa = 1, µb =
150, µc = 30 and the rate control parameters ξn and
fn may be varied. In figure 7 is shown the chaotic
attractor of the model when control is disabled (i.e.
ξn = 0). In figure 8 is shown the effect of control
when ξn = −1 for the variable b of the chaotic chem-
ical model. At (non-discrete) time 9 is the control
enabled and the system rapidly stabilises into a pe-
riod one orbit. The corresponding control function
σb is shown in figure 9. Notice that the rate control
varies between 0.92 and 1, i.e. the rate limiting func-
tion only reduces the rate of expansion with a factor
of < 0.08. This is nevertheless sufficient to stabilise
the chaotic system. The values of the rate parame-
ters ξa, ξb and ξc can be varied and may result in the
stabilisation of different unstable period orbits.

5. Control of an autocatalytic system

To demonstrate the dynamic effect of the rate con-
trol mechanism on an different autocatalytic system,
the control method is introduced into a model of
extracellular matrix degradation balance [16]. This
model, illustrated in figure 10, describes the cyclical
generation and degradation of extracellular matrix
proteins including the autocatalytic degradation of
the enzymes that drive this cycle. Protein-cleaving
enzymes, proteases p, degradate the unsoluble ex-
tracellular matrix m into soluble fragments f . These
fragments f are converted back into unsoluble ma-
trix by an enzyme transglutaminase g (and other
enzymes not included in this model). The proteases
p and transglutaminase g are therefore antagonistic

Figure 7. Chaotic attractor of the chemical oscillator model.

6 7 8 9 10 11 12

20

40

60
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100

120

Figure 8. Control of variable b of the chemical oscillator
model into unstable periodic one orbit, control is enabled
at time step 9, ξn = −1.
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Figure 9. Rate control variable σb of the chemical oscillator
model, with control enabled at time step 9, ξn = −1.
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Cells

Proteinase p

Extracellular matrix
(unsoluble proteins)

m

Proteolysis fragments

(soluble)
f

Transglutaminase g

Cells

rim p

p

p

⊕

⊕

Figure 10. Scheme of the bienzymatic cyclic model of the extracellular matrix degradation balance (after Berry [16]).

in building and degenerating the matrix. The ma-
trix m is created de novo at a constant rate rim;
the presence of the fragments f will stimulate the
production of both enzymes p and g by surrounding
cells. These cells detect the presence of the intercel-
lular fragments which will stimulate the production
of p and g. All proteins are subject to degradation
by the proteases p, including p itself. The model can
be described by the dimensionless equations (29),
(30), (31) and (32).

dm

d t
= kg

f g

KG + f
−

m p

1 + m
+ rim (29)

d f

d t
= −kg

f g

KG + f
+

m p

1 + m
−

f p

1 + f
(30)

d p

d t
= α

fn

Kn
R + fn

− ka p2 (31)

d g

d t
= β

f l

K l
S + f l

− kdeg

g p

Kdeg + g
(32)

Here the parameters n and l in equations (31) and
(32) are the Hill-numbers for the two enzymes where
n = l = 4. α and β are the proteases and trans-
glutaminase synthesis rate respectively and are as-
sumed to be much smaller than the turnover rates
for the matrix m and fragments f . The model pa-
rameters are derived from exerimental data and for

the following experiments the parameters were set as
α = 0.026, β = 0.00075, KG = 0.1, Kdeg = 1.1, kg =

kdeg = 0.05 and ka =
kdeg

Kdeg
= 0.0455. For differ-

ent values of rim the model exhibits a wide range of
dynamic behaviour, including periodic cycles, bista-
bility and chaos. For the rate control experiments,
the values of rim used were rim = 0.0098 for chaotic
dynamics, rim = 0.00990 for bistability and rim =
0.00995 for a period-6 cycle [16].

The rate control equation (6) can be introduced
seperately in each or all of the equations of the au-
tocatalytic model. If it is introduced into equation
(29) or (30), the rate control will successfully sta-
bilise the system into a periodic orbit. More inter-
esting consequences of the rate control mechanism
can be demonstrated by introducing the rate control
equation in either the synthesis of the proteases p

(31) or the synthesis of the transglutaminase g (32)
or both. The modifications necessary to include rate
control in these equations are shown in equations
(33) to (37).

Because both the synthesis of p and g depend on
the presence of the protein fragments f , the control
is proportional to the rate of expansion of the phase
space in the direction of f only. This is sufficient
to control the system into a stable 4-orbit which is
shown superimposed in figure 11 and in figure 12

7
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Figure 11. Phase space f versus m of the chaotic attractor
(dotted) of the autocatalytic model with a 4-period con-
trolled orbit superimposed (continuous line).

where is plotted f versus time. Parameter values for
the control equations are fp = 0.5, fg = 0.5, ξp =
0.01, ξg = −0.01, µf = 1. In figure 13 is shown the
values of the control equations σp (34) and σg (35)
that stabilise the autocatalytic model into the 4-
orbit. Very small changes to the rate of expansion
of the enzyme synthesis rates is sufficient to pre-
vent the model from becoming chaotic. This demon-
strates that the periodic stabilisation of the extracel-
lular matrix degradation balance can be controlled
effectively and efficiently by the surrounding cells
by monitoring the presence of the protein fragments
and adjusting the rate of synthesis of the two en-
zymes. The rate control method ensures that the
surrounding cells need not supervise all the pro-
cesses outside the cell but can control these by mon-
itoring only one aspect of the degradation balance.
Even if the model parameters change due to a change
in the balance, the rate control method can prevent
the recurence of chaotic dynamics.

qf =
f

f + µf

(33)

σp(qf ) = fp eξp qf (34)

σg(qf ) = fg eξg qf (35)

d p

d t

′

= σp(qf )α
fn

Kn
R + fn

− ka p2 (36)

d g

d t

′

= σg(qf )β
f l

K l
S + f l

− kdeg

g p

Kdeg + g
(37)

For example, if other surrounding cells increase
the rate of de novo generation of unsoluble extracel-
lular matrix proteins, which could lead to a bifur-

0 0.5 1 1.5 2 2.5 3

x 10
5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 12. Controlled orbit of f in time of the autocatalytic
model with initial chaotic transient.
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Figure 13. Control functions σp (top) and σg (bottom) for
the autocatalatic model.

cation from chaos to bistability (or peridicity), the
same control method can maintain the periodic dy-
namics at the cost of a change in period. This also
requires a very small increase in the control param-
eters to maintain effective control ξp = 0.02, ξg =
−0.02. By increasing the rate of synthesis of the ex-
tracellular matrix rim from 0.0098 to 0.00995, the
model changes dynamics from chaos to a period 6-
orbit. This is shown in figure 14 where the extra-
cellular matrix production rate is increased at the
dashed line, switching the dynamics of the model
from a stabilised unstable periodic orbit to a dif-
ferent periodic orbit. If the model is uncontrolled,
the system would cycle in a 6-period as is shown in
figure 15. In this figure, the uncontrolled behaviour
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Figure 14. Controlled periodic orbits of the autocatalytic
model, where the model switches from controlled chaotic to
periodic dynamics at the dashed line.

Figure 15. Phase space of the autocatalatic model showing
the uncontrolled 6-orbit (thin line) and the controlled orbit
(thick line).

of the model is shown with rim = 0.00995 (thin
line) and the controlled dynamics with the same pa-
rameters is shown superimposed (thick line). This
demonstrates clearly that the control modifies the
dynamic behaviour of the model to remain periodic
which does not dependent on the uncontrolled sys-
tem being either chaotic or periodic. This implies
that extracellular processes can be readily controlled
by the surrounding cells without the need for com-
plex feedback or other control mechanisms.

6. Conclusion

The rate control of chaotic systems is a novel and
effective method to stabilise unstable periodic or-
bits contained in chaotic systems. It does not require
a priori knowledge of the UPOs contained in the
system, however, it requires access to some of the
system variables and the rate of change of some, or
all, of those variables. Finding and stabilising dif-
ferent UPOs can easily be achieved experimentally.
The mechanism is only active (in the sense that
the control function σ is significantly different from
one) when the variables in the rate control equation
(6) are changing rapidly. This means that when the
chaotic system is not near a folding or stretching
manifold the control is inactive. The proportional
change of the variables and therefore the local shape
of the attractor are the only limited elements of rate
control. It may be possible to include a scalar to de-
termine the relative contribution of the rate limiting
function to the chaotic system. This may be used to
direct a chaotic system towards any unstable orbit
which can then be stabilised using other methods,
e.g. external periodic input or delay control.

The described method of rate limiting control can
be argued to be similar to other rate controlling
mechanisms such as enzymatic control of biochemi-
cal processes. In such systems the flux of the product
is determined by the relative control of each of the
enzymatic controlled steps [2]. Such a mechanism
would prevent the occurrence of chaotic dynamics
by preventing the system to become chaotic. A bi-
furcation doubling cascade, for example, would lead
to a stable (controlled unstable periodic orbit) pe-
riod until the parameter has been changed back into
the stable domain.

The control of the autocatalytic model shows that
the rate control mechanism is very effective at con-
trolling the dynamics of an extracellular reaction
balance without the need to control each variable. It
monitors the rate of expansion of the protein frag-
ments which then influences the rate of synthesis
of the enzymes that drive the system. Only small
modifications are required to achieve a high level of
control and will remain in stable periodic dynam-
ics even if external parameters are modified (albeit
with different periods).

Modelling the rate control of chaos on a chemical
chaotic oscillator does not yet prove that the mecha-
nism for rate control of chaos and the enzymatic rate
control function perform a similar task of prevent-
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ing the occurance of chaos. The two mechanisms of
the reaction rate control are not directly related but
both show similar properties. More extensive mod-
elling of rate control of different chemical oscilla-
tors and better simulation of the enzymatic reaction
steps may provide some ideas.

7. Future work

Attempts to control some different chaotic sys-
tems have been successful (the Duffing system,
Henon map and Hindmarsh-Rose system) but it
appears that some variables in a system are more
effective at controlling the chaotic dynamics than
others. This is more obvious in simple system, such
as Duffing’s model and the Henon map, but in
more complex dynamic systems this is not readily
evident. A systematic analysis of the relative contri-
butions of rate control of different system variables
may be required to determine if this effect is due to
the control method or to properties of the chaotic
system itself. The strength of the control parame-
ters provides a useful indication of the efficacy of
the method for a given set of equations.

If the rate control of different system variables in-
deed result in variable control of the chaotic system
this may give some clue to identifying which vari-
ables are more effective rate limiting than others as
can be seen in the rate control of the autocatalytic
model. This can give an indication of the relevance
of a particular enzyme or metabolite for the overall
process. It may also be the case that the total con-
trol of the chaotic system is distributed over all rate
variables in different proportions. This mechanism
could have evolved readily in biological systems and
would appear to be a simple way to eliminate un-
desirable chaos. In those pathways or mechanisms
where rate control is not applicable, chaotic states
may still be found. For example, even though there
are rate control mechanisms limiting the ionic flow
through membrane channels, these may not be able
to control the transmembrane potential as previ-
ously has been assumed. It has already been shown
that in pathological cases, neural activity can show
chaotic activity [17]. It has been suggested, by dif-
ferent authors [18,19,20,21,22] that chaos is a possi-
ble means of information processing. Understanding
the rate control methods of normal pathways may
help in determining if this hypothesis is viable.
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