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Abstract 

The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of 

phototransductive membrane disks.  The disk membranes are continually renewed, but how 

new disks are formed remains poorly understood.  Here, we used electron microscope 

tomography to obtain 3-D visualization of the nascent disks of rod photoreceptors in three 

mammalian species, in order to gain insight into the process of disk morphogenesis.  We 

observed that nascent disks are invariably continuous with the ciliary plasma membrane, 

although, due to partial enclosure, they can appear to be internal in 2-D profiles.  

Tomographic analyses of the basal-most region of the outer segment show changes in 

shape of the ciliary plasma membrane indicating an invagination, which is likely a first step 

in disk formation.  The invagination flattens to create the proximal surface of an evaginating 

lamella, as well as membrane protrusions that extend between adjacent lamellae, thus 

initiating a disk rim.  Immediately distal to this initiation site, lamellae of increasing diameter 

were evident, indicating growth outward from the cilium.  In agreement with a previous 

model, our data indicate that mature disks are formed once lamellae reach full diameter, and 

the growth of a rim encloses the space between adjacent surfaces of two lamellae.  The 

present study provides 3-D data of nascent and mature rod photoreceptor disk membranes 

at unprecedented z-axis depth and resolution, and provides a basis for addressing 

fundamental questions that range from protein sorting in the photoreceptor cilium to 

photoreceptor electrophysiology. 
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Significance 

A vertebrate photoreceptor cell depends upon the elaboration of its cilium to generate its 

light-sensitive organelle, the outer segment (OS), which is made up of a stack of membrane 

disks, containing the visual receptor, opsin.  How this elaboration occurs has been the 

subject of recent controversy.  Here, we have used electron microscope tomography to 

obtain a 3-D analysis of the membrane organization at the base of the OS, where new 

membrane disks are continually made to replace the older ones.  We show that the nascent 

disk membrane is continuous with the ciliary plasma membrane, and appears to form by a 

complex reshaping of this membrane, involving an invagination, followed by outward growth, 

and, finally, the completion of a disk rim. 
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Introduction 

\body 

Primary cilia detect extracellular signals via membrane receptors or channels.  The most 

elaborate of all cilia, the cilium that forms the vertebrate photoreceptor outer segment (OS), 

includes a large stack of membrane disks that extends distally from the transition zone, also 

known as the connecting cilium (1).  The OS disks contain the visual receptor, opsin, and 

their tight packing allows for a high concentration of opsin within a confined space, thus 

limiting the trade-off between visual sensitivity and spatial resolution.  Turnover of OS disk 

membranes occurs throughout the lifetime of an animal (2), and requires the de novo 

synthesis and degradation of large amounts of OS proteins; on average, 9-10 billion opsin 

molecules are turned over every second in each human retina (3).   

 A key event in OS disk turnover is the formation of disk membranes from newly 

synthesized molecules that are trafficked as vesicles from the ER/Golgi in the inner segment 

to the cilium (4, 5).  Disk membrane morphogenesis is essential for the survival of 

photoreceptor cells.  Orthologs of gene mutations that disrupt disk formation in mice have 

been linked to a variety of retinal degenerations in humans.  For examples, in the rds mouse 

(mutant in Prph2), disks do not develop from the end of the connecting cilium (6, 7), and in 

mice whose photoreceptors express mutant human PROML1, the disks that do form are 

disorganized (8).  PRPH2 and PROM1 genes have been linked to different forms of retinitis 

pigmentosa, macular dystrophy, and cone-rod dystrophy 

(https://sph.uth.edu/retnet/disease.htm). 

 Disk membrane morphogenesis clearly involves extensive membrane growth and 

shaping, however the process by which these events occur remains largely unresolved.  

Although there is agreement that mature rod OS disks appear discrete and enclosed entirely 

by the plasma membrane, models differ fundamentally according to whether the nascent 

disks form from the ciliary plasma membrane or from the expansion of endosomal 
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membrane.  Differences stem from interpretation of whether the nascent disks are open to 

the extracellular space (9, 10), or closed from it, like the mature disks (11).  Whether the 

nascent disks are open or closed also has important implications for understanding 

questions of photoreceptor cell biology and electrophysiology, such as how membrane 

proteins are sorted into the subdomains of the OS (12) and the origin of the early receptor 

potential (13). 

 There are several possible reasons for the different interpretations of whether 

nascent rod disks are open or closed, including differences in method of tissue preservation, 

species differences, and perhaps differences in the time of day when the retinas were fixed.  

In an attempt to resolve the discrepancy, we have addressed these variables in the present 

study.  Importantly, we have also addressed a limitation of the previous studies, the reliance 

on 2-D conventional TEM, by using TEM tomography (ET) to generate the first substantial 

high-resolution 3-D reconstruction of the nascent disks of single rod photoreceptor cells.  

Our 3-D analysis illustrates that nascent disks consistently possess continuities with the 

ciliary plasma membrane, thus supporting a model in which their morphogenesis occurs by 

amplification of this membrane.  However, our analysis also demonstrates a previously 

unappreciated feature of nascent disk organization, and provides novel insight into the first 

stages of disk morphogenesis.   
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Results 

Preservation of disk membranes 

Mouse photoreceptor OSs are notoriously difficult to preserve well for TEM, perhaps due in 

part to their very high packing density, which, for most of the retina, is 3-4 times greater than 

the photoreceptor density in the human macula (14), and may impede the penetration of 

fixative.  Nascent disk membranes may be especially labile, given their transient state, so 

that variations in the quality of preservation may be responsible for differing reports on 

whether the nascent disks in mouse rods are open (15) or closed (16, 17). 

 Cardiac perfusion with Karnovsky’s fixative resulted in OS disk membranes that were 

well organized (Fig. 1A) – significantly better than when an opened eyecup was simply 

immersed in the same fixative.  Mitochondria (a sensitive indicator of fixation quality) were 

also well-preserved in the apical inner segment.  In addition, we tested the use of high-

pressure freezing, followed by freeze substitution (HPF-FS).  However, because the retina is 

not immediately accessible, HPF-FS could only be performed following dissection of the eye 

and preparation of small retinal pieces.  To avoid artifacts that might occur during dissection, 

we preceded it with a brief period of cardiac perfusion with Karnovsky’s fixative.  Previous 

reports have shown that aldehyde fixation prior to HPF-FS provides results similar to the 

preservation by HPF-FS alone (18).  This approach generated well-preserved photoreceptor 

ultrastructure, with disk membranes that presented linear, parallel profiles (Fig. 1B).     

 Fixation by cardiac perfusion of larger mammals resulted in high-quality preservation 

of OS disks and the photoreceptor mitochondria (Fig. 1C-E).  Notably, we were able to 

observe basal nascent disks that were continuous with the plasma membrane, regardless of 

species (arrows in Fig. 1A-D).    

 

ET of nascent disk membranes 
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ET was performed on 300-nm sections.  A video of a tomogram of the basal OS of a mouse 

rod, preserved by HPF-FS, and a 3-D model from this tomogram are shown in Suppl. 1 and 

2.  In some cases, to increase z-axis depth so that it included most of the rod OS diameter, 

tomograms from serial 300-nm sections were joined along the z-axis.  From the resulting 

large tomogram, we observed some z-plane images of rod OSs from mouse, cat and 

monkey retinas, in which the basal disks appeared closed (e.g. Fig. 2A, E).  Invariably, 

however, these basal disks were observed to be continuous with the plasma membrane in 

other z-planes; that is, the disks possessed an opening to the extracellular space.  This is 

demonstrated in Fig. 2A-C, showing four basal-most “disks” of a monkey rod in different z-

planes. In the z-plane illustrated in Fig. 2A, the red arrow indicates the four appearing as 

isolated internal structures, however, note that indentations of the plasma membrane occurs 

opposite each of these.  In the plane shown in Fig. 2B, both the internal “disks” and the 

indentations of the plasma membrane have grown longer (blue arrow), and in the z-plane 

shown in Fig. 2C, they are joined, so that the “disks” are continuous with the plasma 

membrane, showing that they are actually lamellae (yellow arrow).  Suppl. 3 contains a 

video of four consecutive tomograms of these disks.  A 3-D model obtained from 

segmentation is shown in Fig 2D.   

 In another example, images from three z-planes of a cat rod photoreceptor are 

shown in Figs. 2E-G. Three nascent disks are shown, one of which appears as little more 

than an elongated vesicle (red arrow).  However, following this “vesicle” through different z-

planes of the tomogram (also Suppl. 4), reveals that it is continuous with the plasma 

membrane (yellow arrow, Fig. 2G).  The resulting model from segmentation of the tomogram 

illustrates the 3-D structure of this membrane structure and its connection to the plasma 

membrane; it represents a slightly flattened tubule that may have resulted from an 

invagination of the plasma membrane (arrows in Fig. 2H). 
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Nascent disk initiation 

Analyses of the basal-most folding of the plasma membrane in tomograms from cat, mouse, 

and monkey rod OSs show a variety of structures similar to that illustrated in Fig. 2H.  An 

example is shown from a tomogram of a monkey rod (Fig. 3A-C).  The model created by 

segmentation of that tomogram (Fig. 3D-E, Suppl. 5) shows one of these structures that 

appears bi-lobed (arrows, Fig. 3D).  Since these are always the basal-most structure 

associated with disk formation, they invariably occur in a thickened area of the connecting 

cilium, and they can manifest various degrees of lateral expansion from their most inner 

region.   

 These observations suggest that disk morphogenesis may be initiated by an 

invagination of the plasma membrane that helps shape a membrane lamella, and 

contributes to the initiation of disk rim formation as the invagination expands laterally.  Distal 

to this initiation structure, the membrane appears as a series of lamellae, with the more 

distal lamellae extending further outward (e.g. Fig. 3A), indicating the presence of outward 

growth, or an evagination process (which can be rather uneven, as illustrated in Fig 2A-D).   

 
 

Closure of the nascent disks (lamellae) by rim completion 

Steinberg et al. (10) proposed that the basal lamellae become internalized as the disk rim is 

completed around the space between two adjacent lamellae.  Analyses of our tomograms 

support this view, as illustrated in the example of selected z-planes and 3-D modeling of a 

tomogram of a mouse rod, as shown in Fig. 3F-J and Suppl. 6.  In Fig. 3F, the 12 basal-

most “disks” appear more dilated than the mature distal disks, a characteristic described 

previously for the basal lamellae in frog rod photoreceptors (19).  In this z-plane, the three 

“disks” above the red arrow appear to be enclosed by the plasma membrane, but still show 

the dilated morphology, while the other 9 “disks” (red arrow and below) appear open.  In a 

different z-plane, the fourth most distal “disk” appears enclosed (yellow arrow, Fig. 3H).  In a 
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z-plane intermediate to those shown in Figs. 3F and 3H, the tip of this fourth “disk” appears 

to be in contact with the enveloping plasma membrane (blue arrow, Fig. 3G).   In a 3-D 

model created from segmentation of this tomogram (Fig. 3I), the point of contact can be 

seen as a transition zone between an area that is open (above the lamella indicated by the 

red arrow, and to the left of the blue arrow) and an area that is enclosed by the plasma 

membrane (to the right of the blue arrow).  The blue arrow indicates what appears to be the 

leading edge of a disk rim forming from right to left. The dilated appearance of disks 

enclosed in a single z-plane by the plasma membrane suggests that these are indeed not 

mature disks but represent lamellar outgrowths that are transitioning into mature disks, i.e. 

the process of rim formation and plasma membrane growth is incomplete leaving a small 

opening to the extracellular space.  

 

Calycal process of mouse rod photoreceptor  

Calycal processes arising from the inner segment and surrounding the base of the OS are a 

generally accepted feature of photoreceptors in most vertebrates, although recently it was 

claimed that they are absent in mouse (20).  Tomographic data from the base of mouse rod 

OSs revealed that they indeed possess a single, tongue-like calycal process, opposite the 

connecting cilium.  This process is evident as an extension from the inner segment to the 

right of the nascent and more distal disks in the single z-planes shown in Fig. 3F-H, and in 

the 3-D visualizations of segmented tomograms (Fig. 3I, J; Suppl. 7).   

 

Nascent disks on a daily cycle 

The rate of addition of new disks to frog rod OSs varied greatly according to a daily cycle, 

with the number of open discs increasing three-fold during the first 8 h of light in comparison 

to the dark portion of the L/D cycle (21).  Such cyclic variation may also help explain the 

controversy surrounding open and closed nascent disks in mammals. Thus, we recorded the 
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number of basal lamellae (open nascent disks) in monkey and mouse rods at different times 

of day.   While lamellae were evident at all times sampled in both species, the number 

increased during the first part of the light period in monkey, similar to that reported for frog 

rods (21), but decreased during the same period in mouse rods (Fig. 4), suggesting a 

possible relationship between the diurnal and nocturnal habits of monkey and mouse, 

respectively.  
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Discussion 

By ET of rod photoreceptor nascent disks from different species and using various fixation 

techniques, we have been able to address issues of disk membrane formation in a way not 

approached in earlier studies.  The tomographic data not only allowed us to create very 

high-resolution z-axis images (3-4 nm) of the nascent disk-forming region, but also to create 

high-resolution 3-D models from the data.  Previous studies, which typically relied on 2-D 

images of ~70-nm sections, have reported conflicting interpretations of nascent disk 

organization and hence mature disk formation.  Our analyses by ET of 300-nm sections 

showed that the nascent disks are continuous with the ciliary plasma membrane (thereby 

classified as lamellae), and appeared to form by expansion of the plasma membrane.  Our 

results also indicated novel information with regard to disk initiation. 

 Early TEM studies of mammalian retinas observed that the disk membranes of cone 

photoreceptors and the basal disk membranes of rod photoreceptors are continuous with 

the ciliary plasma membrane (22-24).  These observations led to the hypothesis that new 

disks are formed by invaginations of the ciliary plasma membrane (9).  Steinberg et al. (10) 

also reported the nascent OS disks to be continuous with the ciliary plasma membrane, but 

concluded that the growth of the disk membranes occurs by an evagination rather than an 

invagination.  Importantly, this study also proposed the formation of the disk rim as the final 

growth stage.  Studies of frog photoreceptors not only found that the nascent disks are 

amplifications of the plasma membrane (19), but, using Lucifer yellow as an extracellular 

tracer, they were able to label the nascent disks, thus demonstrating that they are open to 

the extracellular space (25). 

 Relatively recently, Sung and colleagues reported observing the nascent disks of 

mouse rods to be completely internal, and proposed models of disk morphogenesis in which 

the disks form by expansion of vesicular membrane (11, 16).  They argued that data for the 

earlier, open disk models came from tissue that was inadequately fixed, and postulated that 
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the use of a mixture of formaldehyde and acrolein preserves disk membranes closer to their 

native state.  However, while acrolein, a monoaldehyde introduced for TEM by Luft (26), has 

an advantage of rapid tissue penetration, its use has been limited because of reports that it 

solubilizes membranes (27).  In addition, the notion that ordered membrane lamellae would 

form as artifacts from vesicles seems unlikely.  It is noteworthy that, in images of the HPF-

FS samples (Fig. 1B) and also some of the conventionally-processed samples (e.g. Fig. 1A 

and D), the surfaces of neighboring lamellae appear very close to each other, with a spacing 

that resembles the intradiskal space of the mature disks, measured to be ~4 nm (28).  This 

observation indicates that the growing lamellae already possess a highly-ordered 

characteristic of the mature disk membranes.  Moreover, the proximity of the adjacent 

lamellar surfaces may be sufficient to result in a force that drives the smaller lamella 

outward, following its more mature, distal neighbor (29). 

 It has been noted that species difference may play a role in the controversy because 

the rate of disk formation varies by species (30).  However, there are different studies that all 

used mouse retinas, but reported both open (15), and closed (16, 17, 31) disks, suggesting 

that species difference alone does not provide a satisfactory explanation for the various 

observations.  Nevertheless, in order to address the possibility of different results related to 

different methods of fixation and species, we tested three different mammalian species, as 

well as different methods for the preservation of mouse photoreceptors, including the use of 

HPF-FS.   

 Rapid freezing of cells provides a much faster preservation than chemical fixation. 

HPF is particularly advantageous for tissues, since it suppresses ice crystal formation, and, 

compared with freezing at ambient pressure, permits the freezing of much larger samples, 

(32, 33).   A recent study on the ultrastructure of the cilium and striated rootlet of mouse 

rods by cryo-ET used plunge-freezing of a purified OS suspension (31).  Although this study 

provided novel ultrastructural detail, tomograms were limited to very small z-axis depth, 
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which compromised the extent of 3-D segmentation.  When combined with FS, HPF results 

in material that can withstand the extensive high-voltage exposure that is necessary for the 

substantial z-axis imaging for ET (34).  Yet, even the amount of tissue that can be preserved 

by HPF is quite limited (up to 0.2-0.5 mm thick), necessitating prior dissection, during which 

cells can become damaged.  Here, in order to stabilize the retina prior to dissection for HPF-

FS, we used a brief cardiac perfusion with Karnovsky’s fixative.  This approach has been 

demonstrated with accessible cells, such as those in cell culture, to generate tissue 

preservation that is close to that by HPF-FS alone (18).  Chemical fixation, followed by HPF-

FS is considered superior to conventional aldehyde fixation methods because it avoids the 

subsequent ambient temperature processing steps (18), during which lipids may be 

extracted (35).  This conclusion is consistent with the linear, parallel profiles that we 

obtained of mouse OS disks prepared by HPF-FS, but not by chemical fixation alone (cf. 

Fig. 1B with 1A).  Importantly, however, we did not observe any difference, with respect to 

whether nascent disks were open or closed, between rod OSs that were fixed and 

processed by HPF-FS and those fixed by perfusion with Karnovsky’s fixative and processed 

by conventional TEM methods.  

 Our results with the three different mammalian species are largely consistent with the 

model of disk morphogenesis proposed by Steinberg et al. (10).  In this model, nascent 

disks are continuous with the ciliary plasma membrane, at least at some region around their 

perimeter. Their increase in width associated with a more distal position is consistent with 

growth out from the axoneme; i.e. growth by evagination.  A significant difference in our data 

is reflected by the greater detail we were able to obtain of membrane organization at the 

most basal part of the disk stack by ET.  Here, invaginations of varied shapes appear in a 

bulge of the ciliary plasma membrane, suggesting that the initiation of a new lamella begins 

with a bulge and then an invagination of the ciliary plasma membrane.  We propose that this 

invagination is important for generating the flattened organization of a lamella, and the 
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lateral expansion of the innermost surface of the invagination (closest to the axoneme) 

initiates the circumferential processes that becomes the disk rim (Fig. 5A, B).  Subsequent 

outward growth of the lamella (Fig. 5C) is followed by completion of the disk rim (Fig. 5D), 

and resulting enclosure of the space between the lamellae to create a mature disk 

completely enclosed by the plasma membrane (Fig. 5E).  A mature disk is thus formed from 

the adjacent membranes of two lamellae, and contains what was originally extracellular 

space (Fig. 5); as noted above, the very small space between two adjacent lamellae 

appears similar to that between the two membranes of a mature disk.  It has been shown 

that the initiation of new disks, but not the growth of the evaginations, requires f-actin (36, 

37), so that the membrane invagination, a critical first step in the process, may be 

dependent on an actin mechanism.     

 Whether the nascent disks are open or closed is also important with respect to other 

aspects of photoreceptor cell biology and electrophysiology.  As the disk membranes are 

formed, critical sorting or at least maintenance of a separation of membrane proteins must 

occur.  Within the disk membranes themselves, rim proteins (e.g. PRPH2, ROM1, ABCA4) 

are separated from proteins that will occupy the disk surfaces (e.g. RHO).  In addition, 

proteins that function in the plasma membrane (e.g. the cGMP channel subunit proteins, 

such as CNGA1) must be separated from discrete disk membranes (12).  ImmunoEM and 

trafficking studies of PRPH2 show that this protein is delivered to the cilium separately from 

RHO (38), and that it is not included in the most basal disks of rod OS (36, 39), consistent 

with an open lamellar structure for the basal disks.  The presence of PRPH2 in the OS 

coincides only with rim formation (39, 40).  CNGA1 appears to be trafficked directly to the 

rod OS plasma membrane, distal to the nascent disk region (36). 

 The early receptor potential (ERP), first reported by Brown and Murakami (41), 

appears to be generated by the movement of charge within each rhodopsin molecule as it 

changes its conformation upon photobleaching.  However, because the ERP occurs across 
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the plasma membrane, only rhodopsin molecules that are in the plasma membrane can 

contribute to it.  The signal from mammalian rods is too large to be explained without a 

subset of disks being open to the extracellular space, and thus increasing the effective 

rhodopsin content of the plasma membrane (13).  If the nascent disks are open, they could 

contribute to the ERP; if not, some of the mature rod disks must be exposed to the 

extracellular space, an observation not made in any studies to date. 

 The focus of this study has been on the organization of the nascent disks of rod 

photoreceptors.  An additional observation made during the study deserves comment 

because of a recent report that mouse photoreceptors do not possess calycal processes 

(20).  In our z-stack of images from the tomograms of mouse OSs, we were able to identify 

the presence of a calycal process, opposite the connecting cilium.  A similar, single calycal 

process has been shown in rat rod photoreceptors (39, 42).   
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Material and Methods 

Animals and sample preparation.  C57BL/6J mice were housed at UCLA and used at 6 

weeks old.  Cats, Felis catus, and rhesus monkeys, Macaca mulatta, were housed at UCSB, 

and used as adults.  All animals were kept on a 12 h light/12 h dark cycle, and treated in 

accordance with appropriate institutional guidelines.  Mouse retinas were fixed by immersion 

of posterior eyecups in 2% formaldehyde, 2.5% glutaraldehyde in 0.1 M phosphate buffer, or 

by transcardiac perfusion for 30 min with the same fixative.  For conventional TEM, eyecups 

were postfixed in 1% OsO4 in 0.1 M cacodylate buffer for 1 h, dehydrated, and embedded in 

Araldite 502.  Retinal tissue for HPF-FS was dissected after 5 min of cardiac perfusion with 

50 mL of fixative, and small pieces (approx. 1 mm x 1 mm x 0.2 mm) were placed in 

specimen carriers, transferred to a sample holder and frozen in a Leica EMpact2 high-

pressure freezer (Leica).  Samples were then placed in cryo-substitution medium, containing 

1% OsO4 and 0.1% uranyl acetate in acetone, within an automatic freeze substitution unit 

EMafs2 (Leica).  The temperature was raised slowly for 88 h to room temperature, while the 

fixative gradually replaced the water in the sample.  Samples were then washed in acetone 

and propylene oxide, and embedded in Araldite 502.  Cat and monkey tissue was fixed 

using transcardiac perfusion, as described previously (43, 44).  For conventional TEM, ~70-

nm sections were stained with 5% uranyl acetate and 0.4% lead citrate. Serial sections of 

300-nm thickness were collected for ET on formvar-coated, copper slot grids, and stained 

with 10% uranyl acetate in methanol and 0.4% lead citrate. Additionally, sections were 

labeled with 15- and 20-nm colloidal gold fiducials on the top and the bottom of each grid, 

respectively, to aid in the alignment of images in each tilt series. 

 

ET Methods.  ET was performed with an FEI Technai TF20, operated at 200kV.  Images 

were recorded using a 16-megapixel CCD camera (TVIPS) at original magnifications 

between 14,500x and 19,000x.  Serial sections were imaged using double tilt axis 
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tomography with the “Batch Tomography” software from FEI.  The series were recorded with 

an underfocus of approx. -5 µm from -70° to +70° along two tilt axes, with 2° increments at 

the lower tilt angles (range ±40°) and 1° increments above +40° and below - 40°.  To obtain 

the dual tilt data sets, the grid was rotated by 90° after the acquisition of a single tilt axis, 

and a second tilt series was recorded in the same location.  

 

Data Processing.  The images acquired in each tomography tilt series were aligned and 

combined to generate a tomographic reconstruction of the imaged 300-nm section using 

“eTomo” (IMOD, Boulder, CO).  Fiducial-based alignment was used.  After separate 

tomographic reconstructions were generated, tomograms from serial sections were joined 

into one volume along the z-axis, using a function of eTomo, “Join Serial Tomograms”, 

which runs a series of programs, including and the interactive program, MIDAS, for 

alignment, as well as programs for joining.  Segmentation and subsequent image 

processing were conducted using “3dmod” (http://bio3d.colorado.edu/imod/). In tomograms 

acquired from monkey and mouse, the membrane structures at the base of the rod OS were 

traced in every 3 to 10 z-slices to create a 3-D model. Different regions of the photoreceptor 

were modeled as separate, enclosed objects.  The OS plasma membrane, disk lamellae, 

and ciliary plasma membrane were modeled as one object, while the inner segment plasma 

membrane was modeled as another object, even though all these membranes are 

continuous.  Segmentation and subsequent image processing of cat tomograms were 

conducted using Amira (Version 5.2.0, FEI, Hillsboro, OR).  Segmentation was based upon 

distinct characteristics of the data; regions of interest (ROI) were selected, and data within 

the ROI were displayed using the functions "thresholding" and "smoothing". Different colors 

display separate membrane compartments. Videos of 3-D models were generated using the 

interactive visualization program Chimera (UCSF, San Francisco, CA), while videos of tilt 
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series and tomogram reconstructions were generated using 3dmod (IMOD, Boulder, CO) 

and Fiji (NIH), an open source processing package based on ImageJ.   

 

Open disk quantification.  To obtain the number of open disks at multiple time points 

throughout the day, electron micrographs of well-aligned rod outer segments that included a 

longitudinal section of the axoneme were taken from mouse and monkey retinas that had 

been prepared for conventional TEM. The number of observable open disks were counted 

on the side opposite the axoneme in 15-28 rod photoreceptors from several sections from 

one animal for each time of day.  Statistical analyses to test for variation among different 

times of day were performed using ANOVA. 
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Figure Legends 

 

Fig. 1.  Fixation of disk membrane morphology.  (A-B) TEMs of the basal disks of mouse rod 

OSs, preserved by transcardiac perfusion with Karnovsky’s fixative and conventional 

processing (A), or by brief transcardiac perfusion with Karnovsky’s fixative, followed by HPF-

FS (B).  (C, D) TEMs of the basal disks of monkey (C) and cat (D) rod OSs, preserved by 

transcardiac perfusion with Karnovsky’s fixative and conventional processing.  In A-D, the 

most basal “disks” appear to be open to the extracellular space (and are thus lamellae); 

indicated by arrows.  (E) A typical elongated, well-preserved mitochondrion from the inner 

segment (adjacent to the basal OS disks) from a cat rod.  Scale bar, 500 nm; A-E are at the 

same magnification.  B and C are z-slices from tomograms; other panels are from TEMs of 

70-nm sections. 

 

Fig. 2.  Continuity of nascent disks with the plasma membrane.  (A-D) monkey, (E-H) cat.   

(A-C, E-G) Different z-plane images from tomograms of the basal disks of rod OSs.  Basal 

disks appear enclosed in one plane of section (red arrow in A and E), but are actually open 

to the extracellular space in another plane of section (yellow arrows in C and G).  (D, H) 3-D 

renderings of the membrane structures.  The arrows (red, blue and yellow) indicate 

corresponding areas in the z-plane images (A-C, E-G) and the respective 3-D models (D, 

H).  Scale bars, 250 nm (A), 100 nm (D).  A-C, E-G are at the same magnification, as are D 

and H. 

 

Fig. 3. EM tomography of nascent disk initiation and rim formation.  (A-E) monkey, (F-J) 

mouse.  (A-C) Different z-plane images from a tomogram of monkey rod OS basal disks 

show different profiles of a membrane structure (red, blue and yellow arrows) that in 3-D 

renderings appears as a bi-lobed invagination (D and E).  E is from Suppl. 5; plasma 
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membrane is green, mature disks are dark blue.   (F-H) Different z-plane images from a 

tomogram of mouse rod OS basal disks.  Arrows indicate the location of rim formation, so 

that below the arrows the nascent disks appear as lamellae, and above them they appear 

enclosed by the plasma membrane.  (I) 3-D rendering depicts a view from outside the cell: 

the space above the most mature lamella (red arrow) is partially closed (to the right of the 

blue arrow); to the left of the blue arrow this space is still open.  (J) Lower magnification of 

the 3-D model.  The inner segment and a calycal process (light blue) have been modeled 

separately from other plasma membrane (green).  J is a frame of the video in Suppl. 7.  

Scale bars, 250 nm (A), 50 nm (D), 500 nm (E).  A-C, F-H are at the same magnification, as 

are D and I, and E and J.  

 

Fig. 4.  Number of open disks throughout the daily cycle.  Graph of the number of open 

disks counted at different times of day at the base of monkey and mouse rod OSs.  Error 

bars indicate +SD.  The probability of no significant difference among the different times of 

day was determined by ANOVA statistical tests to be < 0.001 for each species.  

 

Fig. 5.  Diagram of the organization of the nascent disks of a rod outer segment.  Horizontal 

sections at different locations of the vertical section are shown in A-E.  (A) An invagination 

that appears to initiate flattening of a protrusion of the ciliary plasma membrane.  (B) Lateral 

expansion of the invagination (arrows in A) leads to the beginning of rim growth (arrows in 

B).  (C) Lamella growth outwards.  (D) Growth of the rim leads to the enclosure of 

extracellular space between two adjacent lamellae, and thus the formation of a mature disk, 

which is discrete from the plasma membrane (E). 
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Supplement 
 

 

Supplement 1.   Video showing a double-tilt tomogram of the basal area of a mouse rod OS 

fixed by brief cardiac perfusion followed by HPF-FS.  The video progresses from the 

photoreceptor periphery towards the central area.  Two distinct nascent disks that are open 

(and are therefore lamellae) are revealed at the OS base. The surfaces of the lamellae 

appear very close to each other, with a spacing that resembles the intradiskal space of the 

mature disks, which are above and enclosed by the OS plasma membrane. Z-slices were 

exported from 3dmod as a tiff file and then converted into a video using Fiji.  An individual 

image of one of the z-slices is shown in Fig. 1B. 

 

Supplement 2.  Video showing the 3-D model of a tomogram of a mouse rod OS fixed by 

brief cardiac perfusion followed by HPF-FS.  The video shows the plasma membrane and 

nascent disks modeled in green and the mature disks modeled in dark blue. The 3-D model 

rotates and then zooms in, showing the ends of 2 nascent disks (lamellae). This 3-D model 

is based on segmentation of the tomogram shown in Suppl. 1. The video has been made 

using Chimera. 

 

Supplement 3.  Video showing 4 joined serial, double-tilt tomograms of the basal area of a 

monkey rod OS. The video includes approximately two thirds of the OS diameter, from the 

periphery to beyond the central area where the axoneme is visible. The region of interest 

appears in the center. Every second z-slice was exported from 3dmod as a tiff file and then 

converted into a video using Fiji.  Images of individual z-slices are shown in Fig. 2A-C and 

Fig. 3A-C. 
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Supplement 4.  Video showing a double-tilt tomogram of the basal area of a cat rod OS. The 

video passes through the OS from the central region where the axoneme is evident to the 

periphery.  A small membranous structure at the base of the ROS appears to be enclosed in 

the central area of the photoreceptor, but this structure can be traced as the video passes 

through different z-planes, and in the final frames, it is evident that the structure is 

continuous with the plasma membrane, thus representing an invagination that is open to the 

extracellular space.  Every z-slice was exported from 3dmod as a tiff file and then converted 

into a video using Fiji.  Images of individual z-slices are shown in Fig. 2E-G, and a view of 3-

D segmentation is in Fig. 2H.   

 

Supplement 5.  Video showing a 3-D model of two joined serial tomograms of a monkey rod 

OS. The video shows the plasma membrane modeled in green and the mature disks 

modeled in dark blue.  The plasma membrane includes the ciliary plasma membrane, the 

membrane enclosing the mature disks, and the nascent disks, which are mostly lamellae, 

open to the extracellular space.  The 3-D model rotates and then zooms in on a bi-lobed 

invagination at the OS base (see also Fig. 3A-E).  Fig. 2D is from the same 3-D model, 

except that it is depicted with only unidirectional lighting.  The 3-D model is based on 

segmentation of the two tomograms in the middle of the sequence shown in Suppl. 1.  The 

video was created with Chimera.  

  

Supplement 6. Video showing a double-tilt tomogram of the basal area of a mouse rod OS.  

As the video progresses through different z-planes, the number of nascent disks that are 

enclosed by the plasma membrane (right side) changes. The transition between 8 and 9 

open disks can be observed 9-10 sec from the start of the video.  Every second z-slice was 

exported from 3dmod as a tiff file and then converted into a video using Fiji.  Images of 
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individual z-slices are shown in Fig. 3F-H, although note that the order of appearance in the 

video is H, G and then F. 

 

Supplement 7.  Video showing the 3-D model of a tomogram of a mouse rod OS.  The video 

shows the plasma membrane modeled in green, the mature disks in dark blue.  The plasma 

membrane of the distal inner segment and calycal process were modeled separately from 

the rest of the plasma membrane and are shown in light blue.  Note that proximal to the area 

modeled and shown here, the plasma membrane surrounding the axoneme (i.e. the 

transition zone plasma membrane) will connect with the adjacent plasma membrane.  The 3-

D model rotates and then zooms in on the nascent disks, showing the close proximity of the 

outer and inner segment membrane structures. This 3-D model is based on segmentation of 

the tomogram shown in Suppl. 4, and the video has been made using Chimera.  Images 

from this model are shown in Fig. 3I and J. 

 

 












