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A Second Order Finite-Difference Ghost-Point Method
for Elasticity Problems on unbounded domains with
applications to Volcanology

Armando Coco1,∗, Gilda Currenti2, Ciro Del Negro2, and Gio-
vanni Russo3

1 Dipartimento di Scienze della Terra e Geoambientali, Università di Bari Aldo Moro,
Bari, Italy.
2 Istituto Nazionale di Geofisica e Vulcanologia
3 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy

Abstract. We propose a finite-difference ghost-point approach for the numerical solu-
tion of Cauchy-Navier equations in linear elasticity problems on arbitrary unbounded
domains. The technique is based on a smooth coordinate transformation, which maps
an unbounded domain into a unit square. Arbitrary geometries are defined by suit-
able level-set functions. The equations are discretized by classical nine-point stencil on
interior points, while boundary conditions and high order reconstructions are used to
define the field variable at ghost-point, which are grid nodes external to the domain
with a neighbor inside the domain. The linear system arising from such discretization
is solved by a multigrid strategy. The approach is then applied to solve elasticity prob-
lems in volcanology for computing the displacement caused by pressure sources. The
method is suitable to treat problems in which the geometry of the source often changes
(explore the effects of different scenarios, or solve inverse problems in which the ge-
ometry itself is part of the unknown), since it does not require complex re-meshing
when the geometry is modified. Several numerical tests are successfully performed,
which asses the effectiveness of the present approach.

AMS subject classifications: 74B05, 65N06, 74S20, 74G15
Key words: Linear Elasticity, Cauchy-Navier equations, ground deformation, unbounded do-
main, coordinate transformation method, Cartesian grid, Ghost points, Level-set methods, Multi-
grid.

1 Introduction

Physics-based models of ground deformation at volcanoes have been very promising
for their ability to predict surface displacements from forces acting within the Earth.

∗Corresponding author. Email addresses: coco@dmi.unict.it (A. Coco), gilda.currenti@ct.ingv.it

(G. Currenti), ciro.delnegro@ct.ingv.it (C. Del Negro), russo@dmi.unict.it (G. Russo)



2

By comparing or fitting surface observations to the predictions from these mathemat-
ical models, better constraints on important properties of volcanic systems have been
inferred [16, 35, 47]. Models based on analytical and semi-analytical solutions of the
elasto-static Cauchy-Navier equations are often used to provide a first approximation
of the expected surface deformation [27, 49]. However, several features, such as irregu-
lar geometries (volcano topography and composite source of deformation) and heteroge-
neous medium properties, cannot be accounted for in analytical formulations. Numerical
solutions based on Finite Element and Boundary Element methods have been investi-
gated, showing that these features may significantly affect the solutions (see for exam-
ple [8, 15, 35, 43, 46, 47] for deformation computations with realistic geophysical data).
Despite the capability to solve deformation models in complex domains, the use of FEM
is computationally expensive since the mesh is geometry-dependent and mesh construc-
tion requires careful design, testing, and validation to ensure that the configuration leads
to an acceptable solution. Therefore, for a complex geometry, generation of a good mesh
is not a trivial task and may require a considerable amount of work [31]. On the other
hand, Boundary Element methods cannot be employed in problems with heterogeneous
media or in presence of source.

In volcanology the elasto-static problem is usually posed in an unbounded (infinite)
domain, meaning that the fields extend toward infinity. For solving such a problem, the
unbounded domain is typically truncated at a sufficiently large distance from the source
and appropriate Artificial Boundaries Conditions (ABCs) have to be imposed on these
new external artificial boundaries in such a way that the solution of the truncated model
approaches the one of the unbounded medium. This method is used in several fields,
such as acoustic, electro-dynamics, solid and fluid mechanics [2, 25, 44, 48].

Discretizing the truncated domain with a uniform grid usually requires a very large
number of grid nodes, making the method rather inefficient. Furthermore, the definition
of the appropriate ABCs is an open problem, since various different approaches have
been proposed in the literature [17, 30, 33, 34] and it is not clear what are their relative
merits. In some cases, the choice of ABCs is not unique [22, 44, 48] and strongly affects
the solutions. A similar approach has been recently adopted in [39]: the problem is trans-
formed into an infinite system of equations and a careful convergence theory suggests
where to perform the truncation.

Another strategy consists of using Quasi-Uniform Meshes (QUM) (see, for instance, [1,
20,29]) that adopts a smooth, strictly monotonic function to map the original unbounded
domain into a bounded one, which is then discretized by a uniform mesh. By this ap-
proach, the drawbacks of the truncated domain are avoided, since all the infinite domain
is taken into account in the mapping. The nodes of QUM are located at mid-point of each
cell in order to avoid the numerical issue caused by the last (infinite) spatial step (see Fig.
1).

At variance with the classical QUM, we adopt a coordinate transformation method,
which consists of using a smooth, strictly monotonic function to transform the original
problem (domain, geometry, equations and boundary conditions) into a new problem in
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Figure 1: Coordinate mapping from the computational space X ∈ [−1,1] to real
space x ∈ [−∞,+∞]. The computational domain is divided into 15 cells. The
continuous lines represent the mapping of cell edges. The dashed line represents
the mapping of the center of the last cell.

a bounded domain, which is then discretized on a uniform mesh. By this transforma-
tion, the boundary conditions at infinity are taken into account in a natural way and a
classical finite-difference method on uniform Cartesian grids can be applied to discretize
the equations. The coordinate transformation method was firstly proposed in [23] and
successively adopted in several contexts: for example, in [3] several methods for solving
problems in a semi-infinite or infinite domain using Chebyshev polynomials are ana-
lyzed; in [24] some Jacobi approximations for solving differential equation on the half
line are investigated; in [32] the transformed finite problem is transcribed to a system of
algebraic equations by Chebyshev-Gauss collocation.

All the above techniques have been adopted in one space dimension. There is a
vast literature on quasi-uniform grids in several space dimensions, which are based on
smooth mapping between the infinite domain and the unit square. As an example we cite
the book of J. Castillo [7]. In case of smooth domain these quasi-uniform grid mappings
onto the unit square are able to provide discretization of the mapped equations into new
coordinates that can be discretized by a regular Cartesian grid, combining the benefit of
both efficiency and accuracy, typical of regular Cartesian grids. However this approach
may become less effective for complex possibly time dependent geometries, because the
mapping becomes very complicated and needs also to be updated in time.

A fast and efficient numerical method, which preserves the advantage of modelling
complex structures and overcomes the drawback of meshing procedures, has been re-
cently proposed in [10] in the context of Poisson equation with mixed boundary condi-
tions on bounded domains. The method is based on a second order Multigrid Finite-
Difference (FD) ghost-point method for solving the equations in an arbitrary domain
described by a level-set function. The problem is discretized on a Cartesian grid and the
level set function is used to define the domain geometry. The basic idea of the level-set
method, introduced by Osher and Sethian [38], is to represent complex interfaces im-
plicitly as the zero level set of a continuous function [19, 37, 40–42]. Due to the implicit
representation on a Cartesian grid, the level set approach does not introduce any a priori
assumptions on the geometry and, therefore, is receiving growing attention in the context
of geometric inverse problems [26] and shape optimization [6, and references therein].

We combine the finite-difference level-set method [10] with the smooth mapping of
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the infinite domain into a square for the numerical solution of the Cauchy-Navier equa-
tion and apply the procedure for volcanology problems. By this method we discretize the
elasto-static operator in the transformed coordinates using central differences, namely us-
ing a symmetric nine-point stencil, centered at each internal grid point. Some equations
for internal grid points will involve ghost points out of the domain. The equations for
such ghost points are obtained by imposing boundary conditions on suitably selected
points on the boundary. The linear system arising from the discretization of the problem
is solved by a suitable geometric multigrid approach, which is an extension of the multi-
grid developed in the framework of scalar elliptic equations [10] and a class of systems
of PDE’s [9].

The plan of the paper is the following. In the next section we recall the mathematical
formulation of Cauchy-Navier equations. In the subsequent section, which is the core sec-
tion of the paper, we describe the numerical method, namely the choice of the coordinate
transformation, the finite-difference level-set ghost-point method for the Cauchy-Navier
equation in the transformed finite domain, and the geometric multigrid. The last sec-
tion is devoted to numerical results. The proposed methodology is implemented for the
two-dimensional plane-strain elastic model and validated versus exact or analytical so-
lutions, when available. Several numerical tests are performed to show the second order
accuracy of the numerical scheme. We also investigate the application of this method to
volcanology for computing rock deformation caused by the pressurization of a magma
source, with a realistic physical domain obtained by taking a vertical cross section of
mount Etna.

2 Mathematical formulation: Cauchy-Navier Equations

The deformation and stress fields produced by pressure sources usually occur very slowly,
so the medium is in static equilibrium and the displacement can be found by solving the
elasto-static equations. In the case where medium behaves elastically, the equations of
equilibrium are coupled with constitutive Hooke’s law giving the following set of equa-
tions [21]: 

∇·σ=0
σ=λtr(ε)I+2µε

ε=
1
2

(
∇u+(∇u)T

) (2.1)

where σ and ε are the stress and strain tensors, respectively, u=(u,v,w) the displacement
vector and λ and µ are the Lame’s elastic medium parameters related to the Young’s
modulus E and the Poisson ratio ν:

µ=
E

2(1+ν)
, λ=

Eν

(1−2ν)(1+ν)
.
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Without lack of generality, we restrict our attention to the two-dimensional plane strain
model, in which we suppose that the z component of displacement w vanishes every-
where, and the displacements u and v are functions of x and y only. The governing
equations for the plane-strain model having spatially variable (heterogeneous) material
properties are:


∂

∂x

(
(µ+λ)

∂u
∂x

)
+∇·(µ∇u)+

∂

∂x

(
λ

∂v
∂y

)
+

∂

∂y

(
µ

∂v
∂x

)
=0,

∂

∂y

(
(µ+λ)

∂v
∂y

)
+∇·(µ∇v)+

∂

∂y

(
λ

∂u
∂x

)
+

∂

∂x

(
µ

∂u
∂y

)
=0.

(2.2)
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Figure 2: Example of 2D mapping from the bounded (right) to the unbounded (left) domain. The uniform
grid for the computational domain (right) automatically results in a quasi-uniform grid for the physical
domain (left)

Here, with a slight abuse of notation, we denote by ∇ the two-dimensional gradient
operator. The problem is posed in an unbounded domain Ω=Ωs\Ωp. The geometry of
the problem is represented in Fig. 2 (left), where Ωp is the region of the pressure source,
Γs is the free surface and Ωs is the domain below the surface Γs. The domains Ωs and Ωp
and the boundaries Γs and Γp are implicitly described by two level-set functions, i.e. [38]:

Ωs ={φs(x,y)<0}, Ωp =
{

φp(x,y)<0
}

, Γs ={φs(x,y)=0}, Γp =
{

φp(x,y)=0
}

.

From a level-set function φs,p we can easily compute the outward unit normal to the zero
level-set and its curvature:

n=
∇φs,p

|∇φs,p|
, κ=∇·n.
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A special case of level-set function is the signed distance function:

φs(x,y)=

{
−d((x,y),Γs) if (x,y)∈Ωs

d((x,y),Γs) if (x,y) /∈Ωs
, φp(x,y)=

{
d
(
(x,y),Γp

)
if (x,y)∈Ωp

−d
(
(x,y),Γp

)
if (x,y) /∈Ωp

,

where d((x,y),Γ) represents the distance between the point (x,y) and the interface Γ. A
signed distance function is preferred to a simple level-set function because sharp gradi-
ents are avoided and it is simpler to compute the boundary closest point to a given grid
point. From a general level set function φ0, we can obtain the signed distance function φ
by fast marching methods [41] or by the reinitialization procedure based on the numerical
solution of the following PDE (see, for instance, [40])

∂φ

∂t
=sgn(φ0)(1−|∇φ|),

for a few time steps.
The problem (2.2) is posed in Ω=Ωs\Ωp, with a free-stress boundary condition

σ ·ns =0 on Γs, (2.3)

where ns =∇φs/|∇φs| is the unit normal to Γs, directed from inside to outside of Ωs,
while the condition on the pressure source is

σ ·np =−pnp on Γp, (2.4)

where np=∇φp/|∇φp| is the unit normal to Γp, directed from outside to inside of Ωp, and
p is the (given) pressure. The problem is closed imposing zero displacements at infinity.

3 Numerical method

We investigate the application of Finite-Difference (FD) ghost-point method for solving
the elasto-static equation in unbounded domains.

3.1 Coordinate transformation method

We implement a suitable coordinate transformation to map the unbounded domain Ω to
a bounded domain Ωb and then apply the finite-difference method for the transformed
problems in the finite domain. Thereafter we use the uppercase and the lowercase nota-
tion for quantities on the bounded and unbounded domain, respectively. In some cases
we use the superscript b for referring to quantities in the bounded domain. Let χ be a
differentiable, strictly monotonic function that maps the interval [−1,1] onto [−∞,+∞].
Then we perform the transformation of the coordinates x = χ(X) and y = χ(Y), that
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maps [−1,1]×[−1,1] onto [−∞,+∞]×[−∞,+∞]. The quantities in the bounded domain
µb,λb,φb

s ,φb
p are defined by

(µb,λb,φb
s ,φb

p)(X)=(µ,λ,φs,φp)(χ(X)).

The geometry of the new problem is represented in Fig. 2 (right), where

Ωb
s=
{

φb
s (X,Y)<0

}
, Ωb

p=
{

φb
p(X,Y)<0

}
, Γb

s=
{

φb
s (X,Y)=0

}
, Γb

p=
{

φb
p(X,Y)=0

}
.

The new set of equations is obtained by replacing the differential operators with the fol-
lowing symbolic expressions:

∂

∂x
=

1
χ′(X)

∂

∂X
=: DX,

∂

∂y
=

1
χ′(Y)

∂

∂Y
=: DY.

The new problem then becomes:DX

(
(µb+λb)DXU

)
+∇b ·(µb∇bU)+DX

(
λbDYV

)
+DY

(
µbDXV

)
=0

DY

(
(µb+λb)DYV

)
+∇b ·(µb∇bV)+DX

(
µbDYU

)
+DY

(
λbDXU

)
=0

(3.1)

in the unknowns U and V of the transformed coordinates X and Y, and with ∇b :=
(DX,DY). Eqs. (3.1) can be resumed in the compact form

∇b ·σb =0, (3.2)

where (from (2.1)) σb = λb tr(εb)I+2µbεb, with εb = 1
2

(
∇bU+(∇bU)T). The free-stress

boundary condition (2.3) becomes

σb ·ñb
s =0 on Γb

s , (3.3)

where ñb
s =∇bφb

s /|∇bφb
s |, while the condition on the pressure source (2.4) reads

σb ·ñb
p =−pb ñb

p on Γb
p, (3.4)

where ñb
p =∇bφb

p/|∇bφb
p|. We observe that ñb

s and ñb
p are not the normal to Γb

s and Γb
p,

respectively, in the computational domain. This because the gradient operator ∇b is not
the classical gradient, due to the non linear mapping.

The Dirichlet boundary conditions imposed at infinity become:

U(±1,Y)=U(X,±1)=V(±1,Y)=V(X,±1)=0.

The finite domain is evenly discretized by a regular Cartesian grid with (N+1)2 grid
nodes giving a spatial resolution of H=2/N. The coordinate transformation is especially
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convenient because it straightforwardly offers a non-uniform grid in the infinite domain,
with a decreasing spatial resolution going toward infinity (see Fig. 2).

There are several typical mappings that relate infinite and finite domains to each
other. Since the analytical (exact) solutions for the elasto-static problem of a pressure
source in an infinite half-space domain decays algebraically as x and y go to infinity [27],
it is expected that good results are given by an algebraic transformation, like the follow-
ing:

χ(X)=
cX

(1−X2)m (3.5)

where c and m are positive parameters, which define the grid point distribution in the
original (physical) infinite domain.

Knowing that the solution of the elasto-static problem (2.2) with boundary conditions
(2.3,2.4) decades as 1/

√
x2+y2 going to infinity [27], we choose m in such a way that the

asymptotic behavior of the solution is properly captured. This is accomplished by the
requirement that the gradient of the transformed solution in the bounded domain does
not develop singularity at the boundary of [−1,1]×[−1,1]. Without loss of generality we
can perform a one-dimensional computation. The asymptotic behavior of the solution
and its derivative are given by:

u(x)=U(X)∼ 1
x
=

1
χ(X)

=
(1−X2)m

cX
,

∂U
∂X
∼ ∂

∂X
(1−X2)m

cX
=

m(1−X2)m−1

cX
− (1−X2)m

cX2

which suggest to choose m≥1 in order to avoid singularity. By increasing m, faster spread
in the grid node distribution is obtained. Therefore, it is convenient to use m=1 in order
to not spread out the nodes in a too large domain.

The choice of c regulates the length scale of the computational grid. Since higher gra-
dients in the solution are mainly concentrated around the source Ωp and decade going
to infinity, the finer part (which is also approximately uniform) of the grid should be
placed in the vicinity of Ωp. The minimum grid spacing in the unbounded domain is
hmin =H ·χ′(0)=2c/N at the origin, near which we place Ωp, without loss of generality.
In addition, to ensure a fine resolution in a suitable square [−α,α]2 containing the source
Ωp, we impose that the spatial resolution at the boundary of [−α,α]2 is half the resolu-
tion at the origin. We choose c so that this condition is satisfied. In detail, we impose
χ′(χ−1(α))=2·χ′(0). If m=1, after some algebra we obtain the condition:

c=α

√
2

2
.

Under these assumptions, the mapping function (3.5) reads as:

χ(X)=
α
√

2
2

X
(1−X2)

. (3.6)
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3.2 Finite-Difference Ghost-Point Method

We apply the finite-difference ghost-point method of Coco and Russo [10] to the trans-
formed problem (3.1)-(3.4) in the finite domain [−1,1]×[−1,1]. The discretization of the
problem leads to a linear system, which is obtained as follows. For each grid point of
Ωb = Ωb

s\Ωb
p we discretize the two equations (3.1) by central differences. Note that all

terms of Eqs. (3.1) can be expressed in the following terms:

∂

∂X

(
γ

∂W
∂X

)
,

∂

∂X

(
γ

∂W
∂Y

)
,

∂

∂Y

(
γ

∂W
∂X

)
,

∂

∂Y

(
γ

∂W
∂Y

)
,

γ being a smooth coefficient and W=U,V. The discretization of the previous terms reads:

∂

∂X

(
γ

∂W
∂X

)
≈

γi+1/2,j(Wi+1,j−Wi,j)−γi−1/2,j(Wi,j−Wi−1,j)

H2 ,

∂

∂X

(
γ

∂W
∂Y

)
=

∂γ

∂X
∂W
∂Y

+γ
∂2W

∂X∂Y

≈
(γi+1,j−γi−1,j)(Wi,j+1−Wi,j−1)

4H2 +γi,j
Wi+1,j+1+Wi−1,j−1−Wi+1,j−1−Wi−1,j+1

4H2 ,

∂

∂Y

(
γ

∂W
∂X

)
=

∂γ

∂Y
∂W
∂X

+γ
∂2W

∂X∂Y

≈
(γi,j+1−γi,j−1)(Wi+1,j−Wi−1,j)

4H2 +γi,j
Wi+1,j+1+Wi−1,j−1−Wi+1,j−1−Wi−1,j+1

4H2 ,

∂

∂Y

(
γ

∂W
∂Y

)
≈

γi,j+1/2(Wi,j+1−Wi,j)−γi,j−1/2(Wi,j−Wi,j−1)

H2 .

The whole stencil results in a nine-point stencil. For grid points of Ωb which are close
to the boundary, some of the points of the stencil may lie outside Ωb (i.e. outside Ωb

s or
inside Ωb

p). Such grid points are called ghost points and a suitable value of U and V should
be defined for them to close the linear system, as explained later.

In order to reduce the amount of ghost points, we reduce the nine-point stencil for
grid points close to the boundary to a seven-point stencil. In particular, if a grid point P
has one of the eight surrounding grid points outside Ωb (see Fig. 3), then we compute the
unit normal nb(P)≡(nb

X,nb
Y)=∇φb(P)/|∇φb(P)| by central differences, where φb=φb

s or
φb =φb

p whether the grid point is closer to Γb
s or Γb

p, respectively. Now, if ñb
X ·ñb

Y≥ 0, we
use the following discretization for the mixed derivative † :

∂2W
∂X∂Y

≈ 1
2H2

 −1 1 0
1 −2 1
0 1 −1

Wi,j

†with the notation Swi,j, where S=(slm), l,m=−1,0,1, we denote Swi,j =∑1
l=−1 ∑1

m=−1 slmwi+l,j+m
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while, if ñb
X ·ñb

Y <0, we use:

∂2W
∂X∂Y

≈ 1
2H2

 0 −1 1
−1 2 −1

1 −1 0

Wi,j.

See Fig. 3 for a graphic explanation.

P

P

1
4H2

 −1 0 1
0 0 0
1 0 −1

 1
2H2

 −1 1 0
1 −2 1
0 1 −1

 1
2H2

 0 −1 1
−1 2 −1

1 −1 0


Figure 3: The stencil for the mixed derivative changes accordingly to the distance from the bound-
ary and to the normal direction.

We mark all inside and ghost grid points and call them active grid points.
In order to close the linear system, we write an equation for each ghost point. Let G

be a ghost point. Therefore G /∈Ωb
s or G∈Ωb

p. Let us suppose that G is outside Ωb
s (if G

is inside Ωb
p the discretization is analogous). We compute the outward unit normal in G,

that is nb
G =∇φb

s (G)/|∇φb
s (G)|, using a second-order accurate discretization for∇φb

s (G),
such as central differences in G. Now we can compute the closest boundary point to G,
that we call B, by the level-set function, applying the bisection method to φb

s along the
normal direction nb

G. Therefore, the two equations of the linear system for the variables
U and V in the ghost point G are obtained by the boundary conditions (3.3) and (3.4) on
Γb

s :

σb(Ū(B))·n̄b(B)=0, with n̄b(B)=(n̄b
X,n̄b

Y)=
∇bφ̄b

s (B)
|∇bφ̄b

s (B)| , (3.7)

where Ū and φ̄b
s are the biquadratic interpolants of U and φb

s respectively on a suitable up-
wind nine-point stencil (which is described later) made by active grid points. Let us recall
that a biquadratic interpolant of a function f (x,y) is a polynomial f̄ (x,y)=∑2

i,j=0 ai,jxiyj

where the nine coefficients ai,j are determined imposing f = f̄ in the nine points of the
stencil.
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The boundary conditions (3.7) lead to two scalar equations:(
2µb+λb

χ′(X)

∂Ū
∂X

+
λb

χ′(Y)
∂V̄
∂Y

)
n̄b

X+µb
(

1
χ′(Y)

∂Ū
∂Y

+
1

χ′(X)

∂V̄
∂X

)
n̄b

Y =0

µb
(

1
χ′(Y)

∂Ū
∂Y

+
1

χ′(X)

∂V̄
∂X

)
n̄b

X+

(
2µb+λb

χ′(Y)
∂V̄
∂Y

+
λb

χ′(X)

∂Ū
∂X

)
n̄b

Y =0.
(3.8)

We use the first condition to write the linear equation of the linear system for the un-
known U(G) and the second equation for V(G).

Ω

G

B

ii-1i-3 i-2

j

j-3

j-2

j-1

Ω

G

B

ii-1i-2

j

j-3

j-2

j-1

j-4

Figure 4: Upwind nine-point stencil associated to a ghost point G. Left: the nine
points are the vertices of the 3×3 square grid whose upper-right corner is G.
Right: the empty circular grid points are not active points, and therefore are not
used in the definition of the stencil, which is instead defined by the nine full
circular nodes.

The upwind nine-point stencil is chosen, as described in [10], in the following manner
(see Fig. 4 for the case in which both components of the vector G−B are positive, the other
three cases are analogous). If |xB−xG|< |yB−yG| (as in Fig. 4), the nine-point stencil
will be composed by three points of the column i, three points of the column i−s, three
points of the column i−2s, where s=sgn(xB−xG); while if |xB−xG|≥ |yB−yG| it will be
composed by three points of the row j, three points of the row j−s, three points of the
row j−2s, where s=sgn(yB−yG). Let us suppose |xB−xG|< |yB−yG| and xB−xG <0, as
in Fig. 4 (the other cases are treated similarly). Then:

• The three points of the column i are those with indices:

(i, j), (i, j−1), (i, j−2).

Since the grid point with indices (i, j−1) is an interior point, such three points are
active grid points.

• The three points of the column i−1 are those with indices:

(i−1, j), (i−1, j−1), (i−1, j−2)
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if all of them are active grid points, otherwise we choose those with indices:

(i−1, j−1), (i−1, j−2), (i−1, j−3) (3.9)

if all of them are active grid points, otherwise we reduce the stencil as described
later.

• The three points of the column i−2 are those with indices:

(i−2, j), (i−2, j−1), (i−2, j−2)

if all of them are active grid points, otherwise we choose those with indices:

(i−2, j−1), (i−2, j−2), (i−2, j−3)

if all of them are active grid points, otherwise, if the three points for the column i−1
were those indicated in (3.9), we choose those with indices:

(i−2, j−2), (i−2, j−3), (i−2, j−4)

if all of them are active grid points, otherwise we reduce the stencil as described
later.

We observe that, if the grid is fine enough with respect to the curvature of the boundary,
the most common stencil used is the 3×3 square grid whose upper-right corner is G (left
plot of Fig. 4).

If it is not possible to build the nine-point stencil, we revert to a more robust (less
accurate) three-point stencil. For example, in the case illustrated in Fig. 5 we choose the
grid points with indices:

(i, j), (i, j−1), (i−1, j−1)

and we use a linear interpolation instead of a biquadratic one. These three points are ac-
tive grid points, since the grid point with indices (i, j−1) is an interior point. Notice that,
if the boundary is sufficiently smooth (say C1), the reduction of the stencil can be avoided
provided the grid is sufficiently fine with respect to the curvature. For large variations in
the curvature this may result in an expensive numerical method, since only a small part
needs to be treated by a small spatial step. This drawback can be overcome by the usage
of adaptive grids, adopting a refinement criterion reletad to the curvature of the bound-
ary. The Adaptive Mesh Refinement method (see, for instance, [36]), however, is not the
focus of the present paper. Anyway, we experienced in all numerical tests presented in
the paper that the stencil reduction occurs only in O(1) ghost points and the whole order
of accuracy is not degraded [10]. If the boundary is only Lipschitz continuous, adaptivity
on sharp points could not avoid the stencil reduction. Anyway, the solution may present
singular gradients (due to the lack of regularity of the boundary, even if boundary con-
ditions and sources are smooth). In this case the proper accuracy order of the method
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cannot be reached. Finally, if the solution is smooth in spite of the boundary singulari-
ties, the discretization reduces to first order accuracy where the stencil reductions occur.
In this case, in order to maintain a uniform error on the whole domain, one can adopt
an adaptivity strategy using a smaller spatial step Hs�H on the singularities such that
Hs≈H2. A similar strategy in a different context has been adopted in [11].

G

Ω

ii-1

j

j-1

B

Figure 5: Reduction of the nine-
point stencil to a three-point stencil.

Ω

G

B

ii-1i-3 i-2

j

j-3

j-2

j-1

i+1

Figure 6: The upwind stencil is com-
posed by red circular grid points and
is used to compute normal derivatives;
the central-upwind stencil is composed
by blue empty square grid points and is
used to compute tangential derivatives.

Let us now introduce the central-upwind nine-point stencil, which, as we will see in
the numerical tests of Secs. 4.1 and 4.2, improves the robustness of the method and avoids
oscillations in the solution due to a bad conditioning of the coefficient matrix, especially
in regions where the geometry is almost flat. The central-upwind stencil is chosen as
follows (see Fig. 6, where both the upwind and central-upwind nine-point stencil are
plotted). If |xB−xG|< |yB−yG| it is composed by three points of the column i−1, three
points of the column i, three points of the column i+1; while if |xB−xG|≥|yB−yG| it will
be composed by three points of the row j−1, three points of the row j, three points of the
row j+1. Let us suppose |xB−xG|< |yB−yG| and xB−xG <0, as in Fig. 6 (the other cases
are treated similarly). Then:

• The three points of the column i are those with indices:

(i, j), (i, j−1), (i, j−2).

Since the grid point with indices (i, j−1) is an interior point, such three points are
active grid points.

• The three points of the column i−1 are those with indices:

(i−1, j), (i−1, j−1), (i−1, j−2)
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if all of them are active grid points, otherwise we choose those with indices:

(i−1, j−1), (i−1, j−2), (i−1, j−3)

if all of them are active grid points, otherwise we reduce the stencil as described
later.

• The three points of the column i+1 are those with indices:

(i+1, j), (i+1, j−1), (i+1, j−2)

if all of them are active grid points, otherwise we choose those with indices:

(i+1, j−1), (i+1, j−2), (i+1, j−3)

if all of them are active grid points, otherwise we reduce the stencil as described
later.

If it is not possible to build the nine-point stencil, we revert to a more robust (less accu-
rate) three-point stencil, which is the same described above for the upwind nine-point
stencil.

Now, we use the upwind stencil to compute normal derivatives, and the central-
upwind stencil to compute tangential derivatives. Therefore, in the first boundary con-
dition of (3.8) we choose the upwind stencil for U and the central-upwind stencil for V,
while in the second boundary condition of (3.8) we choose the upwind stencil for V and
the central-upwind stencil for U.

The final system takes the form A·U = b, where U =(UI ,VI ,UG,VG), I denotes the set
of inner points and G the set of ghost points. Matrix A represents the discretization of
the equations and the boundary conditions. The linear system is solved by an efficient
iterative method based on a geometric multigrid approach, described in the following
section.

3.3 Geometric Multigrid Method

To solve the sparse linear system A·U = b arising from the discretization of the prob-
lem, we adopt an efficient geometric multigrid method by extending a recent approach
developed for scalar elliptic problems in [10] and for a class of systems of PDE’s in [9].

We briefly resume the main components of this multigrid approach, namely the re-
laxation scheme and the transfer operators (for more details on classical multigrid see,
for instance, [45] or [5]).

The relaxation scheme is obtained by a suitable discretization in space and time of the
following fictitious time dependent problem (from (3.2), (3.3) and (3.4)):
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

∂U
∂t
−∇b ·σb =0 on Ωb,

∂U
∂t

+σb ·ñb
s =0 on Γb

s ,

∂U
∂t

+σb ·ñb
p =−pb ñb

p on Γb
p.

(3.10)

Discretizing the first Eq. of (3.10) in inside grid points (i, j) by forward Euler in time and
central differences in space we obtain the following iterative scheme:

U(n+1)
ij =U(n)

ij +∆t1

[
∇b

h ·σb
h

(
U(n),V(n)

)]1

ij
,

V(n+1)
ij =V(n)

ij +∆t2

[
∇b

h ·σb
h

(
U(n),V(n)

)]2

ij
,

(3.11)

where
[
∇b

h ·σb
h

(
U(n),V(n)

)]1

ij
and

[
∇b

h ·σb
h

(
U(n),V(n)

)]2

ij
are the two components of the

vector
[
∇b

h ·σb
h

(
U(n),V(n)

)]
ij

, which represents the discretization of (3.1) (Sec. 3.2) in the

grid node with indices (i, j). Time steps ∆t1 and ∆t2 (which depend on i and j) are chosen
in such a way the iterations (3.11) revert to the Jacobi iteration scheme applied to the
respective equations of the linear system A·U = b. This is accomplished by choosing
∆t1 = 1/cU

ij and ∆t2 = 1/cV
ij , where cU

ij (resp. cV
ij ) is the coefficient of the discretization of[

∇b ·σb(U,V)
]

1 (resp.
[
∇b ·σb(U,V)

]
2) with respect to the unknown Uij (resp. Vij).

Discretizing the second Eq. of (3.10) in ghost points (i, j) related to the boundary Γb
s

by forward Euler in time and upwind or central-upwind scheme in space we obtain the
following iterative scheme:

U(n+1)
ij =U(n)

ij +∆t
[
σb

h

(
U(n),V(n)

)
·ñb

s

]1

ij
,

V(n+1)
ij =V(n)

ij +∆t
[
σb

h

(
U(n),V(n)

)
·ñb

s

]2

ij
,

(3.12)

where
[
σb

h

(
U(n),V(n)

)
·ñb

s

]1

ij
and

[
σb

h

(
U(n),V(n)

)
·ñb

s

]2

ij
are the two components of the vec-

tor
[
σb

h

(
U(n),V(n)

)
·ñb

s

]
ij

, which represents the discretization of (3.3) (Sec. 3.2) in the grid

node with indices (i, j). Following the idea of [10], we choose a spatial step ∆t in such
a way it satisfies a suitable CFL condition. In the numerical test we experienced that
a spatial step satisfying ∆t < H/(4µij ·max

{
χ′(Xij),χ′(Yij)

}
) is sufficient to ensure the

convergence of the iterative scheme (where µij, Xij and Yij are the quantities µ, X and Y
computed at the grid point with indices (i, j)).

The same argument applies to the third Eq. of (3.10).



16

Jacobi scheme is known to have poor smoothing properties and thus is not suitable as
a relaxation scheme for the multigrid approach [45]. For this reason we switch from the
Jacobi to the Gauss-Seidel iteration scheme. In formulas, using the lexicographic order,
we apply the iterative scheme

U(n+1)
ij =U(n)

ij +∆t1

[
∇b

h ·σb
h
(
Ũ,Ṽ

)]1

ij
,

V(n+1)
ij =V(n)

ij +∆t2

[
∇b

h ·σb
h
(
Ũ,Ṽ

)]2

ij
,

instead of (3.11), and the iterative scheme

U(n+1)
ij =U(n)

ij +∆t
[
σb

h
(
Ũ,Ṽ

)
·ñb

s

]1

ij
,

V(n+1)
ij =V(n)

ij +∆t
[
σb

h
(
Ũ,Ṽ

)
·ñb

s

]2

ij
,

instead of (3.12). Here, Ũlm =U(n)
lm and Ṽlm =V(n)

lm if the grid node (i, j) precedes (l,m) in

the chosen ordering, while Ũlm =U(n+1)
lm and Ṽlm =V(n+1)

lm otherwise.
As pointed out in [4] and [10], the efficiency of the multigrid depends mainly on

the iterations on inner grid points, since the affection of the convergence factor by the
boundary condition iterations can be eliminated with a proper treatment, such as adding
some extra-relaxations on and close to the boundary (see [10]).

The transfer (restriction and interpolation) operators are chosen in order to take into
account the complex structure of the ghost points, maintaining the simplicity given by
the Cartesian grid.

Briefly, the restriction operator is chosen in such a way it does not mix the contribution
of inner and ghost residuals, while the interpolation operator is the standard bilinear
interpolation. A detailed description of the these transfer operators can be found in [10].

The multigrid is then performed by iterating a W−cycle algorithm, choosing the
coarsest grid heuristically in such a way that the geometical properties of the domain
are still correctly captured (in practice we experienced convergence of the method with
a coarsest grid of 172 grid points). The W−cycle is iterated until a stopping criterion on
the residual is satisfied.

4 Numerical results

In this section we present several tests aimed to asses the effectiveness of the method. The
first test is performed on the whole plane R2 and the results are compared to the exact
analytical solution. The second test is in a half-space domain and illustrates the spurious
oscillations arising if only the upwind stencil is used and the influence of the m parameter
of the mapping function (3.5) in the numerical solution. The last test is performed with a
realistic profile of a vertical cross section of mount Etna.
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For each test we compute the relative error in the L∞ and L2 norm as follows:

‖E‖2=

(
∑(xi ,yj)∈Ω |(qi,j−qre f (xi,yj)|2

∑(xi ,yj)∈Ω |qre f (xi,yj)|2

)
, ‖E‖∞ =

max
(xi ,yj)∈Ω

|qi,j−qre f (xi,yj)|

max
(xi ,yj)∈Ω

|qre f (xi,yj)|
,

where q= u,v and qre f is a reference solution that is the analytical solution when avail-
able or a numerical solution computed with another numerical method. The tests are
performed in a Cartesian grid composed of (N+1)×(N+1), whose grid nodes are dis-
tributed on the basis of the algebraic mapping function (3.6) using m= 1 and α= 20 km
to ensure a fine grid resolution near to the source Γp. For each test different simulations
have been performed varying the number of grid points, i.e. the grid parameter N, in
order to show that the method is second order accurate.

4.1 Infinite domain Ω=R2\Ωp
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Figure 7: Example 4.1. Bestfit of the L2 (left) and L∞ (right) errors of u (star) and v
(circle) using only the upwind stencil. The errors for u and v are equals because of the
symmetries of the problem and the discretization.

We first consider an infinite domain without surface Γs, i.e. with φs=−1, and a circular
pressure source centered at the origin, i.e. φp =

√
x2+y2−R, with R= 0.5 km. Analyti-

cal solutions of the deformation field have already been devised for this simple geome-
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Figure 8: Example 4.1. Bestfit of the L2 (left) and L∞ (right) errors of u (star) and v
(circle) using the central upwind stencil.

try [27] and can be used to validate the method. The equations of the analytical solutions
for the displacements u and v in the unbounded domain are given by:

u=
pR2

2µ

x
x2+y2 , v=

pR2

2µ

y
x2+y2 , (4.1)

where the source exerts a pressure of p= 10 MPa. Elastic properties are set to homoge-
neous values over the whole domain using a rigidity modulus of µ= 30 GPa. The error
is computed as the difference between the analytical and the finite-difference solutions.
We first perform the simulation using only the central upwind stencil described in Sec.
3.2. The relative errors in L2 and L∞ norms are plotted against N in logarithmic scale in
Fig. 7, which shows the second order accuracy. The errors in u and v are equal, due to the
symmetry of the problem (Eq. (4.1)) and the discretization. However, the method does
not seem sufficiently robust and the errors fluctuate around the best fit line. A possible
explanation is that two subsequent grids have almost the same number of grid points.
Then, the accuracy of the local approximation oscillates due to interpolation errors in
points that are not grid nodes. Such error decreases on average when the grid is refined,
but may fluctuate for grids with almost the same number of points leading to a non-
monotone behavior. Another cause is due to the use of the upwind stencil to compute
tangential derivatives. In fact, the convergence rate is improved and the fluctuations
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have considerably decreased when the central-upwind stencil is adopted for the tangen-
tial derivatives (see Fig. 8). Notice that in this case the errors in u and v are not equal,
because of the asymmetry introduced by the central-upwind discretization. Moreover,
the main source of the error in the computation of the numerical solution is due to inter-
polation error near the boundary, when defining the equations for the ghost points. To
verify that this is indeed the case, we implemented a numerical scheme which is second
order in the bulk, but adopts third order interpolation at the boundary. In the simplest
case, this is obtained by bicubic interpolation. The results on the same test problem are
reported in Fig. 9. Comparing with Fig.8, we observe that the error is quite smaller and
the fluctuations are drastically reduced.
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Figure 9: Example 4.1. Bestfit of the L2 (left) and L∞ (right) errors of u (star) and v
(circle) using the central upwind stencil and a third order accurate discretization of
the boundary conditions.

4.2 Half-space domain

A further test was set up for computing the deformation caused by a pressure source
embedded in a half-space. The boundary Γs is represented by a horizontal line, i.e. φs =
y, while the pressure source is a circle, i.e. φp =

√
x2+(y−y0)2−R, with y0 =−3 km

and R = 0.5 km. Using the upwind scheme, oscillations in the solutions occur along
the Γs boundary. This issue is effectively overcome by using the central-upwind scheme
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Figure 10: Example 4.2. The usage of the upwind stencil for both u and v gives
rise to oscillations on the horizontal surface (top), while the introduction of the
central-upwind stencil produces a stable solution (bottom).

Figure 11: Example 4.2. The usage of the upwind stencil for both u and v gives
rise to oscillations on the horizontal profile of the elliptic source of deformation
(left), while the introduction of the central-upwind stencil produces a stable solu-
tion (right).

proposed in Sec. 3.2 (Fig. 10).
Indeed, the upwind scheme fails to produce acceptable results in regions character-

ized by a flat surface. Similar oscillations may also occur along Γp whenever part of the
boundary is almost flat. For example, this occurs when the boundary Γp is replaced by
an ellipse with a higher aspect ratio between the major and the minor axis. We choose
φp = x2/a2+(y−y0)2/b2−1, with y0 =−3 km, a= 0.9 km and b= 0.3 km. As expected,
oscillations in the solutions are produced along the flat part of the Γp boundary if the
upwind scheme is used. The solutions are stabilized simply using the central-upwind
scheme (Fig. 11). No exact analytical solutions are available to verify the accuracy of
these results. However, an approximate solution for a spherical source has been devised



21

||
E
||

2

N
10

1
10

2
10

3
10

-2

10
-1

10
0

10
1

10
2

accuracy order of u:2.32
accuracy order of v:2.13

||
E
||

∞

N
10

1
10

2
10

3
10

-2

10
-1

10
0

10
1

10
2

accuracy order of u:2.19
accuracy order of v:2.25

Figure 12: Example 4.2. Bestfit of the L2 (left) and L∞ (right) errors of u and v for the
spherical pressure source in a half-space domain.

in [49], which estimates the deformation with an error of the order (R/y0)2. The L2 and
L∞ norms of the relative errors (computed as the difference between the analytical and
numerical solutions) for different values of N are plotted in Fig. 12, showing the second
order accuracy.

Now, we perform the test for the spherical pressure source with different values of the
m parameter of the mapping function (3.5) in order to validate the argument of Sec. 3.1
about its choice. In Fig. 13 we plot the numerical solution of the horizontal displacement
U on the bounded domain Ωb along the surface Γb

s computed with m = 0.5, m = 1 and
m=2. We confirm the argument of Sec. 3.1, i.e. with m=0.5 the gradient of the solution
develops a singularity near the boundaries X=−1 and X=1; with m=1 the gradient of
the solution approaches a non zero constant value near the boundaries X=−1 and X=1;
with m=2 the gradient of the solution vanishes as X approaches the edges of the domain.
This suggests that m=1 is a good choice.

4.3 Application to volcano ground deformation

Thanks to the flexibility of the method in dealing with complex geometry, this numerical
approach could efficiently afford the modeling of volcano ground deformation caused
by pressure changes inside a magma chamber, namely a reservoir of molten rock, where
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Figure 13: Example 4.2. Numerical solution of the horizontal displacement U for a
spherical pressure source on the bounded domain Ωb along the ground surface Γb

s
computed with m=0.5, m=1 and m=2.
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Figure 14: Example 4.3. Real profile of
Etna volcano. The color scale refers to
the Young modulus E.

Figure 15: Example 4.3. Comparison
between the numerical results for u
(top) and v (bottom) obtained by the
scheme proposed in this paper (FD)
with N=500 and the FE method.

magma rising from depths accumulates before being erupted. The volume and pressure
state of the magma chamber affect the onset and the size of eruptions and, therefore, it is
important to determine the location and geometry of the chamber beneath an active vol-
cano. The pressurization of the magma chamber, produced by a variety of processes such
as volatile exsolution and magma recharge, engenders deformation in the surrounding
rocks displacing the volcano edifice. The magma chamber pressurization is simulated
as a source of deformation Ωp, in which a pressure change acts along its boundary Γp
giving rise to deformation. Volcano edifices are complex structures, in which the real
topographic profile and medium heterogeneity cannot be disregarded when estimating
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surface displacements. To this aim we build up a simulation where Γs is represented
by the real profile of Etna volcano derived using a digital elevation model from the 90
m Shuttle Radar Topography Mission (SRTM) data (Fig. 14). The level-set function of
Γs is computed in the whole grid as the minimum (signed) distance between each node
of the Cartesian grid and the nodes defining the Etna topography. The boundary Γp of
the deformation source is a rotated ellipse simulating a pressurizing magma source. Its
level-set is defined as:

φp=

(
x̃
a

)2

+

(
ỹ
b

)2

−1, with x̃=(x−x0)cosθ−(y−y0)sinθ, ỹ=(x−x0)sinθ+(y−y0)cosθ,

where x0 = 0 km, y0 =−3 km, θ =π/6, a= 0.8 km and b= 0.5 km. The 2D plane-strain
model of Etna volcano is complemented taking into account the elastic medium proper-
ties derived from seismic tomography (Fig. 14). Particularly, the rigidity modulus was
estimated by using the following equation [28]:

µ=
V2

p ρ

3

where Vp is the seismic P-wave propagation velocity, and ρ is the density of the medium,
which was fixed to a value of 2500 kg/m3. Instead, the value of Poisson ratio was set to
an average value of 0.25 since its variability is limited and does not significantly affect
the results [15]. Since neither exact nor analytical solution is available for this test, the
numerical results are compared with the solutions obtained from the commercial Finite
Element (FE) package COMSOL Multiphysics [12]. The FE computational domain ex-
tends 30×30 km and is discretized non uniformely by a triangular mesh composed of
12677 elements. The mesh is highly refined around the magmatic sources and volcano
topography with a resolution of about 0.09 km and becomes coarser at greater distance
reaching a resolution of about 2 km on the outer most boundaries. The computational
domain is surrounded by mapped infinite elements for modeling the unbounded condi-
tion [12, 50]. Second order Lagrange shape functions are used to warrant a third order
accuracy [50]. In recent papers the FE solutions have already been validated confirming
the goodness of the results [13–15,18]. The numerical results match quite well with the FE
solution, as shown in Fig. 15, where the displacements computed along Γs are reported.
The FE solution is interpolated in the Cartesian grid nodes to compute the relative errors
in the L2 and L∞ norms for different values of N, as shown in Fig. 16.

5 Conclusion

A finite-difference ghost-point method for solving the elasto-static equation around a
pressure source on an arbitrary unbounded domain has been presented. The proposed
strategy adopts the coordinate transformation method to map the original unbounded
problem in a bounded one. The benefit of using the coordinate transformation method
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Figure 16: Example 4.3. Bestfit of the L2 (left) and L∞ (right) errors of u and v.
The errors are obtained as the difference from a FE third order accurate solution.

is twofold since it suitably treats unbounded problems and straightforwardly provides a
non-uniform grid. Different numerical tests have been performed to validate the method
versus analytical and FE results, confirming the second-order accuracy of the solutions.
The methodology presents several advantages over the use of FE grids: (i) it is automat-
ically second order accurate with a very compact stencil, (ii) it requires a simpler data
structure and (iii) the simple Cartesian grid in the computational domain allows for a
very effective geometric multigrid solver. These valuable factors encourage us to extend
the method to three dimensional formulation. The practical application of the method-
ology to volcano ground deformation modeling at Etna shows that the use of the finite-
difference ghost-point method could be a useful alternative for simulating the pressuriza-
tion of magmatic source in the complex structure of a volcanic system and for advancing
the model-based assessments of geodetic observations in volcanic areas. Volcano de-
formation models, simulating magma source pressurization through the solution of the
elasto-static equations, provide the linkage between observed displacement at ground
surface and the unknown deformation source. Based on a nonlinear inverse analysis, the
iterative comparison between the predictions of the deformation model and the observed
displacements gives insight into the geometric configuration of the magmatic source. Us-
ing the proposed methodology, the non-uniform discretization of the unbounded domain
avoids excessive grids far from the source of deformation, yet preserving the versatility
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of a Cartesian grid for the discretization of the elasto-static equations and the bound-
ary conditions while simultaneously accounting for the complex geometry and the inter-
nal structure of the volcano. Finally, the embedding of the finite-difference ghost-point
method in an iterative inverse scheme, based on the shape evolution of the level-set func-
tion, will offer an innovative approach to estimate the nonlinear geometric parameters of
the deformation source, reducing computational time and avoiding meshing difficulties
related to FEM-based inverse methods.
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