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Abstract: In construction projects, estimation of the settlement of fine-grained soils is of critical
importance, and yet is a challenging task. The coefficient of consolidation for the compression
index (Cc) is a key parameter in modeling the settlement of fine-grained soil layers. However, the
estimation of this parameter is costly, time-consuming, and requires skilled technicians. To overcome
these drawbacks, we aimed to predict Cc through other soil parameters, i.e., the liquid limit (LL),
plastic limit (PL), and initial void ratio (e0). Using these parameters is more convenient and requires
substantially less time and cost compared to the conventional tests to estimate Cc. This study presents
a novel prediction model for the Cc of fine-grained soils using gene expression programming (GEP).
A database consisting of 108 different data points was used to develop the model. A closed-form
equation solution was derived to estimate Cc based on LL, PL, and e0. The performance of the
developed GEP-based model was evaluated through the coefficient of determination (R2), the root
mean squared error (RMSE), and the mean average error (MAE). The proposed model performed
better in terms of R2, RMSE, and MAE compared to the other models.

Keywords: soil compression index; fine-grained soils; gene expression programming (GEP);
prediction; big data; machine learning; construction; infrastructures; deep learning; data mining; soil
engineering; civil engineering

1. Introduction

Soil compressibility is considered to be the volume reduction under load of pore water drainage.
A precise estimation of this property is critical for calculating the settlement of soil layers [1]. This
problem has become more critical for fine-grained soils due to their low permeability, resulting in the
compression index (Cc) being the most accepted parameter to date to represent soil compressibility [2].
This parameter is often utilized for measuring the individual soil layer settlement. Different empirical
equations have been particularly developed to predict Cc [3–9]. These equations were mainly developed
based on traditional statistical analyses. Nevertheless, they include a number of drawbacks, such
as a low correlation between input and output parameters [10]. Thus, it is essential to develop a
comprehensive model to analyze the complex behavior of Cc. This model should significantly eliminate
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the shortcomings of the previous models, such as practicality and a low correlation between input and
output parameters.

Soft computing techniques such as artificial neural networks (ANNs) are widely accepted and
popular, along with conventional statistical methods (e.g., regressions) [11–21]. These techniques have
been successfully applied to different geotechnical problems, such as Cc prediction [7,22–27]. However,
a major limitation of common soft computing techniques is that no closed-form prediction equation
is provided by them. With the introduction of artificial intelligence (AI) techniques and particularly
genetic programming (GP), researchers in the field of soft computing have attempted to solve this
issue (i.e., obtaining a closed-form solution). AI includes various techniques of ANNs, neuro-fuzzy
neural networks (ANFIS), and support vector machines (SVMs), with a great record of successful
application [28,29]. With AI, a learning mechanism often contributes to constructing the intelligent
structure of an estimation model. Among the popular AI methods, ANNs present a robust artificial
tool that is widely used to predict Cc [7,22–26]. AI techniques have been reported to have an acceptable
statistical performance in terms of correlation. These techniques are often known as black box models in
soft computing, and they mainly lack capability in offering closed-form estimation formulas [10]. This,
been reported to be a drawback to AI techniques that limits their practicality [10,28]. Nevertheless, the
runtime for most soft computing techniques could be efficiently decreased by using parallel processing
methods [30]. Mohammadzadeh et al. (2014) reviewed state-of-the-art soft computing models and
proposed multi-expression programming (MEP) to model the Cc of fine-grained soils, and the proposed
model outperformed ANNs [29].

Genetic programming (GP) and also multigene genetic programming (MGGP), which is an
enhanced variation of GP using classical regression, have been used for modeling purposes (of Cc) [28].
Mohammadzadeh et al. (2016) built an MGGP model to estimate Cc with higher accuracy, which
presented promising results [28]. The GP-based methods of modeling are classified as individual
computational programming, which is a major family of soft computing techniques. GP models can
empower and enable complex and highly nonlinear prediction modeling tasks [31]. While classical
GP nominates only a single program, gene expression programming (GEP) includes several genes
of programming for reaching optimal solutions [32]. The application of GEP is growing significantly
compared to GP in the engineering domain mainly due to the accuracy of its predictions [28,29]. The
current study investigated the use of GEP to develop a prediction equation for the Cc of fine-grained
soils existing in northeastern Iran. The objective of this study was developing a GEP-based prediction
equation for the Cc of fine-grained soils with simple tests such as the Atterberg liquid limit (LL) and
plastic limit (PL). Since conventional consolidation tests of fine-grained soils (e.g., the oedometer test)
are time-consuming and costly, the application of such a prediction equation will lead to substantial
savings for Cc estimation in terms of cost and time.

2. GEP

There are several variants of GP available for modeling. GEP is the latest variant of GP, and it is
a powerful tool for approximating the solution of a problem in a closed-form format. Conventional
GP generates computational models through mimicking the biological evolution of living organisms,
providing a tree-like form of solution, which leads to the closed-form solution of the optimization
problem [28,29,31–33]. The main objective of GP is obtaining programs that connect inputs to outputs
for each data point, creating a population of programs. The population of programs (in the form of a
tree branch shape) created by GP includes functions and terminals, which are randomly generated.
The final solution of the problem is determined based on the tree-like programs.

The foundation of modeling with GEP was first developed by Ferreira in 2002 [34] and consists of
a number of components, i.e., a terminal set, a function set, control parameters, a fitness function, and a
termination function. GEP employs a fixed length of character strings to model the problem, unlike the
conventional GP. These characters further turn into parse trees in various sizes and shapes, known as
expression trees (ETs). The benefit of GEP over conventional GP is that genetic diversity is represented
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as genetic operators of chromosomes. GEP, in fact, evolves a number of genes (subprograms) [34] that
are individual tree-like programs [10,34]. Furthermore, GEP has a flexible multigenetic nature suitable
for the construction and evolution of complex networks of genes. In the GEP framework, the genes in
a chromosome may consist of two types of information stored in either the tail or head of genes, i.e.,
information for generating the overall GEP model and the information from terminals for producing
subsequent of the model. Specific details about GEP can be found elsewhere [10,31,32,34,35].

Figure 1 presents a sample program illustration of evolving GEP, where d1, d2, and d3 are the
model inputs. Furthermore, the process evolution functions are +, −, ×, /, exponential function (exp()),
natural logarithm function (ln()), and Inv. The presented model is linear, with coefficients c0, c1, and c2,
while utilizing nonlinear terms [31,32]. For obtaining c0, c1, and c2, a simple least square was applied
to the training data. A partial least squares method could also be employed for this objective [18,22].
The important GEP parameters that need to be carefully selected are the tree depth and the quantity of
genes. However, minimizing the tree depth generally results in shorter closed-form equations with
fewer numbers of terms [29,34].
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Figure 1. Sample gene expression programming (GEP) model.

3. Modeling of Cc for Fine-Grained Soils

3.1. Data Collection

A set of 108 individual consolidation test results obtained from laboratory tests were used to
develop the GEP-based prediction equation. As mentioned earlier, the objective of this study was
to predict Cc using conventional parameters of fine-grained soils, namely PL, LL, and e0. Here, 101
out of 108 data points corresponded to test results conducted on soil samples collected from different
locations in Mashhad, Iran. Soil samples were classified as silty–clayey sand (SC–SM), gravelly lean
clay with sand (CL), and silty clay with sand (CL–ML) based on the unified soil classification system.
These samples were cored from a depth of 0.5 m to 1.0 m. LL, PL, and e0 were measured for these
samples in a laboratory based on ASTM D4318-17 and ASTM D854-14 [36,37]. Furthermore, Cc was
measured using an oedometer test based on ASTM D2435-11 [38]. In addition, seven consolidation test
results conducted by Malih [39] were integrated into the laboratory database to make it more robust.
The descriptive statistics of influential input parameters (i.e., LL, PL, and e0) and the output parameter,
i.e., Cc, based on the database utilized for our study is presented in Table 1. Furthermore, Figures 2–5
illustrate the distribution of these parameters using histograms.
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Table 1. Descriptive statistics for input and output parameters used in the GEP-based developed model.
LL: liquid limit; PL: plastic limit.

Parameter LL (%) PL (%) e0 Cc

Mean 36.16 22.61 0.75 0.17
Standard Deviation 12.79 5.64 0.12 0.05

Minimum 19.40 14.80 0.51 0.08
Maximum 72.00 44.00 1.03 0.025

Range 52.60 29.20 0.52 0.18
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3.2. Model Structure and Performance

The LL and PL represent the two various states of the soil depending on its water content. The
e0 of soil represents the initial ratio of the volume of voids to the solids. Prediction equations for Cc

developed by previous studies (see Equation (1)) have clearly indicated that LL, PL, and e0 are the
three main parameters that influence Cc [3–9]. Thus, these parameters were considered in the current
study to develop a simplified prediction equation for Cc. The main motivation of developing such
an equation was that determination of LL, PL, and e0 is straightforward compared to performing
any consolidation test that directly determines Cc. Therefore, the developed model is anticipated to
result in considerable savings in terms of testing time, technician costs, and laboratory equipment. It
should be noted that LL, PL, and e0 are influenced by the natural water content of partially saturated
soils, thus making the developed equation applicable to any saturated fine-grained soils [28,39,40].
Mathematically, the developed equation has the following structure:

Cc = f (LL, PL, e0), (1)

showing that Cc is considered to be a function of LL, PL, and e0. In order to develop the GEP-based
prediction equation for Cc, a database containing 108 data points was developed. Each data point
corresponded to LL, PL, and e0, as well as Cc, for a particular fine-grained soil sample. GeneXproTools
5.0 was used to develop the GEP-based prediction equation in MATLAB [41]. The performances of
the developed GEP models were evaluated using the coefficient of determination (R2), the root mean
squared error (RMSE), and the mean average error (MAE) (21-23), by applying the following equations:

R2 =

∑n
i=1

(
hi − hi

)(
ti − ti

)
√∑n

i=1

(
hi − hi

)2
·
∑n

i=1

(
ti − ti

)2
, (2)

RMSE =

√∑n
i=1(hi − ti)

2

n
, (3)

MAE =
1
n

n∑
i=1

|hi − ti|. (4)

In these equations, hi and ti are measured and predicted output (Cc) values, respectively, for the
ith data point. Furthermore, hi and ti are averages of the measured and predicted values, respectively,
and n is the number of samples [28,29].
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3.3. Model Development

The database was divided into two subsets in order to avoid an overfitting issue, a training
subset and a validation subset. The GEP-based model was trained using the training subset, while the
validation subset was used for validating purposes and for avoiding overfitting [34]. The final model
(prediction equation) was selected based on model simplicity and the performances of the training and
validation subsets. Performance criteria were based on the highest R2 and lowest RMSE and MAE of
the training and validation subsets. After training, the candidate models were applied to the unseen
validation subset to ensure their good performance. The proportion of training to validation subset
sizes with respect to the whole data is commonly selected as 60%–75% and 25%–40%, respectively. In
the current study, 75% (81 data points) and 25% (27 data points) of total data points were assigned to
the training subset and validation subset, respectively.

The GEP algorithm was executed several times with a varied combination of influential parameters
in order to identify the best model. This process was based on values suggested by previous
works [31,32,34]. Table 2 includes the parameters of various runs. Reasonably large numbers were
considered for size of population and generations to guarantee that optimal models were achieved. In
the developed GEP-based model, individuals were identified and transferred into further generations
based on a fitness evaluation carried out with roulette wheel sampling, considering elitism. Such
an evaluation could guarantee successful cloning of the best individual. Furthermore, variations in
the population were carried out through genetic operators on the chosen chromosomes, including
crossover, mutation, and rotation [10].

Table 2. Parameters used for implementation of the GEP-based model.

Parameter Setting

Number of chromosomes 50 to 1000
Number of genes 3

Head size 8
Tail size 17
Dc size 17

Gene size 42
Gene recombination rate 0.277
Gene transportation rate 0.277

Function set +, −, ×, /, exp, ln, and Inv

In every GEP-based model, the values of the setting parameters have a significant impact on
model performance. These parameters include the quantity of genes and chromosomes, in addition to
a gene’s head size and the rate of genetic operators. Since minor information was available about GEP
parameters in the literature, appropriate settings were selected based on a trial and error scheme (see
Table 2).

Furthermore, to facilitate the development of the GEP-based model, the following closed-form
equation was developed and utilized:

Cc = e0 +

[
e0 + 2LL
e0 − 6.87

]
×

[
−0.35 + LL2

]
+ [log(2e0 + 2LL− 2PL + 0.15)]2. (5)

Figures 6–8 present the measured values of Cc obtained from laboratory experiments versus
predicted values. These figures represent the measured values versus predicted values for the training
subset, validation subset, and entire set, respectively. Furthermore, Table 3 summarizes the GEP-based
model performance in terms of R2, RMSE, and MAE for these sets. Smith [42] has stated that for a
coefficient of determination of |R|> 0.8, a strong correlation exists between measured and predicted
values. Based on Table 3, the developed GEP-based model had a high R2 for the training subset,
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validation subset, and entire dataset. In addition, the model exhibited a relatively low RMSE and MAE
for all of these sets.
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Table 3. Model performance. RMSE: root mean squared error; MAE: mean average error.

Set Number of
Data Points R2 RMSE MAE

Training subset 81 0.8231 0.0269 0.0213
Validation subset 27 0.8603 0.0237 0.0189

Entire dataset 108 0.8320 0.0262 0.0207

3.4. Additional Evaluation of Model Performance

In this section, the performance of the developed GEP-based model is evaluated based on various
statistical parameters found in the literature. These statistical parameters, along with their acceptance
criteria, are presented in Table 4. The parameters used in this table are all as previously defined.
Furthermore, the developed model was evaluated based on these statistical parameters, and the results
are presented in this table. As can be seen in Table 4, the developed model met all of the criteria for
additional statistical parameters, revealing the decent performance of the proposed model.

Table 4. Evaluating the developed GEP-based model using additional statistical parameters.

Statistical Parameter Source Criteria Evaluation for
GEP-Based Model

k =
∑n

i=1(hi×ti)

h2
i

Golbraikh and Tropsha [43] 0.85 < k < 1.15 1.001

k′ =
∑n

i=1(hi×ti)

t2
i

Roy and Roy [44] 0.85 < k’ < 1.15 0.989

Rm = R2
×

(
1−
√

R2 −Ro2
)

Roy and Roy [44] 0.5 < Rm 0.503

Ro2 = 1−
∑n

i=1(ti−ho
i )

2∑n
i=1(ti−ti)

2 , ho
i = k× ti Roy and Roy [44] Should be close to 1.0 1.000

Ro′2 = 1−
∑n

i=1(ti−to
i )

2∑n
i=1

(
hi−hi

)2 Roy and Roy [44] Should be close to 1.0 0.998

Table 5 presents a comparison of the developed GEP-based model to previous models found in
the literature. The previous models consist of either regression-based equations or robust AI methods,
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such as MEP, ANNs, or MGGP. It is worth mentioning that these AI methods do not provide any
closed-form solution. The AI methods had a relatively high R2, mainly due to their black-box nature
of connecting inputs and outputs. Nevertheless, the developed GEP-based model had a higher R2

compared to the existing AI methods. However, MEP, ANNs, and MGGP had a lower error in terms of
RMSE and MAE.

Table 5. Performance comparison of the current developed GEP-based model to existing models. MEP:
multi-expression programming; ANN: artificial neural network.

Source Model Description
Performance Measure

R2 RMSE MAE

Skempton [8] Regression equation 0.367 0.072 0.056
Nishida [6] Regression equation 0.752 0.301 0.285

Cozzolino [4] Regression equation 0.752 0.105 0.103
Terzaghi and Peck [9] Regression equation 0.367 0.110 0.077

Azzouz et al. [3] Regression equation 0.752 0.036 0.032
Mayhe [5] Regression equation 0.367 0.102 0.073

Park and Lee [7] ANN 0.752 0.089 0.085
Mohammadzade et al. [28] MEP 0.811 0.019 0.016
Mohammadzade et al. [29] ANN 0.859 0.017 0.014

Current Study: the proposed model GEP 0.832 0.026 0.021

Based on Table 5, the developed GEP-based model outperformed the regression models, since the
regression models considered only a small quantity of base functions. Therefore, such models could
not be used for the complex interactions of soil parameters (i.e., LL, PL, and e0) and Cc. However, the
developed GEP-based model considered a variety of base functions and their combination in order to
achieve a closed-form equation with high performance. The developed GEP-based model directly
considered the experimental data with no prior assumptions. In other words, contrary to traditional
regression models, GEP did not assume any predefined shape for the solution equation. The high
values of R2 presented in Table 5 indicate that the developed GEP-based model was very successful at
fitting the measured Cc to the input parameters of LL, PL, and e0.

4. Conclusions

Cc is a significant parameter in determining the settlement of fine-grained soil layers subjected
to loads, such as in buildings, vehicles, and infrastructure. If Cc is not estimated accurately, soil
settlement is not predicted accurately. Thus, determining Cc is of significant importance in settlement
calculations. However, measuring Cc using the traditional oedometer test method is time-consuming,
needs skilled technicians, and requires special laboratory equipment. Therefore, the estimation of Cc

using other parameters of fine-grained soils, such as LL, PL, and e0, would eliminate the time and
costliness associated with the oedometer test. In this study, GEP was employed to develop a model for
estimating Cc using LL, PL, and e0. Here, 108 data points containing Cc, LL, PL, and e0 were used to
train and validate the model. The model was developed based on tuned calibration parameters using
trial and error. A closed-form solution was derived from the developed GEP-based model, which is
anticipated to aid geotechnical researchers in determining Cc with considerable savings in associated
time and costs. This closed-form equation for predicting Cc was employed to develop surface charts to
predict Cc based on LL and PL for a certain e0.

The performance of the developed GEP-based model was evaluated using the coefficient of
determination (R2) and two error measures, namely root mean squared error (RMSE) and mean average
error (MAE). The R2 values were 0.8231, 0.8603, and 0.8320 for the training subset, validation subset,
and entire dataset, respectively. In addition, RMSE was 0.0269, 0.0237, and 0.0262 for the training
subset, validation subset, and entire dataset, respectively. A high R2 and low error indicated the
highly acceptable performance of the GEP-based model. Additional performance measures found



Infrastructures 2019, 4, 26 10 of 12

in the literature were employed to further evaluate the performance of the developed GEP-based
model. This evaluation revealed that the model had a decent performance based on additional
performance measures.

Contrary to the classical models for estimating Cc, such as regression models, the developed
GEP-based model revealed highly nonlinear behavior and included a complex combination of influential
input parameters (i.e., LL, PL, and e0). In general, Cc was positively correlated with e0. Furthermore, LL
and e0 had a higher influence on the estimation of Cc compared to PL. A comparison of the developed
model to previous models in the literature revealed its good performance, which guarantees the use of
this GEP-based model in practical applications.
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