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Abstract

Software as a Service (SaaS) has recently emerged as one the most popular service delivery models in
cloud computing. The number of SaaS services and their users is continuously increasing and new SaaS
service providers emerge on a regular basis. As users are exposed to a wide range of SaaS services, they
may soon become more demanding when receiving/consuming such services. Similar to the web and/or
mobile applications, personalization can play a critical role in modern SaaS-based cloud services. This
paper introduces a fully designed, cloud-enabled personalization framework to facilitate the collection
of preferences and the delivery of corresponding SaaS services. The approach we adapt in the design
and development of the proposed framework is to synthesize various models and techniques in a novel
way. The objective is to provide an integrated and structured environment wherein SaaS services can be
provisioned with enhanced personalization quality and performance.

Keywords: cloud computing, SaaS, cloud service, personalization, semantic web, dynamic service
composition, recommendation engine

1. Introduction

Cloud computing has enormous potential in shaping the IT service industry and in providing new
business models and opportunities. A cloud (software) service, made accessible over the Internet, is
the fundamental aspect of cloud computing [1]. Cloud services can be published, integrated as well as
remotely provided to users through the web/Internet [2, 3]. One of the commonly used cloud service
provisioning models is Software as a Service (SaaS). SaaS is hosted and run entirely on cloud servers.
Users are able to access and use such services via browser, irrespective of their location or devices [3].
SaaS is generally provided in a multi-tenant fashion where each user has an independent instance of a
SaaS service. As the number of SaaS grows, so too do the demands of users in terms of personalization
and service quality.

Personalization means adopting a range of service strategies to meet the requirements of di↵erent
individuals. For example, in business applications, a personalized service plays a key role in supporting
enterprise market strategies [4]. Personalization seeks to integrate users’ preferences, which are of di↵er-
ent types and vary by location, time and other environment contexts. To successfully deliver appropriate
personalized content and services, personalization involves gathering the user’s profile information during
the users interaction with the service [5]. The aim of personalization is to improve the user’s experience
of the services.
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A significant trend in cloud services today is to adopt di↵erent services for disparate users’ interests
and needs. Devising an e↵ective service personalization framework is an active research area in the cloud
services domain and the challenge is to find the right content for users’ needs. In most cloud systems,
users need to furnish fine-grained request information during the interaction process to achieve customized
tasks in cloud applications [6]. However, these personalization service providers do not currently o↵er
a convenient and intelligent solution for users. It is therefore vital to design a new framework that:
builds on di↵erent techniques and technologies which are essential for the design and development of
SaaS services; and provides e�ciency and scalability in the provisioning and consumption of SaaS-based
services. For instance, current server-based personalization approaches are tailored in such a way that
the entire processing of personalization services is carried out on the server side, such as user profiles,
preferences, security, privacy checks and so on. But this places heavy burden on the cloud servers. In
order to improve the e�ciency of the personalization systems, some of the tasks can be assigned to the
client side.

In addition, a lack of semantics in the personalization framework often leads to poor knowledge dis-
covery about users’ preferences and the discovery/selection of desired services. Current recommendation
techniques are based on classical information mining techniques in order to carry out recommendation
in personalization systems. However, SaaS-based personalization requires multifaceted recommendation
techniques that recommend accurate services based on users’ preferences. Most traditional personaliza-
tion frameworks focus mainly on o↵ering personalized services based on users’ profiles and historical data.
However, other factors (e.g., knowledge of domain experts) are also useful for enabling the framework to
make more precise recommendation decisions for users [7]. A better capability to deliver personalized
services needs a collaborative recommendation system to be able to o↵er recommendation items, based
on similarities among di↵erent users’ profiles [8]. Further, in a personalization framework, one dedicated
service is rarely able to satisfy all service requests [9]. Enhancing interoperability and collaboration across
a set of cloud services to deliver personalized services is a challenging task. Building composite services
may be a good approach; however, the dynamic composition of atomic services is a complex problem in
service integration [10]. A beneficial framework needs to choose suitable services automatically and to
set up corresponding configurations to o↵er personalized services dynamically.

In this paper, we propose an integrated SaaS-based personalization framework which builds upon
current cloud-based architectures such that it can be deployed across di↵erent cloud platforms. The
objective is to implement e�cient personalized services for users using a SaaS-based platform.

The rest of the article is organized as follows: in Section 2, we present related work on the person-
alization framework. In Section 3, an overall design of the framework is proposed. In Sections 4 - 9,
we explain each area of this framework in detail. In Section 10, we describe the implementation of an
experimental prototype to evaluate the personalization framework. Implementation aside, this paper
will also demonstrate a series of evaluations and comparisons of the prototype, according to a given set
of metrics to provide evidence of how this framework improves e↵ectiveness and e�ciency compared to
existing frameworks. In Section 11, we draw conclusions and identify the plan for future work.

2. Related Works

This section reviews and analyses some of the related work on personalization of cloud services.
Hsueh et al. [11] proposed a cloud-enabled platform in order to facilitate the collection and delivery of
evidence for personalization in a multi-provider ecosystem environment. This platform provides basic
personalization services, smart analytics for active personalization and dynamic provision. This platform
design consists of an infrastructure layer, platform layer and application layer. The application layer
adopts a single SaaS model developed using open APls of the common services from the platform layer.
Though useful this platform does not provide a common integrated design for SaaS.

Guo et al. [12] proposed a framework to support the provisioning of personalized services for indi-
vidual users. The authors split the framework into two parts. On the client side, a user’s profile and
activities are recorded, and a user model is also built up to avoid server overhead. On the server side,
cloud services fetch user preferences from the client side periodically and update data accordingly on a
central cloud storage facility. Similarly, Gopalan et al. [13] proposed a recommendation framework with
two parts. On the client side, a context and content information learner runs on a device client while a
recommendation service is placed on cloud servers. These client-side designs were built successfully, but
most heavy tasks are still handled on the server side, neglecting the capability of the current browser
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client, new front-end technologies and the utilization of semantics. In our previous work [14], we created
an innovative approach to implement semantic client-side personalization for SaaS. While other person-
alization services rely extensively on the server side, this solution leverages Rich Client technologies and
Semantic Web to ameliorate performance and e�ciency. It presents encouraging results in SaaS-based
services. However, due to lack of server side design, it does not o↵er a full framework for personalization
on SaaS.

CPRS [15] is a cloud-based recommendation system for TV platforms. In this system, the client-side
is used to record user habits and receive programs. On the other side, programs in a cluster will be
recommended to users with similar preferences by peer-to-peer connection. CPRS has been used for
generating Cloud-based recommendations. The authors have not used CPRS for the personalization
of Cloud services. Furthermore, this work does not consider the semantics of data while generating
recommendations. In our proposed personalization framework (Figure 1), we enhance the working of the
Recommendation Engine by considering the semantics of data. The semantics-aware recommendation
engine is used for personalization of Cloud services.

The work in [16] presents an approach to generate semantic user profile data for personalization using
various algorithms such as RandomNeighbour, VisitBasedCF, VisitBasedImpact, etc. This approach
provides more useful recommendations. An Edge Service Architecture [17] deploys an edge service to
handle caching preference, leading to query process and decision making. It also o↵ers a personalization
outcome with relative high accuracy. However, these approaches [16, 17] do not account for cloud-oriented
design, context-ware preference, multi-dimensional knowledge, and client-side approach.

BooksHPCLab [18] is a mashup application (from di↵erent sources of the Web), aims to o↵er in-
telligent and scalable personalization services. By introducing semantic rules and taking into account
semantic-based mechanisms, this application enhanced the performance. An revised version of this ap-
plication (BooksHPCLab revised) implements link data in the mashup design and gathers data to map
an OWL ontology. However, this application falls short of rendering personalized Cloud services. Given
that these two approaches are closely related to personalization approaches, we compare the performance
of these approaches with our proposed methods in Section 10.

3. SaaS Personalization Framework

This section describes the proposed framework called “SaaS Personalization Framework”. Figure 1
represents a conceptual diagram of a personalization process. It comprises di↵erent phases, including:
Data collection, Data preparation and transformation, Data preservation, Recommendation, Personal-
ization and service delivery [14]. These phases require di↵erent information sources so as to prepare
personalization of services. The information sources include: (i) User profile: a group of personal data
associated with a specific user, (ii) User preference: a set of user options defined by a user for SaaS
services, (iii) Usage data: a users behavior information on a specific service, (iv) Recommendation rule:
a set of rules to define recommendation logic, and (v) Service directory: a group of candidate services
that could be o↵ered to users.

Data Collection is a process to gather user profile and activities data via various client-side and server-
side methods. As long as raw data has been collected, it will be filtered, processed and transformed by
related components in the Data Preparation and Transformation phase. In the Data Preservation step,
the preference data will be stored in a user data repository in a suitable format. Based on data mining
techniques, a set of recommendation patterns will be generated in the Recommendation phase. These
patterns are critical to the framework’s ability to perform recommendations and generate recommended
preferences. Next, in the Personalization phase, personalization configurations are constructed by per-
forming related computing methods with user preference and recommendation patterns. In the last step,
the final personalized services are supplied to users in the Service Delivery stage.

Based on the conceptual framework, we design the proposed framework. It comprises four fundamen-
tal layers as shown in Figure 2. In the Client Layer, it deploys a semantic client-side approach [14] with
local web storage and semantic web content for SaaS. A Business Model Layer on the main tier is respon-
sible for receiving user data, storing data, processing data, generating patterns, building personalization
configurations and recommending services. In this tier, an Edge Component communicates with client-
side components and synchronizes data between the client side and the server side. An Observer Module
gathers user preferences and environment information and generates concept usage data. By applying
data mining techniques, the task of a Recommendation Engine is to discover recommendation patterns
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Figure 1: Conceptual Diagram of Personalization Process [14]

by investigating user data to predict user personalization. According to the recommendation patterns
o↵ered, a Personalization Engine contributes to the creation of personalization configurations and the
delivery of service content. In the Business Model Layer, a Dynamic Service Composition is responsible
for choosing and configuring the cloud services that will be allotted to users. A Data Access Layer builds
up data entities and performs task manipulation for the data system. A Data Layer contains database
systems and file systems that store data including user profiles, user preferences, user activities, service
directory and ontology. The last tier, Cloud Services, is located in a remote cloud environment which
supplies a group of candidate cloud services. In the following sections we explain each of the components
of the proposed framework in more detail.

4. Extended Semantic Client-side Personalization

We extend a semantic client-side personalization approach [14] by integrating Rich Client and Se-
mantic Web for SaaS-based personalization. To improve the e�ciency in gathering user profile data
and reducing the overhead of server-side computing, parts of the functions and recommendation tasks
are migrated from the back end (server-side) to the front end (client-side). The objective is to exploit
semantic contents in order to enable direct access to user profiles and activities. First, the user model is
established on the browser as a dedicated user source. Second, a mechanism is proposed to provide e�-
cient user data synchronization between the client side and the server side. Third, this approach carries
out fundamental data mining and recommendation tasks which are usually deployed on the server side.
Lastly, parallel programming can also be initiated on the client side using a MapReduce-like mechanism
with Web Workers (CMRW2). With enhanced computing capability, the client-side approach becomes an
irreplaceable part of a complete personalization framework. Overall, the rich client solution dramatically
improves the performance in the proposed framework.

The architectural design (as in Figure 3) of the proposed approach is separated into two parts. On
the client side, web content with semantic elements is presented to users on screens. The semantic web
content can be easily detected and tracked by JavaScript event handlers in collecting user profiles and
behaviors by a Dynamic Profile Collector. User preferences are then stored in a local web storage facility,
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Figure 2: Architecture of Personalization Framework

Figure 3: Architecture of the Semantic Client-side Approach [14]
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Figure 4: Architecture of the Central User Model

the Client-side User Repository. A Client-side SyncProvider connects to the server side and synchronizes
updated user data with the central data system.

On the client side, a Recommendation Module is deployed to process profile data and to generate an
initial client-side recommendation pattern. Five data mining methods: Weighted Web Usage Clustering,
Simple Content-based Filtering, Decision Rule Technique, Association Rule Discovery and Sequential
Pattern Mining, are applied in this module. In this recommendation procedure, a set of recommendation
rules with JSON-LD format are imported into the Recommendation Module to implement the Decision
Rule Technique. A composite client-side recommendation pattern is then submitted to the server side
for further processing.

On the other side, an Edge Component that consists of the Server-side SyncProvider, User Model
Builder and Recommendation Pattern Collector synchronizes the user data and receives initial recom-
mendation patterns from the client-side. All data is passed to other components in the Business Model
Layer in this framework (see Figure 3).

5. The Central User Model

A user model presents a collection of personal profile data and web access behaviors. It is important
for a personalization framework to employ a well-designed user-interpretable user model to achieve
personalization goals [19]. The user model provides the fundamental data for adaptive changes to user
preferences and behaviors. It provides data sources for personalization analysis and manipulation. The
final recommendation decisions of personalization are dependent on the data stored in the user model.

User modeling is a human-computer interaction that performs operations on building a user model
to adapt users behavior more intelligently [20]. To maintain the user model, a key integrated compo-
nent called the Central User Model on the Data Access Layer handles data manipulation for a Profile
Repository and a Multi-dimensional User Knowledge database [21]. It consists of three components -
an Entity Data Provider, an ETL (Extract, Transform and Load) Component and a User Model Noise
Filter. Components on the three layers participate to implement smooth data transfer and establish
an integrated user model. The diagram revealing the whole design architecture for the user model is
presented in Figure 4.

5.1. Profile Observer

In the design of SaaS Personalization Framework, a Profile Observer in the Observer Module, observes
user data for building a user model. The Profile Observer loads, manages and transforms user information
including user profiles, user preferences and usage records. It is responsible for receiving user preference
data from the Edge Component and retrieving the state information and behaviors from the surrounding
environment [22].

Additionally, a Concept Usage Builder in the Profile Observer performs the transformation of raw
usage data from the Usage Log to the Concept Usage Log. An innovative feature in this framework is the
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creation of a Usage Log to record user access logs and a Concept Usage Log for the extraction of usage
patterns [23]. The Concept Usage Log creation process involves two steps: content classification and
log transformation [24]. The content classification process analyzes the semantic usage log and assigns
categories to each usage record. The log transformation is performed to transform the concept usage
data into a semantic format, which is OWL/RDF in this framework.

5.2. Profile Repository

A user profile can be significantly enriched by semantic data. All the information about a user is
expressed and stored in the form of OWL/RDF in this framework. We define a repository, Profile Repos-
itory, as a container for storing profile data, preference data, usage log and concept usage log. A usage
log is a record of a user’s behavior information. A concept usage log is a group of classified and optimized
usage logs. A usage log may contain inconsistencies such as incorrect or missing entries. Thus, the major
di↵erence between them is that a concept usage o↵ers more structured and organized information, avoid-
ing any useless entries. In this repository, all profile information from di↵erent end users can be managed
in a centralized way. This approach enables the creation and management of extensible and expressive
user profiles [25]. By introducing a profile representation structure, the aggregation of profile data from
multiple heterogeneous data sources is optimized [25]. Any additional data field can be imported into
an appropriate triple in this profile repository without changing the structure of data model. Thus, user
profiles can be organized and expressed in a clear way.

An Entity Data Provider placed in the Central User Model is deployed to support data manipulation
and query for the user data. The main rational tasks for this component include add/query/update user
profile and user preference, and add/query usage log and concept usage log.

Additionally, a User Model Noise Filter, situated in the Central User Model, filters statistical noise
from collected user profiles and behavior logs. The noise takes the form of invalid values, useless in-
formation or blank data. This noise is mixed into the user profile and usage data, and it is important
to apply algorithms to clean the data or reduce the noise to an acceptable level. Hsueh et al. [11]
proposed an algorithm to filter statistical noise from collected user profile and behavior logs. Based on
the PWR-wide risk stratification algorithm, and according to concept usage patterns, if one new usage
data demonstrates 100% deviation from the pattern, we define it as a noise. The noise data will not then
be imported into the Profile Repository.

5.3. Multi-dimensional User Knowledge

A Multi-dimensional User Knowledge, an analysis-based data, is designed to describe the charac-
teristics of users and historical usage records. It provides a long-term analysis and prediction for user
personalization. Specifically, Multi-dimensional User Knowledge could be a standard data warehouse to
store all relevant data for all users. An ETL Component is responsible for tracking user logs and pro-
cessing ETL (Extract, Transform and Load) for the Multi-Dimensional User Knowledge. It dramatically
improves long-term recommendations for personalization.

In the user model, the creation and revision of a knowledge base that captures a set of dimensions
which correspond to the di↵erent conceptual characteristics of a user and a personalization action is
proposed [19]. We define five separate dimensions in user modeling: user profile, preference, usage,
concept usage and feedback rating, which assist in performing advanced data mining processes within
the framework.

The Multi-dimensional User Knowledge database is based on a data warehouse, which combines data
from multiple variable sources into one high-e�ciency and easily manipulated database. The Multi-
dimensional Knowledge can also be refreshed automatically. A User Knowledge Agent in the ETL
Component is adopted for tracking the User Repository regularly and then dynamically revising Multi-
dimensional User Knowledge database with a user’s latest behaviors [19]. The responsibility of this agent
includes filtering the user model, grouping user data, maintaining knowledge and performing real-time
ETL for intelligent analysis [26]. The purpose of adopting an agent-based architecture is to render a set
of services that have the capability of maintaining a model of users and o↵ering adaptive services to each
user [19].
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Figure 5: Framework of CDC-based Scheduling Real-time ETL Mechanism

5.4. CDC-based Scheduling Real-time ETL Mechanism (CSR-ETL)

The traditional approach to update data for analysis is to refresh o✏ine the entire data warehouse.
ETL is based on time slicing, in which the ETL process is triggered in a fixed time interval which could
be up to many hours [27]. Recently, real-time data warehousing has become the means to eliminate long
period o✏ine and develop intelligent systems to process continuous real-time ETL [28, 27]. With real time
ETL, data is refreshed in minutes rather than hours [28]. As the expectation of e�cient recommendation
grows, updated user data could be analyzed in real-time, which will dramatically improve e�ciency in
achieving personalization goals [29].

A real-time ETL mechanism needs to be developed for the proposed SaaS-based personalization
framework, given that recommendation tasks must keep working whenever the ETL process is performed
while data volumes are exponentially growing. The key to designing a real-time ETL approach includes
ETL task triggering and scheduling [27]. This real-time solution processes data as quickly as possible
(to meet the constraints of maximum refreshment of data) without imposing additional expense on the
sources. Several approaches to optimize the real-time ETL process by changing triggers and the micro-
batch process exist. Three operations called change data capture (CDC), scheduling, and join operation
play a key role during the entire real-time ETL process, and are especially useful for pre-processing data
and consolidating ETL manipulations. We define this mechanism as a CDC-based Scheduling Real-time
ETL Mechanism (CSR-ETL) (see Figure 5). The ETL Component with the User Knowledge Agent is
adopted to assist the framework to implement this real-time ETL. The key components in this mechanism
are explained as follows:

a. Changed Data Capture (CDC)

Real-time ETL should be triggered according to a minimum batch of records, which is integrated
from multiple data sources. In this design, CDC identifies, captures and delivers data as it is being
inserted, updated, or deleted from the data source [30]. Database triggers, widely supported by most
industrial databases, activate the execution of defined procedures when a table change occurs. Some
database systems also o↵er Database Log APIs for handling table changes programmatically. These
methods make the changed data available for integration processes [30].

b. Scheduling Algorithm

A new scheduling algorithm is proposed to solve the issue of conflicts when new records are imported,
or existing records are refreshed in parallel. Jie, Yubin and Jingang [27] illustrate a flexible scheduling
algorithm that estimates system context and distributes resources with a balancing mechanism.

In a real-time ETL, updates and queries are often performed in concurrency. Thus, a scheduling
algorithm based on context factors should be considered. These context factors could include the
optimized concurrency of the environment, the current primary function being updated or being
queried or both, the incoming speed of queries and updates, and the extraction speed of queries and
updates[27], all of which are ETL related performance factors. This algorithm is located in a Scheduler.

c. Join Operation
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Figure 6: Architecture of the Semantic Data Module

To produce useful information from the raw data retrieved from di↵erent data sources, factual and
dimensional information need to be joined. Tank et al. [31] emphasize that join operations need to be
deployed to combine data from two or more data sources. The dominant sources are primarily from
the data stores in the Profile Repository. Using matching keys in join operations is recognized as a
powerful data processing strategy because it enables rapidly changing data to be organized [31].

6. Ontology-based Semantic Integration

The semantic approach aims to enrich a huge, dynamic and federated web with machine-processable
semantics [32, 33]. To realize personalized services according to users’ needs, we take account of a
semantic approach in the design of the proposed personalization framework due to several reasons.
First, the semantic web provides a way to represent knowledge of information [2]. Second, semantic
techniques are useful for retrieving information from the web, which can be viewed as a huge distributed
database [2]. Third, the semantic approach assists us to generate personalization outcome accomplished
by a set of cloud services.

Semantic integration is a useful tool for performing information integration. It integrates multiple
semantic models and semantic data in one framework and enables information or resources to be located
easily and quickly on the web [2]. It involves systems with the capability to understand the meaning
of each piece of data and its inner relationships which is extremely useful for discovering patterns in
relation to a user’s needs, interest and preferences. For instance, Solomou [18] proposed an intelligent and
scalable personalization service that utilizes linked data to produce metadata-oriented recommendations
for building personalized services.

6.1. Semantic Data Module

A Semantic Data Module is a group of components and data stores with semantics. It receives
OWL/RDF data for user profiles, user preferences, user usage data, concept usage data, service directory
and context-based data. A rule repository is a vital data store which contains all rule data. As explained
in the semantic client-side approach [14], the recommendation rules defined as JSON-LD are applied to
perform rule-based recommendations. On the server side, personalization rules stored as OWL/RDF
information are indispensable for the Personalization Engine. Additionally, a Schema is implemented
to preserve schema information for the data model. The complete architecture diagram is illustrated in
Figure 6.

A Central Service Model is responsible for providing access to manipulate service profiles. In our
personalization framework, it uses a semantic annotation to describe each cloud service for dynamic
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personalized mapping [9]. A cloud service can be described by a semantic annotation of what it does
and how it works. To cope with a user’s personalization patterns, a semantic service annotation must
be applied to seek appropriate services for the user.

Personalization is not only dependent on a user’s profile and activities, it is also dominated by the
surrounding environment of the system, including the user’s status (online or o✏ine), service status
(working or temporarily down) and resource status (available or used up). Based on context-based
theory [5], three sub-contexts are built into this architecture to classify context data for the user model:
U-context (user context), S-context (service context) and R-context (resource context). The role of U-
context in the Central User Modeling System is to keep track of a user’s current status and preferences.
S-context defines the current service status including its execution constraint. R-context is used to
detect the current status of resources. U-context, S-context and R-context collaborate to perform a
context-based personalization as an additional enhancement to the personalization framework.

A Context-based Model in this framework uses a number of policies to manage the integration of
personalization into cloud service composition and provision [5]. Before performing personalized services,
this framework checks the status of services and resources using S-context and R-context, which will be
executed according to certain context restrictions. Only available services and resources can be used as
personalization outputs for users.

6.2. Resource Description with OWL/RDF

According to theW3C recommendation, the Resource Description Framework (RDF) and OWL/XML
are the foundation for processing metadata in the Semantic Web [33]. SPARQL (a recursive acronym
for SPARQL Protocol and RDF Query Language) query is an RDF query language as well as a data
access protocol to manipulate (create/read/delete/update) RDF triples [25, 2]. As an open standard,
OWL/RDF is a universal shared knowledge representation language. There are several advantages to
embracing the Semantic Web using OWL/RDF: first, for achieving semantic interoperability, OWL/RDF
has significant advantages over XML with more independent syntax and better reuse. A semantic unit
is given naturally through object-attribute construction. Second, the information is easy to extend when
new attributes need to be inserted [25]. Third, because OWL/RDF is assembled by triples, it can be
e�ciently implemented and stored. It optimizes the capturing process for explicit and implicit user data
and retrieving profiles for recommendation [32]. Last but not least, OWL/RDF syntax is layered, thus
the encoding operation can be easily processed. A set of well-designed parsing technologies across various
platforms can be easily applied with OWL/RDF. In this design, RDF/XML is the major data format
for Profile Repository, Service Repository, Context Repository, Ontology and Schema.

6.3. Ontology Design

An ontology a↵ords a common knowledge that the system can learn from the personalization domain
[2]. It significantly extends the capability to undertake large-scale machine processing automatically for
recommendation. The whole of the server-side Semantic Data Module is organized and interlinked by the
ontology. The ontology contains the terms and relationships between these data entities which can be
encoded as knowledge for a machine to understand and accumulate personal information on web access
behaviors and habits, as well as the emotional influence of the accessed resources [23]. The ontology-base
semantic solution is useful for o↵ering a better personalization outcome in this framework by relating
recommendation technologies.

In this design, the idea of using an ontology is to build personal knowledge for users. The knowledge
focus on the user is at the center of personalization integration [34]. As a people-centric personalization
approach, this framework identifies relationships and properties among all the resources that surround
people to interconnect them. By continual knowledge expansion, a network of users can be established.
Providing the correct mapping for a given user’s related data from the personalization domain is critical
and helps us to mine useful and connotative user preferences with the ontology-based recommendation
technologies.

An ontology data store identifies the knowledge and relationships for all the terms used in this
personalization framework using OWL data [2]. The Schema maintains all schema and vocabularies
which are rendered as RDF Schema (RDFS) for all semantic resources. Let us take a single user ontology
as an example. A Profile has three properties: Preference, U-Context and R-Context. Usage is the
action performed by a Profile (user). Concept Usage is attached with the Usage in the ontology design.
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Figure 7: Conceptual Diagram of Ontology Design

A Service, which has a property S-Context to describe the current service status, is used by a Profile
(user). A simple overview of the ontology design is illustrated in Figure 7.

6.4. Microdata and JSON-LD for the Client Side

On the client side, the semantic approach plays an important role in information retrieval and repre-
sentation [14]. Given that a fast and simple solution is preferred for implementation, heavy XML-based
formats like OWL or RDF are certainly not suitable for the client side. Microdata as a semantic markup
is used in HTML pages by adding more attributes to describe the details for each HTML element. To
store metadata in local storage, JSON-LD, derived from the JavaScript language, is the best choice for
explaining the definite meaning of each piece of information with minimized header overload. It inherits
dominating features such as being lightweight, providing natural support, having a clear structure and
is easily manipulated.

7. Recommendation Engine, Client-side Recommendation Module and Ontology-based
Data Mining

Recommendation aims to meet the expectation of personalization with recommended patterns based
on user profile, usage log and preference. In order to make recommendations, algorithms are used to
discover an appropriate recommendation set for user access, considering the active user profile in con-
junction with the discovered usage patterns [35]. The recommendation is usually tied to data mining
technologies. Recommendation systems can be broadly categorized into two types: content-based and
collaborative filtering [36]. The best solution is to combine the two methods to generate recommendation
patterns. In the proposed framework, data mining and recommendation technologies are widely allocated
and distributed to two sides. Some simple and direct technologies are implemented in a Recommendation
Module on the client side; while other complicated and social-related technologies are deployed in the
Recommendation Engine on the server side, notably by applying ontology-based mining. The final rec-
ommendation pattern is produced by processing all the recommendation patterns via a Recommendation
Analyzer. In this process, reasonable filtering, merging and analyzing methods have significant e↵ects
on the final recommendation patterns. Figure 8 represents the whole architecture for the server-side
Recommendation Engine.
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Figure 8: Architecture of the Recommendation Engine

7.1. Recommendation Engine

From the server-side perspective, we deployed four ontology-based technologies in the Data Mining
Component to enhance expectation and recommendation capability (see Figure 8). They are all built
on distributed systems which perform complex computing processes with large data sets. An Ontology-
based Semantic Web Usage Mining technology, as the basis of the full recommendation process, aims to
discover insights and patterns in the usage data based on the ontology view, which plays a dominant role
in this Recommendation Engine. Personal usage ontology produced by this algorithm can be used widely
for other recommendation methods. Collaborative Filtering is applied to gather useful information from
user groups with similar characteristics, based on respective visiting patterns. Furthermore, Self-learning
Feedback Filtering is used to examine and optimize recommendation outputs based on user feedback. A
Learning Module (as an auxiliary) is installed to assist with the implementation of this learning algorithm.
Lastly, expert knowledge is also useful for o↵ering constructive recommendations by a Domain Expert
Knowledge with Fuzzy Cognitive Agent. In particular, an Online Analytic Processing (OLAP) Data Cube
technique is applied to capture useful information from a data warehouse to enhance the manipulation
of a large set of big data. These technologies are incorporated to construct a powerful recommendation
solution.

7.2. Ontology-based Semantic Web Usage Data Mining

Mining web usage data for the Semantic Web has recently become an ongoing approach to associate
all web usage logs [23]. Web usage mining aims to discover insights and patterns about the meaning
of web resources and their usage [33]. A Semantic Web Usage Mining approach in this framework
periodically generates patterns for user usage, taking advantage of ontology-based semantic design.

One of the major tasks for web usage mining is to convert the Web Usage Log to a Concept Usage
Log that preserves usage patterns by a Timelist-Based Hierarchical Concept Usage Generation Algorithm
(see Section 7.3). The Personal Web Usage Lattice (PWUL) is generated by an Ontology-based Learning
Algorithm (see Section 7.4) using semantic concept web usage logs as inputs. By collecting and grouping
all PWUL, a Global Web Usage Lattice (GWUL) is established to represent all periodic pattern-based
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Figure 9: Ontology-based Semantic Web Usage Data Mining

web access activities, and the hierarchical relationships between these activities [23]. OLAP with Multi-
dimensional User Knowledge (see Section 7.6) is useful for performing this aggregation process e�ciently.
The GWUL is then used to generate the Global Web Usage Ontology (GWUO) by mapping the global
ontology to access activities and hierarchical relationships using an Ontology Mapping Algorithm (see
Section 7.5). Subsequently, the PWUL maps with the GWUO to produce the Personal Web Usage
Ontology (GWUO), which demonstrates connotative relations for all user-performed activities and is
basic user knowledge that can be applied to promoting further data mining processes. The steps involved
in Ontology-based Semantic Web Usage Data Mining are listed as follows and are illustrated in Figure
9.

1. Transform Usage Log to Concept Usage Log

2. Construct Personal Web Usage Lattice (PWUL) by mapping Concept Usage Log and the Ontology

3. Aggregate all Personal Web Usage Lattice (PWUL) to build a Global Web Usage Lattice (GWUL)

4. Map Global Web Usage Lattice (GWUL) with the ontology to generate a Global Web Usage Ontology
(GWUO)

5. Produce Personal Web Usage Ontology (PWUO) by mapping Personal Web Usage Lattice (PWUL)
and Global Web Usage Ontology (GWUO)

7.3. Timelist-Based Hierarchical Concept Usage Generation Algorithm

To generate the concept usage, fundamental semantic classification algorithms should be first applied.
A generally applicable method to discover the taxonomic of usage classification is Hierarchical Clustering,
which exploits similarities for usage concepts to generate the hierarchy of items [37]. We need to perform
morphological processing in order to extract data from text [37].

Additionally, a set of periodic access activities are discovered by analyzing the Semantic Web usage
log. Mining periodic patterns from time relevant usage data is also an important task, and Progressive
Timelist-Based Verification is a two-phase algorithm to uncover periodic patterns in sequence [38]. The
last step is to map the periodic access activities with the hierarchical clustering tree, using the Ontology
Mapping Algorithm (see Section 7.5). Figure 10 and Algorithm 1 illustrate how to generate Concept
Usage in this framework.
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Algorithm 1 Timelist-Based Hierarchical Concept Usage Generation Algorithm

Require: usage records: TS = {{R1, d1}, {R2, d2}, ..., {Rn, dn}}
. minimum required duration
minimum duration: dm
l = lengthofTS
clusterResult = null
outputList = [l]

. use Hierarchical Clustering
for t 2 TS do

. use term extraction
terms = termExtraction(t)
hierarchicalClustering(terms, clusterResult)

end for
. for each usage record

for i = 1 ! l do
. for each usage item t in one usage record

for t 2 TS[i� 1] do
for j = 1 ! l do . check whether an event contains valid segments

if PeriodicyCheck(t,l,j) && t.d < dm then Append t to outputList
end if

end for
end for

end for
. invoke Ontology Map function

return Map(outputList, clusterResult)
function PeriodicyCheck(t,l,p)

ifV alid = false
. initalize a data structure seq

for i = 1 ! p do
seq[i� 1].LP = �1;
seq[i� 1].SP = �1;

end for
for j = 1 ! l do

pos = j%p
if j � seq[j � 1].LP == p then

seq[j � 1].LP = j
continue

else
seq[j � 1].LP = j
seq[j � 1].SP = j

end if
if seq[j � 1].LP � seq[j � 1].SP >= p then

ifV alid = true
end if

end for
return ifV alid

end function

14



Figure 10: Conceptual Diagram of Timelist-Based Hierarchical Concept Usage Generation Algorithm

Figure 11: Conceptual Diagram of Ontology-based Learning Algorithm

7.4. Ontology-based Learning Algorithm

The Semantic Web relies heavily on the ontology by performing comprehensive and transportable
machine understanding [37]. In the Ontology-based Semantic Web Usage Data Mining process described
above, the mapping function is critical for achieving machine learning to construct the PWUL. Several
ontology-based learning algorithms can be applied for this. In this framework, we implement multi-
strategy learning algorithms to produce results.

The global ontology, as the basic knowledge about the personalization domain, is firstly imported
for this ontology-based learning. In the extraction phase, lexical entries are captured, based on the
Concept Usage Log. In this step, to contract PWUL, we need to preprocess the Concept Usage Log
with data cleaning, user identification, etc. and extract the most relevant information [39]. This process
is carried out by eliminating irrelevant items and assigning duration (d) to each concept usage record
UR = {R1, R2, ..., Rn} to generate transaction sets (TS).

UR = {R1, R2, ..., Rn} ) TS = {{R1, d1}, {R2, d2}, ..., {Rn, dn}} (1)

The third step is to apply association-rule learning algorithm to discover the relations between trans-
action sets [37]. Lastly, we map the relations with the ontology using the Ontology Mapping Algorithm
(see Section 7.5) to produce the PWUL. The whole procedure is illustrated in Figure 11.
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7.5. Ontology Mapping Algorithm

An Ontology Mapping Algorithm is a fundamental function widely used inOntology-based Semantic
Web Usage Data Mining. Since hierarchical taxonomies are common characteristics in ontologies, the
purpose of the mapping algorithm is to find one-to-one correspondence between the taxonomies of two
given ontologies [3]. Given each concept node in one taxonomy, this algorithm is applied to find the most
similar concept (i.e., having the closest meaning) in the other taxonomy. For similarity computing, joint
probability distribution is considered to be a good measure for this approach.

An ontology which provides the knowledge relations and structure for a mapping outcome is mapper
N. Another ontology receives the mapping process called de-mapper D. The solution is to generate a new
ontology R that uses the structure of the ontology N to describe the ontology D. Thus, the form of the
mapping function is:

R = Map(N,D) (2)

The pseudo-code for this algorithm is presented in Algorithm 2.

Algorithm 2 Ontology Mapping Algorithm

Require: ontology N , ontology D and acceptable similarity simm

function Map(N ,D)
for n 2 N do

for d 2 D do
if jointProbabilityDistribution(n, d) > simm then

n.nodes.push(d)
end if

end for
end for
for n 2 N do

if n.nodes.length == 0 then
remove n from N

end if
end for
return N

end function

7.6. Semantic Warehousing with Multi-dimensional User Knowledge

Semantic Web has become a new environment for data warehousing. Since the technologies imple-
mented in the Recommendation Engine are all ontology-based, how to fetch and manipulate semantic
data and ontologies for the Multi-dimensional User Knowledge database is a significant challenge. OLAP
is usually associated with the traditional data warehouse for mining data using multiple taxonomies
[40, 33]. The ontology-based process has now become mature enough to o↵er di↵erent technologies and
tools to generate semantic-related data warehousing. Based on the multi-dimensional feature, a key
step is to import OWL/RDF data into a fact table or a dimension table in a data warehouse. We can
utilize XML data in an existing database system and load all semantic data into the data warehouse.
Significantly, this is critical for generating GWUL, which indicates global patterns for all users in the
Ontology-based Semantic Web Usage Data Mining. Based on semantic warehousing, Nebot and Berlanga
[40] advanced a solution that combines data warehousing and OLAP techniques in the semantic area. It
could be helpful for this framework to use the Semantic Web to implement ontology-based analysis and
recommendation.

7.7. Collaborative Filtering

Collaborative filtering aims to learn user preferences and make personalization recommendations
based on community data [36]. Recommender systems based on collaborative filtering have been the
most popular practice in recent times [33]. This method (see Algorithm 3) is applied to gather user
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groups with similar characteristics from respective visiting patterns [41]. The similarities among di↵erent
users providing a similar service content can be used to make personalization recommendations [4].

The Artificial Intelligence (AI) algorithm adopted for collaborative filtering is called Intelligent
Adaptive-Support Association Rule Mining (IASARM) [8]. The AI techniques in this filtering take
advantage of other users behavioral activities by promoting responsible discovery based on intelligent
measures of the similarities between them [42]. The significant improvement delivered by this algorithm
is that it reduces the running time and achieves good recommendation performance.

Das et al. [36] advanced an e�cient collaborative filtering solution for Google News. A mix of
memory-based and model-based algorithms are proposed to implement the recommendation. Memory-
based algorithms model users and make up ratings predictions for users, based on past news ratings.

To implement collaborative filtering, the cosine similarity of user preferences and recommendation
patterns is typically calculated first. Subsequently, if the cosine similarity between two user profiles and
rating vertexes is su�ciently high, it is determined that patterns with high-level feedback rating can be
used for the current user.

Algorithm 3 Collaborative Filtering

Require: user preference: U = {U1, U2, ..., Un},
. Pn indicate recommendation pattern and fn is feedback rating value
recommendation patterns: P = {{P1, f1}, {P2, f2}, ..., {Pn, fn}}
current user preference: Uc

current recommendation pattern: Pc

minimum acceptable cosine similarity for user preference:minSim
minimum acceptable weighted similarity:ws

. for each user preference
for UP 2 U do

. for each user preference, calculate cosine similarity
preferenceSim = cosineSimilarity(Uc, UP.Ui)
if preferenceSim > minSim then

. for each recommendation pattern, calculate cosine similarity
for RP 2 P do

patternSim = cosineSimilarity(Pc, RP.Pi)
. when cosine similarity by feedback score larger than minimum acceptable weighted similarity

if patternSim⇥RP.fi > ws then
MergePattern(Pc, RP.Pi)

end if
end for

end if
end for

7.8. Self-learning Feedback Filtering
To improve recommendation results, analyzing user feedback and rating a set of provided recommen-

dations is a feasible and novel approach [16] as it allows a whole system to gain the self-learning ability.
Most personalization systems represent user feedback as an n-dimensional vector of ratings of each item
[16]. The feedback given by users can further optimize corresponding patterns. The Self-learning Feed-
back Filter is responsible for analyzing feedback and updating patterns.

Usually, feedback is scaled into scores. For this framework, we need to collect explicit feedback and
implicit feedback. If the user has already made a rating on a recommendation output, the feedback is
the rating result. If the user does not provide a rating, we generate a feedback score according to the
usage log. In the data system, a matrix is stored with pair-value sets for recommendation pattern and
feedback rating.

7.9. Domain Experts Knowledge with Fuzzy Cognitive Agent
Most traditional personalization recommendation systems mainly focus on what an application can

extract and recommend general preferences based on a user’s historical data [7]. However, this does
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Figure 12: Architecture of the Client-side Recommendation Module

not ensure that there are su�cient recommendations. This system may also rely upon domain experts
knowledge which extends the capability of decision making for personalization. Thus, in this framework,
a fuzzy cognitive agent is desirable to overcome the impersonal nature of the integrated recommendation
system and treat each user individually [7].

The fuzzy cognitive agent is designed to represent personalization knowledge via extended fuzzy cog-
nitive maps. This agent provides recommendation patterns by analyzing a user’s current personalization
preferences, other user’s common preferences and expert knowledge using specific fuzzy cognitive algo-
rithms [7]. The fuzzy cognitive maps learn a user’s usage ontology from the most recent cases of other
users to help the system to determine the recommendation patterns.

The algorithm model comprises two types of objects: concept and weight. A concept means a
node in a personalization map. These concepts are connected by weights, which indicate the e↵ects
in relationships between the concepts [7]. This model can build on the PWUO. The directed graph of
the model is based on the Fuzzy Cognitive Maps (FCM) theory, which involves case-based reasoning,
self-organization map and neural network learning.

7.10. Client-side Recommendation Module

To take full advantage of modern web browsers, the Client-side Recommendation Module (see Figure
12) performs local recommendation tasks and generates an initial recommendation pattern by Content-
based Filtering, Association Rule Discovery, Sequence Pattern Mining and Decision Rule Technique [14].
It is responsible for discovering an appropriate recommendation set with related algorithms and tech-
nologies on the client side. First, the Content-based Filtering filters frequent usage items from the usage
log. Next, the Association Rule Discovery finds relationships/connections between resources accessed
by users. Then, Sequential Pattern Mining processes sequential user data to predict the prospective
personalization services. Last, the Decision Rule Technique provides a methodology to perform recom-
mendations by adopting a rule-based repository. All four technologies collaborate sequentially to build
up a client-side recommendation pattern.

8. Personalization Engine

Since the context of users changes frequently, this framework needs to adapt to provide users with
value-added services [43]. A Personalization Engine is one major component capable of creating a
unique personalized configuration for each user by tailoring cloud services for users. The procedure
comprises the following six steps. First, the Personalization Engine retrieves the user profile information
and preferences, loads the personalization rules and accepts the recommendation patterns. Second,
according to the personalization rules, the system initializes a personalization configuration. Third,
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Figure 13: Architecture of the Personalization Engine

with regard to the analysis of the user’s profile and preferences, customization fields are incorporated
in the configuration, thus constructing the initial personalization configuration. Fourth, taking the
recommendation patterns into consideration, defined functions are used to map the current configuration
and calculate the weight of each personalization field. A logic adaption is applied in this process,
after which the personalization configuration is finalized. A Configuration Generator is responsible for
constructing the personalization configuration and submitting it to the Dynamic Service Composition for
selecting services and generating service configurations. Once raw personalized service data are accepted
in step five, a Service Delivery Agent will decorate the raw service data received from the cloud service
and deliver the user-friendly personalized service content to users in step six. The delivery process
is performed automatically and independently. Figure 13 gives an overview of the architecture of the
Personalization Engine.

8.1. Personalization Configuration

Personalization configuration assists in generating personalized cloud services automatically and dy-
namically for users, using the Dynamic Service Composition component. In this framework, the per-
sonalization rules contain a configuration template. A personalization configurations is built upon the
template. The configuration consists of the settings of all relevant personalization fields that can be
used to generate service parameters. It is a vital source for performing service customization adaption.
OWL/RDF semantic data is suitable for rendering the configuration.

8.2. Service Delivery Agent

This agent deals with delivering formatted personalized service content to users. To adjust a pre-
sentation to meet user requirements and device possibilities, a service delivery agent is deployed in this
framework. This agent is composed of two parts: the Content Component and the Presentation Com-
ponent. The Content Component is used to adjust data content to fulfill personalization requests. The
role of the Presentation Component is to demonstrate a satisfactory presentation format for delivering
content [44].

The major technology in the Presentation Component is based on Extensible Stylesheet Language
Transformations Language (XSL-T). This specialized transformer uses XSL templates to transform XML
content from the Content Component to a suitable output by using di↵erent channel types such as HTML
page, JSON data or other media for users [44]. Since a user may use multiple devices for service person-
alization, a Template Adaptor is used to switch di↵erent templates for the di↵erent devices connected.
In this design, a Template Container is responsible for storing and managing XSL templates as output
patterns for performing XML/XSL transformations [44]. Usually, the service content is transferred by a
service-oriented approach or technology to the browsers [43].

19



Figure 14: Architecture of the Dynamic Service Composition

9. Dynamic Service Composition

The dynamic composition of atomic cloud services in generating a composite service and selecting
cloud services with regard to user preference are two major problems in creating personalized service
output [10]. Building composite web services can significantly enhance interoperability and collaboration
among users [9], and the seamless composition of web services for this framework has enormous potential
for streamlining personalization processes and the integration of the Semantic Web, data mining and
cloud services [9].

In setting up a personalization framework, the dynamic and personalized composition of cloud services
is a critical element of the architecture design. The composition of cloud services refers to those services
that can be customized automatically to meet the needs and preferences of individual users [9]. As
stated by Kumanayaka and Ranasinghe, a plug-play service composition scheme can significantly reduce
the e↵ort involved in service provisioning for interactive, flexible and collaborative personalized cloud
services. It is desirable to seek a combination of existing composite services to fulfill the request of a user’s
personalization configurations which adopt fields from recommendation patterns and user preferences [9].
The component used to handle mapping personalization configurations with semantic service annotation
is called Dynamic Service Composition (see Figure 14).

In the Dynamic Service Composition component, the Service Selection Component is used to choose
appropriate cloud services according to personalization configurations. An Automatic Configuration
Component is applied to generate the configuration for each recommended service. The request for
personalized services will later be submitted to cloud services with selected services and related cus-
tomized configurations. The raw service data received from the cloud service will be transferred to the
Personalization Engine for delivery. Finally, personalized services will be supplied to the user by the
Personalization Engine.

9.1. Service Directory and Service Update Agent

SaaS-based personalization services dynamically select and compose user-specific services from the
pre-structured service templates o↵ered by multiple providers [11]. The service template in this design is
called the Service Directory, where a set of service profiles are stored in RDF/XML format. In the service
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directory, a service profile repository is implemented to advertise and discover services in a rich semantic
way. The service profile describes the incorporated functionalities of the service by public interface [10].

In this design, a Service Update Agent dynamically and automatically imports and updates service
metadata from service providers into the service directory, stored as RDF data. The Service Update
Agent automatically obtains the updated service profile through the registration interface for each cloud
service. Sending new profile data to the service directory and updating this data is its main task. This
agent may also need to resolve ambulation issues from the service directory [26].

9.2. Steps of Automatic Service Provision

Automatic service provision involves four steps. The first step is to determine whether a person-
alization configuration can be satisfied. In this step, a personalization configuration may need to be
decomposed into preferred sub-goals that can be solved by a set of cloud services [45]. The second step
is to filter services from a selected service set. When two services can perform the same task, this com-
ponent needs to determine which service will be a better choice according to other typical parameters,
such as execution cost or load time [45]. The Service Selection Component also needs to measure the
quality of service by averaging the di↵erence between what a service does and what it advertises [10].
In the third step, the primary task is to set up a service configuration that is automatically processed
by an Automatic Configuration Component. The last step is to claim a group of services as the best
personalized services available to users.

9.3. Automatic Configuration Component

The Automatic Configuration Component consists of the defining service parameters from the service
directory and confirming the constraint rules by comparing the requests and constraint requirements of
the selected services in a Constraint Module [46]. To provide a mechanism to satisfy the personalized
service requirements automatically, Sam, Boucelma and Hacid [46] adapt a paradigm for web services
which enables service providers to avoid the weighty task of building a configuration for each user. The
role of this Automatic Configuration Component is to automatically transform services published in a
service directory in order to generate suitable configurations to fulfil client’s needs [46].

The automatic configuration component is made up of two modules: a structural module and a
constraint module [46]. The structural module is defined by the service directory and recommended
patterns. The constraint module is used to measure the constraints of input/output and domain. The
S-context information stored in the Context Repository is invoked to set up the constraint. Service
providers publish only one explicit configuration for a given service; the others are dynamically and
automatically inferred from the service directory [46]. The structural module and constraint module
work together to build each personalized configuration for specified services.

10. Prototype Implementation and Evaluation

In this section, we present a prototype of SaaS Personalization Framework. Based on the basic
prototype developed in [14], we implemented a complete prototype application “Personalized Music”,
to evaluate this framework. This prototype gathers user preferences and recommends music feeds to
users based on each user’s profile and activities. This is a simple case study, but it is appropriate
for evaluating the SaaS Personalization Framework. The implementation works on the Amazon EC2
platform and includes a main web application and a set of cloud-based services.

The scenario can be described as follows. When a user visits this cloud-based web application, the
system starts to collect the user’s information as a profile. The user identifies their level of interest in
music; the higher the level they define, the more possibilities will show on a page. Finally, the prototype
produces a set of personalized music lists generated from the cloud services.

10.1. Data Sets and Test Process

We used Last.fm Dataset 1K users [47] as sample data to evaluate the proposed framework. One
dataset with access entries of the eight-month period from 1 May 2008 to 31 December 2008 is chosen
as training set, which is used to generate recommendation patterns. The remaining group from 1 Jan-
uary 2009 to 4 May 2009 are the test set to evaluate recommendation results by comparing them with
individual profiles and usage activities.For validation of our proposed framework, we made use of the
following data set:
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• 5 User profiles are collected from Last.fm User Dataset.

• 5 User preferences are extracted from Last.fm User Dataset.

• Totally 33,830 usage data are collected and tested from Last.fm Dataset.

• Recommendation rules are identified.

• Service directory is a RDF document to identify personalization services which o↵er personalized
music lists.

The test process for the evaluation was as follows:

i. Five users were selected and their preferences and usage data were extracted

ii. The training sets were extracted from the usage dataset and the user profiles were extracted from
the profile dataset. These were then imported into the Multi-dimensional User Knowledge database

iii. The recommendation patterns were generated

iv. An evaluation candidate was extracted from the usage dataset and it was stored in the central
repository

v. The prototype was executed and the test results were recorded along the identified benchmarks/evaluation
metrics

The amount of data items used in this evaluation is shown as follows:

Table 1: Experiment Data

User# #Training Set #Test Set

user 000001 5774 4127
user 000002 8109 2877
user 000003 4304 1018
user 000004 4725 1053
user 000005 1475 368

In our test, we generated recommended songs for each user according to their profile and activities. If
one recommended song that has been played by the user in the next 4 months (can find in our test set),
we set this recommendation result to be “correct”. By means of the evaluation, the statistical records
determine how this personalization framework performs in a SaaS environment.

10.2. Performance Measurement

To evaluate the performance of this framework, we conducted various performance measurement
experiment and compared this framework with an original mash-up application (BooksHPCLab), a new
implementation (BooksHPCLab revised) [18] and a client-side approach [14]. We use two metrics, Load
Time and Reasoning Time, to evaluate the performance of the proposed framework. Load Time identifies
how long it takes for the prototype to capture user data and Reasoning Time measures how long it takes
the system to generate rule-based personalized recommendations.

Table 2 and Figure 15 illustrate the comparison results between the four approaches for performance
measurement. The SaaS Personalization Framework presents relatively low in load time and reasoning
time. Over the two semantic recommendation applications, BooksHPCLab and BooksHPCLab revised,
the SaaS Personalization Framework achieved better semantic integration. Comparing with BooksHP-
CLab and BooksHPCLab revised, the average load time is reduced by 44.8% and 20.4%; and the average
reasoning time is reduced by 89.4% and 23.2%. The dramatic improvement in time cost highlights perfor-
mance evolution. The SaaS Personalization Framework can o↵er better recommendation outcomes with
a strong capability to process a high volume of dataset, incurring relative less load time and reasoning
time.
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Table 2: Performance Comparison

Approach Average Load time (millisecond) Average Reasoning Time (millisecond)

BOOKS@HPCLAB 138.5 79.75
BOOKS@HPCLAB REVISED 96 11
SaaS Personalization Framework 76.45 8.45

Figure 15: Performance Comparision

10.3. Recommendation Metrics

A set of parameters are used to identify recommendation performance [16].

• Mean absolute error (MAE). The average absolute error is a common accuracy measurement in
recommendation systems. It compares forecasts with actual outcomes. We calculate the MAE as:

MAE =

Pmr

i=1

P
xj2Ri\Hi abs(ri(xj)� pi(xj))Smr

i=1 Ri capHi
(3)

• Pearson’s correlation coe�cient, r. Rather than measuring the error in prediction, this metric
provides a measure of the linear correlation degree between the predicted ratings and actual ratings.
The higher the value, the better recommendation match. This metric is calculated as follows:

MR =

Pmr

i=0

P
xj2Ri\Hi(ri(xj)� p̄)

qPmr

i=0

P
xj2Ri\Hi(ri(xj)� r̄)2

qPmr

i=0

P
xj2Ri\Hi(pi(xj)� p̄)2

(4)

• Mean rank (MR). This metric algorithm generates a group of recommendations which is ranked
on the basis of forecasting rating. The higher the MR value, the better the recommendation set.
MR is calculated as follows:

MR =

Pmt

i=1

P
xj2Ri\Hi(100� ranki(xj))

mt
(5)

• Precision (P), recall (R) and F1. To use these measurements, we categorized items into those
“liked” and “disliked” by the user. Hence, when an item has been marked as “liked”, true positives
(TPs) will be defined. These three metrics are calculated as follows:

P =
TP

TP + FP 0 (6)

R =
TP

TP + FN 0 (7)
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Figure 16: Comparison of Recommendation Metrics

F1 =
2PR

P +R
(8)

RandomNeighbour, VisitBasedCF and VisitBasedImpact are three major algorithms highlighted in
a personalization solution [16]. They all provide a novel approach to generate user profiles. The test
results (Table 3 and Figure 16) demonstrates that the recommendation metrics of our prototype pro-
vided significant benefits from SaaS Personalization Framework compared to the RandomNeighbour, the
VisitBasedCF, the VisitBasedImpact and the client-side approach. It is clear that, by introducing the
semantic model and multi-dimensional user knowledge, the SaaS Personalization Framework generates
more precise recommendation patterns and improves the personalization performance.

Table 3: Comparison of Recommendation Metrics

Approach/Framework MAE r MR P R F1

RandomNeighbour 1.24 0.098 83.87 0.845 0.036 0.07
VisitBasedCF 0.9 0.66 125.75 0.87 0.079 0.145

VisitBasedImpact 0.85 0.631 36.37 0.882 0.101 0.181
Client-side Approach 0.88 0.52 128.45 0.85 0.085 0.154

SaaS Personalization Framework 1.12 0.81 136.5 0.92 0.098 0.177

10.4. Relative Entropy Measure

Relative entropy measure is another metric for personalization evaluation. It identifies the perfor-
mance of a user model with implicit ontologies and explicit ontologies [17]. For measuring performance,
given a learned usage pattern, the relative entropy measure defines the extent of the recommendation
error is based on a user’s profile. The lower the value of relative entropy, the more e↵ective the algorithm
applied to usage mining. This is calculated by applying the following relation recursively.

D0(r) = D(r) +
X

8k
p(k|r)D0(k) (9)

where r is a common node of the two ontologies, k is an immediate child node of r, D is the entropy of
the current node, D0 is the relative entropy of the current node, and p(k|r) is calculated by the following
equation.

p(k|r) = WkP
Wi

(10)
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Figure 17: Comparison of Average Relative Entropy

where Wk is the score associated with the child node, Wi is the score with one child node in the
common node.

From Table 4 and Figure 17, the average relative entropy in this prototype is 1.76 which illustrates
a dramatic improvement in the design of the user model. Totally Randomized Ontologies is a method
to generate personalized content with random algorithm, presenting ine↵ective performance. The Edge
Service approach is adopted to use an additional module to handle a caching and learning algorithm to
optimize recommendations. Compared to other approaches, including edge service architecture, random-
ized ontologies and the client-side approach, SaaS Personalization Framework provides a better solution
for building a user’s preference. It is apparent that multiple techniques in this solution boost recommen-
dation performance. Furthermore, a precise user profile is the cornerstone for accurate personalization
services. This test result manifests that an integrated framework could deliver incredible potential.

Table 4: Comparison of Client-side Profile Utility

Approach Average relative entropy

Edge Service Architecture 2.25
Totally Randomized Ontologies 3.22
SaaS Personalization Framework 1.76

11. Conclusion and Future Works

In this paper, we proposed a complete personalization framework for SaaS-based cloud services. The
increasing need for personalization for users has inspired our approach to create an e↵ective, e�cient, flex-
ible and integrated personalization framework. The construction of this framework is based on a number
of prior research outcomes, including client-side personalization, semantic approach with ontology-based
semantic integration, central user modeling, data mining technologies and recommendation engine, and
dynamic cloud service composition.

Multiple systems have a range of di↵erent requirements, yet require a framework that will support
personalized services. It is therefore not possible to build one solution for all systems. This framework
does not provide a strict design; rather, it o↵ers a complete, guided and flexible solution for service
personalization. The solution can be adapted from di↵erent fields in di↵erent SaaS projects.

Our future work aims (i) to consider more optimized and flexible solutions, (ii) develop a personal-
ization standard with multiple-level solutions for a personalization framework, (iii) adaptation of this
framework for IaaS, and (iv) investigating the security issues of the framework.
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