
Abstract

In this study we consider the boundary-layer flow of an inelastic non-
Newtonian fluid over an inclined flat plate. Using two popular generalised
Newtonian models we determine base flow profiles and associated linear
stability results for a range shear-thinning fluids. In addition to neutral
stability curves we also present results concerning the linear growth of the
Tollmien-Schlichting waves as they propagate downstream. Furthermore,
to gain an insight into the underlying physical mechanisms affecting the
destabilisation of the disturbances, an integral energy equation is derived
and energy calculations are presented. Results from all three analyses
suggest that the effect of shear-thinning will act to stabilise the boundary-
layer flow. Consequently, it can be argued that the addition of shear-
thinning agents could act as a passive control mechanism for flows of this
nature.
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1 Introduction

The study of non-Newtonian boundary-layer flows has received recent interest
for numerous reasons. Not only are these flows of particular mathematical
intrigue, due to the relative complexity of the boundary-layer equations, they
also offer the potential to serve as a passive control mechanism. Indeed, a
number of previous studies have shown that the effect of shear-thinning can
delay the onset of instability in confined shear flows. For example, Nouar et
al. [1], Nouar & Frigaard [2], and Alibenyahia et al. [3] demonstrate that
under certain circumstances, Poiseuille flow, Couette-Poiseuille flow, and Taylor-
Couette flow can be stabilised by fluids that exhibit shear-thinning behaviour.
In each of the aforementioned studies the authors note the importance of: (i)
accounting for the viscosity disturbance when deriving the linear perturbation
equations, and (ii) utilising an appropriate viscosity scale in the definition of
the Reynolds number. Both of these factors are accounted for within this inves-
tigation.

More recent studies have addressed the linear stability characteristics of
unconfined non-Newtonian shear flows. The effect of shear-thinning has been
shown to delay the onset of convective instability when considering the three
dimensional boundary-layer flow due to a rotating disk; see, for example, Grif-
fiths et al. [4] and Griffiths et al. [5]. However, the results presented in these
investigations consider only the ‘power-law’ formulation of the problem. In the
limit of vanishing shear-rate, the power-law model is unable to accurately de-
scribe the variation of non-Newtonian viscosity across the boundary-layer, as
was first noted by Acrivos et al. [6]. Denier & Dabrowski [7] have shown that
this failing of the model is intrinsically linked to the slow algebraic decay of
the boundary layer solutions. The authors note that a viscous diffusion layer
must be introduced in order for the inner algebraically decaying solutions to
match with the outer uniform flow. In subsequent investigations Griffiths and
co-workers suggest that this unphysical variation of viscosity across the bound-
ary layer may lead to an over prediction of the relative stabilising benefits of
shear-thinning flow.
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The aim of the present work is to quantify the stabilising (or destabilising)
effects of shear-thinning for unbounded shear flows. The numerical framework
presented herein allows for a direct comparison between results owing from both
the power-law and Carreau non-Newtonian models. The outline of this paper is
a follows: In §2 we formulate the problem, solve the boundary-layer equations
in a self-similar fashion, and derive the appropriate linear stability equations.
We present results regarding neutral stability and linear growth rates in §3. An
energy analysis is then presented in §4. All results are discussed and our findings
are concluded in §5.

2 Formulation

Consider the flow of an incompressible, shear-thinning, non-Newtonian fluid over
an impermeable, semi-infinite, flat plate inclined at an angle mπ/(m+1), where
m is the usual two-dimensional, Falkner-Skan, pressure-gradient parameter. The
streamwise coordinate is x∗ and the wall normal coordinate is y∗ (asterisks
denotes dimensional quantities). This flow is depicted schematically in figure 1
and is governed by the continuity and Cauchy momentum equations

∇∗ · u∗ = 0, (1a)

ρ∗
(
∂

∂t∗
+ u∗ · ∇∗

)
u∗ = −∇∗p∗ +∇∗ · τ ∗. (1b)

For flows of this nature the deviatoric stress tensor is defined as

τ ∗ = µ(γ̇∗)γ̇∗,

where γ̇∗ is the second invariant of the strain-rate tensor γ̇∗. The constitutive
viscosity relations considered herein are described by the Ostwald-de Waele
power-law model and the modified Carreau model1

µ∗p = k∗|γ̇∗|n−1, µ∗c = µ∗0[1 + (λ∗γ̇∗)2](n−1)/2.

In both cases the fluid index n represents the degree of shear-thinning. A
Newtonian viscosity relationship is recovered when n = 1 and, equivalently,
when λ∗ = 0. The consistency coefficient k∗, the zero-shear-rate viscosity µ∗0,
and the characteristic time coefficient λ∗, are all material constants. Throughout
the remainder of this analysis it is understood that the subscript p denotes
terms associated with the power-law model whilst the subscript c denotes terms
associated with the Carreau fluid model.

For the sake of brevity we do not derive the governing boundary-layer equa-
tions here. Instead the interested reader is referred to the thorough account
provided by Dabrowski [8]. For two-dimensional flows such as this the inviscid

1as is commonplace in the literature we assume that the viscosity at zero-shear-rate is much
greater than that at infinite-shear-rate (µ∗0 � µ∗∞). Here µ∗∞, denotes the limiting constant
viscosity that is recovered at infinitely large shear-rates.
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Figure 1: Schematic diagram of the boundary-layer flow over a wedge inclined
at an angle θ = mπ/(m+ 1).

free-stream velocity is assumed to be U∗
∞ = C∗(x∗)m, where C∗ is a positive con-

stant. Having made this assumption the boundary-layer equations are solved,
in a self-similar fashion, via the introduction of the following stream functions

ψ∗
p = [ν∗pU

∗
∞(x∗)1+s]1/2fp(Y ), ψ∗

c = (ν∗cU
∗
∞x∗)1/2fc(Y ),

where s = (3m − 1)(n − 1)/(n + 1), the dimensionless similarity variable is
Y = y∗/L∗

j , and the subscript j = p, c, denotes the fluid model in question. The
respective non-dimensionalising lengthscales are defined as such

L∗
p =

[
ν∗p(x

∗)1+s

U∗∞

]1/2
, L∗

c =

(
ν∗cx

∗

U∗∞

)1/2

.

Given that u∗ = ∂ψ∗
j /∂y

∗ and v∗ = −∂ψ∗
j /∂x

∗ the boundary-layer equations
reduce to

μ̄pf
′′′
p = m[(f ′

p)
2 − 1]− m+ 1 + s

2
fpf

′′
p , (2a)

μ̄cf
′′′′
c = m[(f ′

c)
2 − 1]− m+ 1

2
fcf

′′
c , (2b)

where

μ̄p = n|f ′′
p |n−1, μ̄c = [1 + n(λf ′′

c )
2][1 + (λf ′′

c )
2](n−3)/2. (2.2c,d)

We note that it is only in the case when m = 1/3 that λ, the dimensionless
equivalent of λ∗, is independent of both the streamwise coordinate and the
inviscid free-stream velocity. In this case the constant λ takes the form

λ = λ∗C∗(C∗/ν∗c )
1/2.
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Table 1: Base flow data for shear-thinning boundary-layer flows over a wedge
inclined at an angle of π/4. The values of the constant λn, are determined such
that µ̄p(0) = µ̄c(0).

n µ̄j(0) λn
0.8 0.8411 1.2479
0.7 0.7487 1.3032
0.6 0.6459 1.3688
0.5 0.5318 1.4473
0.4 0.4068 1.5422

Furthermore, we observe that for shear-thinning ‘power-law type’ boundary-
layer flows the constant s, is identically zero only in the case when m = 1/3.
With this in mind, and to ensure the consistency of our self-similar solutions,
we restrict our attention to wedge flows inclined at an angle of π/4.

The ODEs stated in (2) are solved subject to the boundary conditions

fj(Y = 0) = f ′j(Y = 0) = 0, f ′j(Y →∞)→ 1. (3)

A fourth order Runge-Kutta integrator twinned with a Newton-Raphson search-
ing routine was employed to solve (2) subject to (3). The procedure iterates on
the unknown f ′′j (0) until the boundary condition at infinity is satisfied to within
some desired tolerance. In addition to this a secondary searching routine was
employed to ensure that the value of λ, for each n, is such that the viscosity at
maximum shear-rate (at the wall) is identical for both the power-law and Car-
reau fluid models, this matched value is denoted λn. For each n in the range of
interest the power-law system of equations were solved to determine µ̄p(0), the
searching routine then ensured that the value of λ is such that µ̄p(0) = µ̄c(0).
As noted by Bird et al. [9], typically, for shear-thinning flows of this nature,
O(10−1) < λ < O(102). The results presented in table 1 therefore show that
the matched λn values are well within the range of what would be expected
to be observed experimentally. In their experimental study, Wu & Thompson
[10] note that the boundary-layer equations accurately model flat plate shear-
thinning flow even for moderate values of the Reynolds number in the range
O(101) − O(102), this gives us confidence that these self-similar solutions are
appropriate in the context of our linear stability analysis.

In figure 2 the velocity Uj = f ′j , and viscosity functions are plotted against
the boundary-layer coordinate y = Y/δ, where δ is the familiar Falkner-Skan
non-dimensional displacement thickness. Denier & Dabrowski [7] have shown
that solutions determined from the power-law model decay to the far-field alge-
braically and that this decay is strongly dependent on the fluid index n. In the
limit as y →∞ they show that

f ′p = 1 +Ay(n+1)/(n−1) + · · · , (4)

where A is a constant of integration. In this case we find that fully converged
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Figure 2: Velocity and viscosity profiles for the shear-thinning boundary-layer
flow over a wedge inclined at an angle of π/4. The solid lines represent the
velocity profiles whilst the dashed lines represent the viscosity profiles. In each
case the fluid index is set to n = 0.5. The y-axis has been truncated at y = 10.

base flow solutions are only realisable when n > 1/3, as such, in this study,
we restrict our attention to shear-thinning flows where n ≥ 0.4. To ensure the
correct algebraic decay of the solutions we enforce an additional asymptotic
boundary condition at some suitably large value of y. Differentiating (4) gives
the following far-field condition

f ′′p =
n+ 1

(n− 1)

f ′p − 1

y
, as y →∞.

It is the imposition of this condition that ensures that the power-law solutions
decay to the far-field in the correct manner. To accommodate for the slow decay
of the power-law solutions the thickness of the computational boundary-layer
was increased, as the fluid index was decreased, until fully converged results had
been achieved. Due to the failings of the power-law model in regions of low shear-
rate we find that µ̄p remains unbounded within the confines of the boundary-
layer region. This unphysical result is readily observed in figure 2. Following
Griffiths et al. [11] we find that solutions determined from the Carreau fluid
model exhibit the same exponential decay into the far-field as the corresponding
Newtonian solutions. Due to the choice of non-dimensional parameters the
Carreau viscosity function is essentially normalised such that µ̄c(y →∞)→ 1.

In order to derive a governing set of linear disturbance equations the phys-
ical quantities specified in (1) are non-dimensionalised using the length, time,
velocity and pressure scales δ∗, δ∗/U∗∞, U∗∞ and ρ∗(U∗∞)2, respectively. This
choice of non-dimensional variables leads to the following definitions of the non-
Newtonian Reynolds numbers

Rp =
ρ∗(U∗∞)2−n(δ∗)n

k∗
= δn−1

U∗∞δ
∗

ν∗p
, Rc =

U∗∞δ
∗

ν∗c
,

where δ∗ = δL∗j . In order to construct a comparative analysis between the two
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non-Newtonian models we set

Rp = δ1−nRp =
U∗∞δ

∗

ν∗p
.

Utilising these definitions we arrive at following system of dimensionless equa-
tions

∂u

∂x
+
∂v

∂y
= 0, (5a)(

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
u = −∂p

∂x
+

1

Rj

{
2
∂

∂x

(
µj
∂u

∂x

)
+

∂

∂y

[
µj

(
∂u

∂y
+
∂v

∂x

)]}
,

(5b)(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

)
v = −∂p

∂y
+

1

Rj

{
2
∂

∂y

(
µj
∂v

∂y

)
+

∂

∂x

[
µj

(
∂u

∂y
+
∂v

∂x

)]}
,

(5c)

where
µp = |γ̇|n−1, µc = [1 + (λγ̇)2](n−1)/2, (2.4d,e)

and

γ̇ =

{[(
∂u

∂y

)
+

(
∂v

∂x

)]2
+ 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2]}1/2

. (2.4f )

We now invoke the standard parallel flow approximation, in which the distur-
bance wavelength is assumed short compared to the development length-scale
of the boundary layer, and so the basic flow can be taken to be independent of
the streamwise coordinate x∗. Having done so we perturb u, v and p as such

u(x, y, t) = Uj(y) + εũ(x, y, t),

v(x, y, t) = + εṽ(x, y, t),

p(x, y, t) = p0 + εp̃(x, y, t),

where here the amplitude of the disturbances is characterised by the small pa-
rameter ε� 1. Then, from (5), we arrive at a generalised Newtonian system of
linear disturbance equations

∂ũ

∂x
+
∂ṽ

∂y
= 0, (6a)(

∂

∂t
+ Uj

∂

∂x

)
ũ+ U ′j ṽ = −∂p̃

∂x
+

1

Rj

[
µ̄j

(
∂2ũ

∂x2
+
∂2ũ

∂y2

)
+ µ̄′j

(
∂ũ

∂y
+
∂ṽ

∂x

)
− 2¯̄µj

∂2ũ

∂x2

]
,

(6b)(
∂

∂t
+ Uj

∂

∂x

)
ṽ = −∂p̃

∂y
+

1

Rj

[
µ̄j

(
∂2ṽ

∂x2
+
∂2ṽ

∂y2

)
+ 2(µ̄j − ¯̄µj)

′ ∂ṽ

∂y
− 2¯̄µj

∂2ṽ

∂y2

]
,

(6c)
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where here the primes denote differentiation with respect to y and the viscosity
functions µ̄j and ¯̄µj are defined as

µ̄p = n|U ′p|n−1, µ̄c = [1 + n(λU ′c)
2][1 + (λU ′c)

2](n−3)/2, (2.5d,e)

¯̄µp = (n− 1)|U ′p|n−1, ¯̄µc = (n− 1)(λU ′c)
2[1 + (λU ′c)

2](n−3)/2. (2.5f,g)

Further to this, if the perturbation quantities are assumed to have the normal
mode form

[ũ(x, y, t), ṽ(x, y, t), p̃(x, y, t)] = [û(y), v̂(y), p̂(y)]ei(αx−ωt),

where α = αr + iαi, is the streamwise wavenumber and ω is the perturbation
frequency, then (6) can be reduced to a set of ODEs that govern the linear
stability characteristics of the flow

iαû+ v̂′ = 0, (7a)

Rj [i(αUj − ω)û+ U ′j v̂ + iαp̂] = µ̄j(û
′′ − α2û) + µ̄′j(û

′ + iαv̂) + 2α2 ¯̄µj û, (7b)

Rj [i(αUj − ω)v̂ + p̂′] = µ̄j(v̂
′′ − α2v̂) + 2[µ̄′j v̂

′ − (¯̄µj v̂
′)′]. (7c)

It should be noted that these ODEs are inclusive of the viscosity perturbation
terms that owe from a Taylor expansion of the viscosity functions defined in (2).
The familiar Newtonian system of equations is returned when n = 1.

System (7) represents a coupled quadratic eigenvalue problem for α of the
form

(A2α
2 +A1α+A0)Q̂ = 0,

where A0, A1, and A2 are matrices with entries determined by the factors mul-
tiplying the zeroth, first and second-order α terms, respectively. The vector of
eigenfunctions is Q̂ = (û, v̂, p̂)T. This coupled quadratic eigenvalue problem is
solved subject to the boundary conditions

û(y = 0) = v̂(y = 0) = v̂′(y = 0) = 0, (8a)

û(y →∞)→ v̂(y →∞)→ p̂(y →∞)→ 0. (8b)

To ensure the no-slip criterion is satisfied the velocity perturbations at the wall
must equal zero. Additionally, the continuity equation dictates that the first
derivation of v̂ must also be zero here. We seek decaying perturbations thus û,
v̂ and p̂ must tend to zero as y →∞.

The neutral temporal and spatial stability of the system was determined
using a Chebyshev polynomial discretisation method. The Gauss-Lobatto col-
location points were transformed into the physical domain via an exponential
map. The boundary conditions (8) were then imposed at y = 0 and y = ymax,
where the value of ymax is such that the steady mean flow results had converged
to within some desired tolerance, typically, 10−10. In each case considered it was
found that the value of ymax that ensured mean flow convergence also ensured
that the both the real and imaginary parts of the solution for α had converged
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to at least four decimal places. When considering the Carreau model flows,
that exhibit exponential decay to the far-field, a sufficiently large value of y was
found to be ymax = 20. In these cases 100 collocation points were distributed,
via the exponential map, between the upper and lower boundaries. Further
increasing the number of collocation points revealed no discernible difference
in the numerical results. In the power-law cases, where the far-field mean flow
decay is algebraic, the number of collocation points was increased proportion-
ally with the necessary increase in the value of ymax. The stability equations
(7) were then solved in terms of primitive variables at each of the collocation
points, excluding those on the boundary edges. This global eigenvalue solution
method is favourable when compared to local (Orr-Sommerfeld) approaches as
it is possible to simultaneously obtain all of the eigenvalues and eigenvectors.

This numerical routine was verified against the familiar neutral stability
results of the Newtonian Blasius boundary-layer problem (m = 0). It was
found that Rcrit = 519.1, αcrit = 0.304, and ωcrit = 0.1208, which is excellent
agreement with the results of Schmid & Henningson [12], for example.

It proves pertinent, at this stage, to introduce the quantities that will be
useful for interpreting the linear stability characteristics of the flows. The non-
dimensional frequencies that are independent of the streamwise coordinate x∗,
are defined as such

(Fp, Fc) =
ω

(Rp, Rc)
=
ω∗(ν∗p , ν

∗
c )

(U∗∞)2
.

In addition to this, the measure of the linear growth of a disturbance as it
propagates downstream is given by

Nj = ln

(
A

A0

)
= − 2

δ2

∫ Rj

R0
j

αi dRj ,

where the maximum value of Nj is the so-called N exponent utilised in the
familiar eN calculations. Here A is the amplitude of the perturbation. For a
given disturbance with frequency Fj , the value of R0

j , is the point at which
the flow first exhibits linear instability. The corresponding value of A0 is the
amplitude of the disturbance at this location.

3 Neutral Stability Results

In the first instance we solve (7) subject to (8) and determine the curves of neu-
tral stability. Given that ω is strictly real, these are the points where, for a given
value of Rj , αi = 0. Neutrally stable results are presented in figure 3 in both the
(Rj , α) and (Rj , Fj) planes. For both non-Newtonian models we observe that
as the shear-thinning effect becomes more pronounced (n decreases), the critical
Reynolds number of the flow increases and the area encompassed by the neu-
tral stability curve decreases. These results suggest that shear-thinning has the
effect of stabilising the boundary-layer flow. Although these results are qualita-
tively similar, it should be noted that there is a marked difference between the
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Table 2: Comparison of the critical values of the Reynolds number and the
corresponding critical value of Fj . For each n the base flow data has been
matched such that the viscosity at the wall is identical for both the power-law
and Carreau fluid models.

n Rcrit
p F crit

p × 106 Rcrit
c F crit

c × 106

0.8 10191.4 3.523 8307.4 4.358
0.7 11768.1 2.923 8814.0 3.858
0.6 13486.0 2.447 9507.3 3.313
0.5 15201.5 2.138 10502.4 2.704
0.4 16606.7 1.963 12053.9 2.066

critical values associated with the power-law and Carreau fluid models. This
critical data is presented in table 2.

When considering the modified Carreau model, shear-thinning effects can be
further amplified by increasing the value of the material time constant, λ. The
results presented thus far have considered only the case when λ = λn. However,
as noted by Bird et al. [9], the range of experimentally observed λ values can
vary by at least two orders of magnitude for shear-thinning polymer solutions.

In their shear-thinning Poiseuille flow study Nouar et al. [1] argue that, for
confined shear flows, the Reynolds number should be redefined in terms of what
they describe as the tangent viscosity at the wall. The authors note that this is
a reasonable assumption to make as the T-S waves originate in a viscous layer
close to the wall. The same argument holds in this case and it is important
to consider this scaling when presenting results when λ 6= λn. Thus far, when
comparing solutions between the two non-Newtonian models the decision to
match the base flow results such that µ̄p(0) = µ̄c(0), has essentially negated the
need to scale the Reynolds numbers. However, when λ 6= λn the value of µ̄p(0)
will not match that of µ̄c(0) and in these cases it is appropriate to scale Rc as
such

R̃c =
µ̄p(0)

σ
Rc,

where, for a given value of λ, σ is the value of µ̄c at the wall. When λ = λn,
σ = µ̄c(0) = µ̄p(0), and R̃c = Rc. It is important to note that our definition of
the viscosity function is directly equivalent to Nouar et al.’s ‘tangent’ viscosity.

Using a bisection algorithm we find, for a fixed value of λ, the corresponding
critical values the unscaled and scaled Reynolds numbers. The results presented
in figure 4 demonstrate the importance of appropriately scaling the Reynolds
number. In both cases, for each n in the range of interest, we find that there
exists a λ value that maximises the stabilising effect of shear-thinning (with
respect to the onset of linear instability), and this value is henceforth denoted
λmax. If the viscosity at maximum shear-rate is not accounted for in the def-
inition of the Reynolds number then we find that for suitably large values of
λ, shear-thinning has the effect of destabilising the boundary-layer flow, when
compared to Newtonian benchmark. However, this behaviour is not observed
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Figure 3: Temporal and spatial neutral stability curves for a range of shear-
thinning fluids. Results owing from the power-law and Carreau fluid models are
presented in (a) & (c) , and (b) & (d) , respectively. In (a) & (b) , and (c) &
(d) the streamwise wavenumber and the frequency parameter is plotted against
the non-Newtonian Reynolds number, respectively.

if the Reynolds number is appropriately scaled. Indeed, in this case, for each
n, we find that as λ→∞ the critical value of the Reynolds number tends to a
well defined asymptotic limit.

In order to quantify the growth of the disturbances we plot the variation of
ln(A/A0) against the Reynolds number for a range of dimensionless frequency
values. As is typical for two-dimensional boundary-layer flows we find that
higher frequency disturbances are amplified at lower Reynolds numbers whereas
lower frequencies become unstable at larger values of the Reynolds number. For
each constant value of Fj , the Nj-factor curve is tangent to the curve represent-
ing the variation of ln(A/A0). The results presented in figure 5 demonstrate that
for the same fixed value of the fluid index the gradient of the Nc-factor curve
is noticeably steeper than the equivalent result determined from the power-law
model. In a very broad sense2, this would suggest that the power-law model
under predicts the relative growth of the linearly unstable disturbances when
compared to the Carreau fluid model. This result is in keeping with the findings
presented in figure 3 where we see that when λ = λn, for a fixed value of the
fluid index, the power-law model first exhibits linear instability at a much larger
value of the Reynolds number.

2The relative merits and shortcomings of the eN method in predicting transition in two-
dimensional boundary-layer flows are addressed in the review article by van Ingen [13].
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Table 3: Critical R̃c and F̃c = ω/R̃c, values for shear-thinning flows modelled
using the modified Carreau relationship. The value of the material time con-
stant has been determined in order to maximise the critical value of the scaled
Reynolds number.

n λmax R̃crit
c F̃ crit

c × 106

0.8 5.4445 10377.0 3.373
0.7 4.7112 12258.5 2.659
0.6 4.2199 14601.4 2.068
0.5 3.4285 17487.5 1.573
0.4 3.0217 21498.9 1.130

0 1 2 3 4 5

λ

0

0.5

1

1.5

2

2.5

Rcrit
c

×10
4

(a)

0 1 2 3 4 5

λ

0

0.5

1

1.5

2

2.5

R̃crit
c

×10
4

(b)

Figure 4: Variation of the unscaled and scaled critical Reynolds numbers with
respect to the material time constant. In this case the fluid index takes the
value n = 0.5. The dashed lines indicate the location of the optimum λ values.

As a point of reference the Newtonian N -factor curve has been included in
both plots contained within figure 5. Working under the assumption that the
onset of transition occurs when the N -factor reaches a predetermined value (for
the purposes of this discussion, in keeping with van Ingen [13], we set this value
at N = 9), we observe that both fluid models predict that shear-thinning delays
the transition to turbulence. Indeed, for both models, for each n in the range of
interest, we find that the N -factor curves are shifted along the R-axis suggesting
that shear-thinning will always have the effect of delaying transition, even when
n is only very marginally less than unity.

It should be noted here that the N -factor value of 9 is based on an empiricism
and therefore does not necessarily predict the exact location of transition.

4 Energy Analysis

In order to physically quantify the stability results presented in §3, we perform
an energy balance calculation akin to that of Cooper & Carpenter [14], who
considered the flow due to a compliant rotating disk. The calculation presented
here indicates the relative influences of the energy transfer mechanisms that are
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Figure 5: N -factor curves for shear-thinning fluids with fluid index n = 0.5.
The integrated growth rates for a range of dimensionless frequency values are
given by the dashed lines. The Nj-factor curve is tangent to the maximum value
of these total amplification curves. The Carreau fluid results were obtained by
setting λ = λn. In both cases the Newtonian solution (solid black curve) has
been included as a comparative aid.

associated with two-dimensional boundary-layer flows of this nature.
Energy production and dissipation terms are determined from the equation

for kinetic energy. As is commonplace in the literature we define the kinetic
energy of a two-dimensional disturbance as such

ẽ =
ũ2 + ṽ2

2
.

Multiplying (6b), and (6c), by ũ, and ṽ, respectively, and summing the resulting
equations, we arrive at a generalised Newtonian kinetic energy equation(
∂

∂t
+ Uj

∂

∂x

)
ẽ+ U ′j ũṽ = −∂(ũp̃)

∂x
− ∂(ṽp̃)

∂y
+
µ̄j
Rj

[
∂(ṽq̃)

∂x
− ∂(ũq̃)

∂y
− q̃2

]
−

¯̄µj
Rj

[
∂(ṽr̃)

∂x
− ∂(ũr̃)

∂y
− r̃2

]
+
µ̄′j
Rj

[
∂(ũṽ)

∂x
+
∂ẽ

∂y

]
+

(µ̄j −¯̄µj)
′

Rj

∂ṽ2

∂y
,

where

q̃ =
∂ṽ

∂x
− ∂ũ

∂y
, and r̃ =

∂ũ

∂x
− ∂ṽ

∂y
.

Averaging the perturbations over a single time period and integrating across
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Figure 6: Variation of the total mechanical energy, energy production due to
Reynolds stresses, and energy dissipation due to viscosity with Rc, and n, re-
spectively. Points where the solid curve cross the dashed black line indicate a
shift from linearly stable to linearly unstable flow. In (a) the shear-thinning
index is set to n = 0.5, whilst in (b) the Reynolds number is fixed such that
Rc = 1× 104.

the thickness of the boundary-layer gives the following integral energy equation

dE

dx
=−

∫ ∞
0

U ′j < ũṽ > dy − 1

Rj

∫ ∞
0

µ̄j < q̃2 > dy − d

dx

∫ ∞
0

< ũp̃ > dy

+
1

Rj

{
d

dx

∫ ∞
0

µ̄j < ṽq̃ > − ¯̄µj < ṽr̃ > +µ̄′j < ũṽ > dy

+

∫ ∞
0

µ̄′j < ũq̃ > − ¯̄µ′j < ũr̃ > +¯̄µj < r̃2 > −µ̄′′j < ẽ > −(µ̄j − ¯̄µj)
′′ < ṽ2 > dy

}
,

(9)

where E =
∫∞
0
Uj < ẽ > dy, is the total kinetic energy which is being convected

past a given location.
In his Newtonian study Morris [15] has shown that the first term within the

braces is negligible. Our calculations reveal that this term remains negligible
in spite of the appearance of a non-constant viscosity function. The remaining
seven terms within the braces appear because of the non-Newtonian constitutive
viscosity relationship, and vanish in the Newtonian limit. Somewhat surpris-
ingly we find that all of these terms are also negligible. This suggests that the
source of any non-Newtonian stabilising/destabilising effects owe largely from
the modification of the base flow profiles, not the additional viscous terms that
appear in the governing perturbation equations.

Given that the perturbations have the normal mode form, normalising (9)
with respect to

∫∞
0
Uj < ê > + < ûp̂ > dy, gives

− 2αi︸ ︷︷ ︸
TME

'
∫ ∞
0

U ′j < ûv̂ > dy︸ ︷︷ ︸
EPRS

+
1

Rj

∫ ∞
0

µ̄j < q̂2 > dy︸ ︷︷ ︸
EDV

, (10)

where ê = (1/2)(û2 + v̂2), q̂ = iαv̂ − û′, and < x̂ŷ >= x̂ŷ? + x̂?ŷ (? indicates
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complex conjugate). The term on the left of (10) is understood to be the Total
Mechanical Energy (TME) of a given disturbance. The first term on the right–
hand side is the Energy Production due to Reynolds Stresses (EPRS), whilst
the second corresponds to the Energy Dissipation due to Viscosity (EDV).

When energy production outweighs energy dissipation the eigenmode in
question is amplified. This indicates instability and is consistent with the con-
dition that if αi < 0, the flow is linearly unstable.

In figure 6 we present energy balance calculations for the most unstable
eigenmode (αi = max(αi)) for (a) a range of Reynolds numbers at a fixed
value of n = 0.5, and (b) for a range of shear-thinning values given that Rc =
1 × 104. In each case considered the sum of the energy production (EPRS)
and dissipation terms (EDV) is equal to −2αi, to an order of at least five
decimal places. This precision indicates the relatively minuscule influence of
the aforementioned omitted terms. From both figures it is clear that the energy
production due to Reynolds stresses remains the dominating physical mechanism
for the onset of instability. Most interestingly we see that the energy dissipation
due to viscosity is essentially invariant with the fluid index. This result supports
our earlier conjecture that the form of the streamwise velocity profile plays the
largest role in determining the stability characteristics of generalised Newtonian
flows, and, in fact, that the variation of viscosity across the boundary layer
has very little influence on linear stability results. In the interest of brevity
we choose not to present power-law solutions here but note that qualitatively
similar results are obtained. The findings suggest that shear-thinning has the
effect of reducing the energy production due to Reynolds stresses, resulting in a
reduction of the total mechanical energy available to destabilise the T-S waves.

5 Discussion & Conclusions

The linear stability of the shear-thinning boundary-layer flow over an inclined
flat plate has been considered for two of the more popular generalised Newtonian
viscosity models. This work was motivated by previous studies that indicate
that the effect of shear-thinning can act to stabilise confined shear flows. The
results presented within this report suggest that the addition of shear-thinning
agents could act as a passive control mechanism for unconfined boundary-layer
flows.

Terms arising from the perturbation of the respective viscosity functions were
included in the derivation of the linear disturbance equations. The subsequent
equations were solved using a Chebyshev collocation scheme. Results from the
power-law formulation of the problem suggest that the effect of shear-thinning
will act to significantly stabilise the boundary-layer flow. This result is quali-
tatively supported by solutions obtained under the Carreau fluid model. When
considering the Carreau model we find that there exists an optimum value of
the material time constant that maximises this stabilising effect. These results
are presented above in table 3. In agreement with Nouar et al. [1], we note
the importance of appropriately scaling the Reynolds number as it is possible
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to arrive at differing conclusions depending on the choice of viscosity scale. In
the scaled frame of reference we find that this stabilising effect is maintained
for large values of λ. However, this is not the case if the viscosity at the wall is
ignored in the definition of the Reynolds number. Unsurprisingly, the optimum
value of λ depends on the fluid index; we find that the value of λmax decreases
linearly with n. Additional calculations have shown that, irrespective of the
choice of viscosity scale, the Carreau fluid model will, for at least specific range
of λ values, always exhibit stabilising behaviour.

The linear growth of the downstream disturbances were interpreted in the
context of the total amplification of the streamwise wavenumbers. The growth
of the linear disturbances is observed to be greater under the Carreau fluid
model when compared to the corresponding results obtain from the power-law
regime. Nevertheless, for all the shear-thinning cases considered within this
investigation, the linear growth, and associated N -factor results, indicate sta-
bilisation when compared to the Newtonian benchmark. This suggest that the
onset of transition will be delayed for two-dimensional boundary-layer flows in
the presence of shear-thinning.

Results from the generalised Newtonian integral energy equation reveal that,
irrespective of the introduction of shear-thinning, the dominate energy transfer
mechanism within the system remains the energy production due to Reynolds
stresses. Shear-thinning has essentially no effect on the energy dissipation.
This result implies that the relative dissipation is sensitive to the precise form
of the streamwise steady flow profile, not the variation of viscosity across the
boundary-layer.

The arguments regarding the applicability of parallel linear stability theory
(LST) to growing two-dimensional boundary-layer flows is clearly relevant to
this investigation. The framework presented here is unable to capture either
the slow spatial growth of the boundary layer flow or the nonlinear develop-
ment of the disturbances. As demonstrated in this study the critical Reynolds
number for favourable pressure gradient flows is moderately large and so non-
parallel effects, which become more important at lower Reynolds, are likely to
be less important when compared to studies that consider zero or adverse pres-
sure gradient flows. The importance of nonlinear effects on the transition to
turbulence is well documented within the literature and this is something that
is currently outside of the scope of this investigation. Newtonian nonlinear and
non-parallel investigations reveal that, in general, LST gives an overestimate for
the location of the onset of instability, see, for example, Herbert [16]. Similarly,
although still widely used in industry for the prediction of transition, the eN

method suffers from the inability to incorporate nonlinear mechanisms and the
initial amplitude of the disturbances. Taking these factors into account this
study represents the first step in determining the potentially advantageous ef-
fect that shear-thinning can have on the instability and transition of unconfined
two-dimensional boundary-layer flows.

A natural extension of this investigation would be to consider a high Reynolds
number asymptotic description of both the upper and lower branch neutral
modes. In this case a self-consistent description of the flow would be obtain-
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able. An analytical study such as this would reveal the important factors that
contribute to any stabilising/destabilising effects at large Reynolds numbers.
One would hope that the results from this type of investigation would support
the hypothesis that the stability of the flow is governed largely by the form of
the streamwise base flow profiles and not the variation of viscosity across the
boundary layer.
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