
A Formal Language for the Expression of Pattern Compositions

Ian Bayley and Hong Zhu
Department of Computing and Communication Technologies

Oxford Brookes University
Oxford OX33 1HX, UK.

Email: ibayley@brookes.ac.uk, hzhu@brookes.ac.uk

Abstract—In real applications, design patterns are almost
always to be found composed with each other. Correct appli-
cation of patterns therefore relies on precise definition of these
compositions. In this paper, we propose a set of operators on
patterns that can be used in such definitions. These operators
are restriction of a pattern with respect to a constraint,
superposition of two patterns, and a number of structural
manipulations of the pattern’s components. We demonstrate
the uses of these operators by examples. We also report a case
study on the pattern compositions suggested informally in the
Gang of Four book in order to demonstrate the expressiveness
of the operators.

Keywords-Design patterns, Pattern composition, Object ori-
ented design, Formal methods.

I. INTRODUCTION

As codified reusable solutions to recurring design prob-
lems, design patterns play an increasingly important role
in the development of software systems [2], [3]. In the
past few years, many such patterns have been identified,
catalogued [2]–[15], formally specified [16]–[20], and in-
cluded in software tools [21]–[31]. Although each pattern is
specified separately, they are usually to be found composed
with each other in real applications. It is therefore vital to
represent pattern compositions precisely and formally, so
that the correct usage of composed patterns can be verified
and validated.

The composition of design patterns have been studied by
many authors informally, e.g., in [32], [33]. Visual notations
such as the Pattern:Role annotation, and a forebear based on
Venn diagrams, have been proposed by Vlissides [34] and
widely used in practice. They indicate where, in a design,
patterns have been applied so their compositions are com-
prehensible. These notations focus on static properties. In
[35], Dong et al. developed techniques for visualising pattern
compositions in such notations by defining appropriate UML
profiles. Their tool, deployed as a web service, identifies
pattern applications, and does so by displaying stereotypes,
tagged values, and constraints. Such information is delivered
dynamically with the movement of the user’s mouse cursor

This paper is an extended and revised version of the paper [1] presented
at the 2nd International Conference on Pervasive Patterns and Applications
(PATTERNS 2011)

on the screen. Their experiments show that this delivery on
demand helps to reduce the information overload faced by
designers.

More recently, Smith proposed the Pattern Instance Nota-
tion (PIN), to visually represent the composition of patterns
in a hierarchical manner [36]. Most importantly, he also
recognised that multiple instances of roles needed to be
better expressed and he devised a suitable graphic nota-
tion for this. However, while many approaches to pattern
formalisation have been proposed, very few authors have
investigated pattern composition formally. Two of those who
have are Dong et al. [37]–[41] and Taibi and Ngo [18], [42],
[43], respectively.

As far as we know, Dong et al. were the first to study
pattern composition in a formal setting [37]. In their ap-
proach, a composition of two patterns is defined as a pair of
name mappings. Each mapping "associates the names of the
classes and objects declared in a pattern with the classes and
objects declared in the composition of this pattern and other
patterns" [37]. They illustrate this by composing Composite
with Iterator [37]–[39]. Dong et al. also demonstrated that
how structural and behavioural properties of the instances of
patterns and their compositions can be inferred from their
formal specifications.

In [41], they developed this approach further recently in
their study on the commutability of pattern instantiation with
pattern integration, another term for pattern composition.
A pattern instantiation was defined as a mapping from
names of various kinds of elements in the pattern to classes,
attributes, methods, etc., in the instance. An integration of
two patterns was defined as a mapping from the set union
of the names of the elements in the two patterns into the
names of the elements in the resulting pattern. However,
in a recent study of the compositions of security patterns
[40], they merely presented the compositions in the form
of diagrams, from which they manually derived the formal
specifications afterwards.

Taibi and Ngo [43] took an approach very similar to this,
but instead of defining mappings for pattern compositions
and instantiations, they use substitution to directly rename
the variables that represent pattern elements. Instantiation
replaces these variables with constants, whereas composition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220157592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

replaces them with new variables, before then combining the
predicates. They illustrated the approach by combining the
Mediator and Observer patterns in [42] and the Command
and Composite patterns in [43].

In [44], we formally defined a pattern composition oper-
ator based on the notion of overlaps between the elements
in the composed patterns. We distinguished three different
kinds of overlaps: one-to-one, one-to-many and many-to-
many. The compositions in Dong et al. and Taibi’s ap-
proaches all have overlaps that are one-to-one. However,
the other two kinds are often required. For example, if the
Composite pattern is composed with the Adapter pattern in
such a way that one or more of the leaves are adapted then
that is a one-to-many overlap. This cannot be represented
as a mapping between names, nor by a substitution or
instantiation of variables. However, although our overlap
based operator is universally applicable, we found in our
case study that it is not very flexible for practical uses and
its properties are complex to analyse.

In this paper, therefore, we revise our previous work
and take a radically different approach. Instead of defining
a single universal composition operator, we propose a set
of six more primitive operators, with which each sort of
composition can then be accurately and precisely expressed.
This paper makes the following three the main contributions.
• A set of operators on design patterns are formally

defined.
• The uses of the operators in pattern-based software de-

sign are illustrated by classic examples in the literature.
• The expressiveness of the operators is demonstrated

by a case study on the compositions of the patterns
suggested by the Gang of Four book [2].

The remainder of the paper is organised as follows.
Section II provides a background by reviewing the different
approaches to pattern formalisation. Section III formally
defines the six operators. Section IV gives two examples to
illustrate how compositions can now be specified. Section
V reports a case study in which we used the operators to
realise all the pattern combinations suggested by the Gang
of Four (GoF) book [2]. Section VI concludes the paper with
a discussion of related works and future work.

II. BACKGROUND

In the past few years, researchers have advanced several
approaches to the formalisation of design patterns. In spite
of differences in these formalisms, the basic underlying
ideas are quite similar. In particular, valid pattern instances
are usually specified using statements that constrain their
structural features and sometimes their behavioural features
too. The structural constraints are typically assertions that
certain types of components exist and have a certain static
configuration. The behavioural constraints, on the other
hand, detail the temporal order of messages exchanged
between the components that realise the designs.

The various approaches to pattern formalisation differ
in how they represent software systems and in how they
formalise the predicate. For example, Eden’s predicates are
on the source code of object-oriented programs [19] but they
are limited to structural features. Taibi’s approach in [18] is
similar but he takes the further step of adding temporal logic
for behavioural features. In contrast, our predicates are built
up from primitive predicates on UML class and sequence
diagrams [20]. These primitives are induced from GEBNF
(Graphic Extension of Backus-Naur Form) definition of
the abstract syntax of graphical modelling languages [45],
[46]. Nevertheless, the operators on design patterns used in
this paper are generally applicable and independent of the
particular formalism used. Still, the example specifications
of GoF patterns come from our previous work [20].

As examples, Figures 1 and 2 show the specifications
of the Object Adapter and Composite design patterns, re-
spectively. The class diagrams from the GoF book have
been reproduced to enhance readability; while their sequence
diagrams are omitted for the sake of space. The primitive
predicates and functions we use are explained in Table I.
All of them are either induced directly from the GEBNF
definition of UML, or are defined formally in terms of such
predicates. The predicate trigs is particularly important in
describing dynamic behavioural properties and it is formally
defined as follows.

trigs(m,m′) ,

toAct(m) = fromAct(m′) ∧m < m′

Specification 1: (Object Adapter Pattern)
Components

1) Client, Target, Adapter,Adaptee ∈ classes,
2) requests, specreqs ⊆ operations,

Dynamic Components
1) mr,ms ∈ messages

Static Conditions
1) requests ⊆ Target.opers,
2) specreqs ⊆ Adaptee.opers
3) Adapter −−. Target,
4) Adapter −→ Adaptee,
5) Client −→ Target

Dynamic Conditions
1) mr.sig ∈ requests
2) ms.sig ∈ specreqs
3) trigs(mr,ms)

Figure 1. Specification of Object Adapter Pattern

Specification 2: (Composite)
Components

1) Client, Component, Leaf, Composite ∈ classes
2) operation ∈ operations

Dynamic Components
1) m1,m2 ∈ messages

Static Conditions
1) operation ∈ Component.opers
2) Leaf −−. Component
3) Composite−−. Component
4) Client −→ Component
5) Composite �−→∗ Component
6) ¬Leaf �−→∗ Component
7) operation.isAbstract

Dynamic Conditions
1) m1.sig = Composite.operation
2) isOp(m2)
3) trigs(m1,m2)
4) m2.sig = Leaf.operation =⇒
¬∃m3 ∈ messages · trigs(m2,m3) ∧ isOp(m3)

Figure 2. Specification of Composite Pattern

The definition of the Composite pattern uses an auxiliary
predicate isOp defined on messages as follows.

isOp(m) ,

m.sig = Leaf.operation ∨
m.sig = Composite.operation

In general, a design pattern P can be defined abstractly
as an ordered pair 〈V, Pr〉, where Pr is a predicate on
the domain of some representation of software systems, and
V is a set of declarations of variables free in Pr. In other
words, Pr specifies the structural and behavioural features
of the pattern and V specifies its components. Let V =
{v1 : T1, · · · , vn : Tn}, where vi are variables that range
over the type Ti of software elements. The semantics of the
specification is a ground predicate in the following form.

∃v1 : T1 · · · ∃vn : Tn · (Pr) (1)

Note that, for the sake of readability, in the examples we
split the predicate in the specification into two parts: one for
static conditions and the other for dynamic conditions as in
[16], [18], [37] and [20]. In the sequel, we write Spec(P)

Table I
THE FUNCTIONS AND PREDICATES USED IN THE EXAMPLES

ID Meaning
classes The set of class nodes in the class diagram
operations The set of operations in the class diagram
C.opers The operations contained in the class node C
m.sig The signature of the message m as operation
X −−. Y Class X inherits class Y directly or indirectly
X −→ Y There is an association (either direct or

indirect) from class X to Y
X �−→ Y There is an composite or aggregate relation

(either direct or indirect) from X to Y
C.op The redefinition of op for class C
trigs(m,m′) Message m is sent to the activation from

which message m′ is afterwards sent
isAbstract(C) Class C is abstract
op.isAbstract Operation op is abstract
fromLL(m) The lifeline from which message m is sent
toLL(m) The lifeline to which message m is sent
l.class The class of the lifelines
hasParam(m, p) p is one of the parameters of message m
returnV alue(m) The value returned by message m

to denote the predicate (1) above, V ars(P) for the set of
variables declared in V , and Pred(P) for the predicate Pr.

Note further that the above definition can easily be gener-
alised or adapted so that the predicates in pattern specifica-
tions are defined on the domain of program implementations
and their dynamic behaviours.

We can formally define the conformance of a design
model m to a pattern P , written as m |= P , and reason
about the properties of instances based on the patterns they
conform to, but we omit the details here for the sake of
space. Readers are referred to [20] and [45]. The theory
developed in this paper remains valid so long as this notion
of conformance is valid and the logic is consistent. However,
for the sake of simplicity, this paper only considers designs
represented as models.

III. OPERATORS ON PATTERNS

We now formally define the operators on design patterns.

A. Restriction operator

The restriction operator was first introduced in our previ-
ous work [44], where it is called the specialisation operator.

Definition 1: (Restriction operator)
Let P be a given pattern and c be a predicate defined on
the components of P . A restriction of P with constraint c,
written as P [c], is the pattern obtained from P by imposing
the predicate c as an additional condition on the pattern.
Formally,

1) V ars(P [c]) = V ars(P),
2) Pred(P [c]) = (Pred(P) ∧ c). ut
For example, a variant of the Adapter pattern in which

there is only one request and one specific request, hereafter
known as Adapter1, can be formally defined as follows.

Adapter1 ,

Adapter[||requests|| = 1 ∧ ||specreqs|| = 1].

Restriction is frequently used in the case study, particu-
larly in the form P [u = v] for pattern P and variables u
and v of the same type. This expression denotes the pattern
obtained from P by unifying u and v to make them the same
element.

Note that the instantiation of a variable u in pattern P
with a constant a of the same type of variable u can also
be expressed by using restriction: P [u = a].

This operator does not introduce any new components into
the structure of a pattern, but the following operators do.

B. Superposition operator

Definition 2: (Superposition operator)
Let P and Q be two patterns. Assume that the compo-

nent variables of P and Q are disjoint, i.e., V ars(P) ∩
V ars(Q) = ∅. The superposition of P and Q, written P ∗Q,
is a pattern that consists of both pattern P and pattern Q as
formally defined below.

1) V ars(P ∗Q) = V ars(P) ∪ V ars(Q);
2) Pred(P ∗Q) = Pred(P) ∧ Pred(Q). ut
For example, the superposition of Composite and Adapter

patterns, Composite ∗ Adapter, requires each instance to
contain one part that satisfies the Composite pattern and
another that satisfies the Adapter pattern. These parts may or
may not overlap, but the following expression does enforce
an overlap, as it requires that the Leaf class be the target
of an Adapter.

(Composite ∗Adapter)[Target = Leaf]

The requirement that V ars(P) and V ars(Q) be disjoint is
easy to fulfil using renaming. An appropriate notation for
this will be introduced later.

C. Extension operator

Definition 3: (Extension operator)
Let P be a pattern, V be a set of variable declarations that

are disjoint with P ’s component variables (i.e., V ars(P) ∩
V = ∅), and c be a predicate with variables in V ars(P)∪V .
The extension of pattern P with components V and linkage
condition c, written as P#(V • c), is defined as follows.

1) V ars(P#(V • c)) = V ars(P) ∪ V ;
2) Pred(P#(V • c)) = Pred(P) ∧ c. ut

D. Flatten operator

Definition 4: (Flatten Operator)
Let P be a pattern, (xs : P(T)) ∈ V ars(P), x 6∈

V ars(P), and Pred(P) = p(xs, x1, · · · , xk). The flatten-
ing of P on variable xs, written P ⇓ xs\x, is the pattern
defined as follows:

1) V ars(P ⇓ xs\x) =
(V ars(P)− {(xs : P(T))}) ∪ {x : T};

2) Pred(P ⇓ xs\x) = p({x}, x1, · · · , xk).
Note that P(T) denotes the power set of T . For example,

in the specification of the Adapter pattern, the component
variable requests is a subset of operations so its type is
P(operation).

The single-leaf variant of the Adapter pattern Adapter1
can also be defined as follows.
Adapter1 ,

(Adapter ⇓ requests\request) ⇓ specreq\specreqs
As an immediate consequence of this definition, we have

the following property. For x1 6= x2 and xs1 6= xs2,

(P ⇓ xs1\x1) ⇓ xs2\x2 = (P ⇓ xs2\x2) ⇓ xs1\x1. (2)

Therefore, we can overload the ⇓ operator to a set of
component variables. Formally, let XS be a subset of P ’s
component variables all of power set type, i.e., XS =
{xs1 : P(T1), · · · , xsn : P(Tn)} ⊆ V ars(P), n ≥ 1 and
X = {x1 : T1, · · · , xn : Tn} ∩ V ars(P) = ∅, we write
P ⇓ XS\X to denote P ⇓ xs1\x1 ⇓ · · · ⇓ xsn\xn.

Note that our pattern specifications are closed formulae,
containing no free variables. Although the names given to
component variables greatly improve readability, they have
no effect on semantics so, in the sequel, we will often omit
new variable names and write simply P ⇓ xs to represent
P ⇓ xs\x.

E. Generalisation operator

Definition 5: (Generalisation operator)
Let P be a pattern, x : T ∈ V ars(P) and xs 6∈ V ars(P).

The generalisation of P on variable x, written P ⇑ x\xs,
is defined as follows.

1) V ars(P ⇑ x\xs) =
(V ars(P)− {x : T}) ∪ {xs : P(T)},

2) Pred(P ⇑ x\xs) = ∀x ∈ xs · Pred(P).ut
For example, we can define the Adapter pattern as a

generalisation of the variant Adapter1, as follows:
Adapter ,

(Adapter1 ⇑ request\requests) ⇑ specreq\specreqs
We will use the same syntactic sugar for ⇑ as we do

for ⇓. We will often omit the new variable name and write
P ⇑ x. Thanks to an analogue of Equation 2, we can and
will promote the operator ⇑ to sets also.

F. Lift operator

The lift operator was first introduced in our previous
work [44]. The definition given below is a revised version
that allows lifting not only on class type variables but on
variables of other types too .

Definition 6: (Lift Operator)
Let P be a pattern, X = {x1 : T1, · · · , xk : Tk} ⊂

V ars(P), k > 0 and Pred(P) = p(x1, · · · , xn), where
n ≥ k. The lifting of P with X as the key, written P ↑ X ,
is the pattern defined as follows.

1) V ars(P ↑ X) = {xs1 : P(T1), · · · , xsn : P(Tn)},
2) Pred(P ↑ X) = ∀x1 ∈ xs1 · · · ∀xk ∈ xsk·

∃xk+1 ∈ xsk+1 · · · ∃xn ∈ xsn · p(x1, · · · , xn). ut
When the key set is singleton, we omit the set brackets

for simplicity, so we write P ↑ x instead of P ↑ {x}.
Informally, lifting a pattern P results in a new pattern

P ′ that contains a number of instances of pattern P . For
example, Adapter ↑ Target is the pattern that contains a
number of Targets of adapted classes. Each of these has a
dependent Client, Adapter and Adaptee class configured
as in the original Adapter pattern. In other words, the
component Target in the lifted pattern plays a role similar
to the primary key in a relational database. Figure 3 is the
pattern defined by expression Adapter ↑ Target.

Specification 3: (Lifted Object Adapters Pattern)
Components

1) Targets,Adapters,Adaptees, Clients ⊆ classes,
2) requestses, specreqses ⊆ P(operations)

Dynamic Components
1) mrs,mss ⊆ messages,

Conditions
∀Target ∈ Targets, ∃Client ∈ Clients,
∃Adapter ∈ Adapters,∃Adaptee ∈ Adaptees,
∃requests ∈ requestses,∃specreqs ∈ specreqses,
∃mr ∈ mrs,∃ms ∈ mss·

1. Static Conditions
1) requests ⊆ Target.opers,
2) specreqs ⊆ Adaptee.opers
3) Adapter −−. Target
4) Adapter −→ Adaptee
5) Client −→ Target

2. Dynamic Conditions
1) mr.sig ∈ requests
2) ms.sig ∈ specreqs
3) trigs(mr,ms)

Figure 3. Specification of Lifted Object Adapter Pattern

IV. EXAMPLES

In this section, we present two examples of using the
operators to define composition of design patterns.

A. Model-View-Controller as Pattern Composition

Model-View-Controller (MVC) is one of the most well-
known design patterns and perhaps the most widely used
one. A detailed description of the MVC design pattern can
be found in [47], which includes the class and sequence
diagrams displayed in Figure 4. We can formalise the pattern
as shown in Figure 5.

It is immediately apparent from the diagrams that the
View and Controller classes are both observers of the Model,
so we can alternatively specify MVC as an extension of the
Observer pattern, whose specification is given in Figure 6.

- Observer

update
call update

Model

coreData
setOfObservers

attach(Observer)
detach(Observer)
notify

getData
service

A
attach

getData

I
View

myModel
myController

initialize(Model) create
ControllermanipulatemakeController

displayactivate myModel
display myView
update

attach initialize(Model,View)
call service handleEvent

update UCiuuUUg lJIUCeUUle.

Controller Model

handleEvent

View

seIVice

update

getData

update

Figure 4. Class and Sequence Diagrams of the MVC Design Pattern

Note that the GoF book puts the notify operation in an
abstract superclass, but we flatten the inheritance hierarchy
for simplicity.

Now, we rename the variables in this pattern in two
different ways to match those used for its two occurrences
within MVC. We call these renamed patterns Observer1
and Observer2.

Observer0 ,

Observer[Model := Subject][getData := getState]

Observer1 ,

Observer0[mu1,mg1 := mu,mg]

[V iew := ConcreteSubject]

Observer2 ,

Observer0[mu2,mg2 := mu,mg]

[Controller := ConcreteSubject]

So, MVC pattern can now be defined as follows.

MVC ,

(Observer1 ∗ Observer2)
#({display ∈ V iew.opers,mh,md ∈ messages,

handleEvent ∈ Controller.opers}
•(Controller −→ V iew ∧

mh.sig = handleEvent ∧md.sig = display ∧
trigs(mu1,md) ∧ trigs(md,mg1)

Here, ∗ is the operator that renames shared variable names

Specification 4: (MVC – Version 1)
Components

1) Model, V iew,Controller,Observer ∈ classes
2) notify, getData, service ∈ operations
3) display, handleEvent, update ∈ operations

Dynamic Components
1) mh,ms,mn,mu1,md,mg1,mu2,mg2 ∈ messages

Static Conditions
1) notify, getData, service ∈Model.opers
2) display ∈ V iew.opers
3) handleEvent ∈ Controller.opers
4) update ∈ Observer.opers
5) V iew −−. Observer
6) Controller −−. Observer
7) Model −→∗ Observer
8) Controller −→ V iew
9) Controller −→Model

10) V iew −→Model

Dynamic Conditions
1) mh.sig = handleEvent
2) ms.sig = service
3) mn.sig = notify
4) mu1.sig = V iew.update
5) md.sig = display
6) mg1.sig = getData
7) mu2.sig = Controller.update
8) mg2.sig = getData
9) trigs(mh,ms)

10) trigs(ms,mn)
11) trigs(mn,mu1)
12) trigs(mu1,md)
13) trigs(md,mg1)
14) trigs(mu1,mg1)
15) trigs(mn,mu2)
16) trigs(mu2,mg2)

Figure 5. Specification of MVC Pattern (Version 1)

before applying ∗ and then renames them back to what
they were. Formally, let P1 and P2 be any given patterns,
{v} = V ars(P1) ∩ V ars(P2) and v1 6= v2 /∈ V ars(P1) ∪
V ars(P2). Then, ∗ is defined as follows, with the obvious
generalisation to more than one variable:

P1∗P2 ,

(P1[v1 := v] ∗ P2[v2 := v])[v := v1 = v2].
The GoF book further proposes the use of Composite with

MVC, to enable views to be nested, and Strategy too, so
that the controller associated with each view is dynamically
configurable. The specification of Strategy pattern is given
in Figure 7. But, it is its lifted version composed with
Composite, which is defined as follows.
StrategyLifted ,

Strategy ⇑ ConcreteStrategy\ConcreteStrategies

This brings us to a new definition of MVC, i.e., MVC2

below. The result of evaluating this definition gives the
specification shown in Figure 8.

Specification 5: (Simplified Observer)
Components

1) Subject, ConcreteObserver,Observer ∈ classes
2) notify, getState, service, update ∈ operations

Dynamic Components
1) ms,mn,mu,mg ∈ messages

Static Conditions
1) notify, getState, service ∈ Subject.opers
2) update ∈ Observer.opers
3) ConcreteObserver −−. Observer
4) Subject −→∗ Observer
5) ConcreteObserver −→ Subject

Dynamic Conditions
1) ms.sig = service
2) mn.sig = notify
3) mu.sig = ConcreteObserver.update
4) mg.sig = getState
5) trigs(ms,mn)
6) trigs(mn,mu)
7) trigs(mu,mg)

Figure 6. Specification of Observer Pattern

Specification 6: (Strategy)
Components

1) Context, Strategy, ConcreteStrategy ∈ classes
2) contextInterface,

algorithmInterface ∈ operations

Dynamic Components
1) mc,ma ∈ messages

Static Conditions
1) contextInterface ∈ Context.opers
2) algorithmInterface ∈ Strategy.opers
3) Context �−→ Strategy
4) ConcreteStrategy −−. Strategy
5) algorithmInterface.isAbstract
6) ¬isAbstract(ConcreteStrategy)

Dynamic Conditions
1) mc.sig = contextInterface
2) ma.sig = ConcreteStrategy.algorithmInterface
3) trigs(mc,ma)

Figure 7. Specification of Strategy Pattern

MVC ′ ,

MVC ∗ (Composite[display = operation ∧
V iew = Component ∧ Controller = Client])

[LeafV iew := Leaf]

[CompositeV iew := Composite]

MVC2 ,

(MVC ′ ∗ StrategyLifted)
[Controller = Strategy ∧ V iew = Context ∧
handleEvent = algorithmInterface ∧
actionPerformed = contextInterface ∧
ConcreteControllers := ConcreteStrategies]

Specification 7: (MVC – Version 2)
Components

1) Model, V iew,Controller,Observer
Client, LeafV iew,CompositeV iew ∈ classes

2) notify, getData, service ∈ operations
3) display, handleEvent, update ∈ operations

Dynamic Components
1) mh,ms,mn,mu1,md,mg1,mu2,mg2,

m1,m2,mc,ma ∈ messages

Static Conditions
1) notify, getData, service ∈Model.opers
2) display ∈ V iew.opers
3) handleEvent ∈ Controller.opers
4) update ∈ Observer.opers
5) V iew −−. Observer
6) Controller −−. Observer
7) Model −→∗ Observer
8) Client −→ V iew
9) Controller −→Model

10) V iew −→Model
11) LeafV iew −→ V iew
12) CompositeV iew −→ V iew
13) CompositeV iew �−→∗ V iew
14) ¬LeafV iew �−→∗ V iew
15) display.isAbstract
16) V iew �−→ Controller
17) ∀C ∈ ConcreteControllers · C −−. Controller
18) handleEvent.isAbstract
19) ∀C ∈ ConcreteControllers · ¬isAbstract(C)

Dynamic Conditions
1) mh.sig = handleEvent
2) ms.sig = service
3) mn.sig = notify
4) mu1.sig = V iew.update
5) md.sig = display
6) mg1.sig = getData
7) mu2.sig = Controller.update
8) mg2.sig = getData
9) m1.sig = Composite.operation

10) isOp(m2)
11) mc.sig = contextInterface
12) ma.sig = ConcreteStrategy.algorithmInterface
13) trigs(mh,ms)
14) trigs(ms,mn)
15) trigs(mn,mu1)
16) trigs(mu1,md)
17) trigs(md,mg1)
18) trigs(mu1,mg1)
19) trigs(mn,mu2)
20) trigs(mu2,mg2)
21) trigs(mc,ma)
22) trigs(m1,m2)
23) m2..sig = Leaf.operation =⇒
¬∃m3 ∈ messages · trigs(m2,m3) ∧ isOp(m3)

Figure 8. Specification of MVC Pattern (Version 2)

B. A Request-Handling Framework

In [32], the utility of pattern composition was demon-
strated with a case study of pattern-based software design,
in which five design patterns were composed to form an

extensible request-handling framework. As shown in Figure
9, the five patterns are Command, Command Processor,
Memento, Strategy and Composite. The composition can be
expressed in terms of our operators and an explicit definition
of the pattern can thereby be derived.

The last two patterns have already been defined, thus here
are the first three, starting with Command shown in Figure
10, which is based on the simplified version in [32] that
makes the Client also be the invoker.

The original case study treats the memento as being
created by the caretaker, but in fact it is created by the
originator instead, so we have the specification of Memento
in Figure 11.

The Command Processor pattern is not one of the GoF
patterns. Figure 12 is the diagram given in [9] that illustrates
the pattern’s structure and dynamic behaviour. In particular,
the Command Processor object executes requests on behalf
of the clients. Its specification is given in Figure 13.

Now, the request-handling framework, ReqHand, can
be defined as follows using our operators on patterns,
where RH1, RH2 and RH3 are intermediate steps of the
composition.
RH1 , ((Command[Application := Receiver]

⇑ ConcreteCommand\ConcreteCommands
⇑ mn\mns ⇑ me\mes)
∗ CommandProcessor[mee := me])

[Component = Command]

RH2 , (RH1 ∗Memento)

[Command −→ Application ∧
Command = Caretaker ∧
Originator = Application]

RH3 , (RH2 ∗ Strategy ⇑ ma\mas
⇑ ConcreteStrategy\ConcreteStrategies)
[CommandProcessor = Context]

[Strategy := Logging]

[ConcreteStrategies

:= ConcreteLoggingStrategies]

ReqHand ,

(RH3 ∗ Composite ⇑ m2\mls)
⇑ Leaf\Leaves [Command = Component]

[mm := m] [LeafCommands := Leaves]

[ConcreteCommands =

LeafCommands ∪ {CompositeCommands}]
[CompositeCommand := Composite]

Evaluating the above expressions according to the def-
initions of the operators, we have the specification of the
extensible request handling framework shown in Figure 14
for the static and dynamic parts.

Client Command
Processor Logging

Concrete
Logging

Strategy A

Concrete
Logging

Strategy B

Command

Composite
Command

Concrete
Command A

Concrete
Command B

Application

Memento

Command Processor: command processor
Strategy: context Strategy: strategy

Command Processor: command
Command: command
Composite: component
Memento: caretaker

Memento: memento

Memento: originator

Command: concrete command
Composite: leaf
Memento: caretaker

Command: concrete command
Composite: leaf
Memento: caretaker

Figure 9. Request Handling Framework

Specification 8: (Command)
Components

1) Command ∈ classes
2) ConcreteCommand ∈ classes
3) Client ∈ classes
4) Receiver ∈ classes
5) execute, action ∈ operations

Dynamic Components
1) mn,me,ma ∈ messages

Static Conditions
1) execute ∈ Command.opers
2) action ∈ Receiver.opers
3) Client −→ Command
4) ConcreteCommand −→ Receiver
5) ConcreteCommand−−. Command
6) execute.isAbstract
7) ¬isAbstract(ConcreteCommand)

Dynamic Conditions
1) mn.sig.isNew
2) me.sig = execute
3) ma.sig = action
4) mn < me
5) fromLL(mn).class = Client
6) fromLL(me).class = Client
7) toLL(mn) = toLL(me)
8) trigs(me,ma)

Figure 10. Specification of Command Pattern

Specification 9: (Memento)
Components

1) Caretaker,Memento,Originator ∈ classes
2) setState, getState ∈ operations
3) createMemento, setMemento ∈ operations

Dynamic Components
1) mcm,mnm,mss,msm,mgs ∈ messages

Static Conditions
1) setState, getState ∈Memento.opers
2) createMemento, setMemento ∈ Originator.opers
3) Caretaker �−→Memento

Dynamic Conditions
1) mcm.sig = createMemento
2) mnm.sig.isNew
3) mss.sig = setState
4) msm.sig = setMemento
5) mgs.sig = getState
6) trigs(mcm,mnm)
7) trigs(mcm,mss)
8) trigs(mss,mgs)
9) mcm < msm

10) fromLL(mcm) = fromLL(msm)
11) toLL(mcm) = toLL(msm)
12) hasParam(msm, toLL(gs))
13) toLL(mnm) = returnV alue(mnm)
14) toLL(mss) = returnV alue(mnm)

Figure 11. Specification of Memento Pattern

Client

execute

Service Request

Execute_request

Command
Processor

1
Issue request

Function_1

Component execute

Execute request

Function_2

2

Figure 12. Diagram of Command Processor Pattern [9]

Specification 10: (Command Processor)
Components

1) Client, CommandProcessor, Component
∈ classes

2) executeRequest, function ∈ operations
3) me,mf ∈ messages

Static Conditions
1) executeRequest ∈ CommandProcessor.opers
2) function ∈ Component.opers
3) Client −→ CommandProcessor
4) CommandProcessor −→ Component

Dynamic Conditions
1) me.sig = executeRequest
2) mf.sig = function
3) fromLL(me).class = Client
4) trigs(me,mf)

Figure 13. Specification of Command Processor Pattern

Specification 11: (Extensible Request Handler)
Components

1) Command,Client, Application,
CommandProcessor,Memento, Logging,
Client, CompositeCommand ∈ classes

2) ConcreteCommands, LeafCommands,
ConcreteLoggingStrategies ⊆ classes

3) execute, function, operation, action ∈ operations
4) executeRequest, contextInterface ∈ operations
5) setState, getState ∈ operations
6) createMemento, setMemento,

algorithmInterface ∈ operations

Static Conditions
1) execute, function, operation ∈ Command.opers
2) action ∈ Action.opers
3) executeRequest, contextInterface
∈ CommandProcessor.opers

4) setState, getState ∈Memento.opers
5) createMemento, setMemento
∈ Application.opers

6) algorithmInterface ∈ Logging.opers
7) Client −→ Command
8) ∀C ∈ ConcreteCommands · C −→ Application
9) ∀C ∈ ConcreteCommands · C −−. Command

10) execute.isAbstract
11) ∀C ∈ ConcreteCommands · ¬isAbstract(C)
12) Client −→ CommandProcessor
13) CommandProcessor −→ Application
14) Caretaker �−→Memento
15) Command −→ Application
16) Memento −→ Application
17) CommandProcessor �−→ Logging
18) ∀C ∈ ConcreteLoggingStrategies·

C −−. Logging
19) algorithmInterface.isAbstract
20) ∀C ∈ ConcreteLoggingStrategies·
¬isAbstract(C)

21) CompositeCommand−−. Command
22) CompositeCommand �−→∗ Command
23) ∀C ∈ LeafCommands · ¬C �−→∗ Command
24) ConcreteCommands =

LeafCommands ∪ {CompositeCommand}
25) operation.isAbstract

Dynamic Components
1) ma,mee,mf,mc,mm

mcm,mnm,mss,msm,mgs ∈ messages
2) mns,mes,mas,mls ⊆ messages

Dynamic Conditions
1) ∀C ∈ ConcreteCommands ·mnsC .sig.isNew
2) ∀C ∈ ConcreteCommands ·mesC .sig = C.execute
3) ma.sig = action
4) mee.sig = executeRequest
5) mf.sig = function
6) mcm.sig = createMemento
7) mnm.sig.isNew
8) mss.sig = setState
9) msm.sig = setMemento

10) mgs.sig = getState
11) mc.sig = contextInterface
12) ∀C ∈ ConcreteStrategies·

masC .sig = C.algorithmInterface
13) mm.sig = Composite.operation
14) ∀C ∈ LeafCommands· isOp(mlsC)
15) ∀C ·mnsC < mesC
16) ∀C · fromLL(mnsC).class = Client
17) ∀C · fromLL(mesC).class = Client
18) ∀C · toLL(mnsC) = toLL(mesC)
19) ∀C · trigs(mesC ,ma)
20) fromLL(mee).class = Client
21) trigs(mee,mf)
22) trigs(mcm,mnm)
23) trigs(mcm,mss)
24) trigs(mss,mgs)
25) mcm < msm
26) fromLL(mcm) = fromLL(msm)
27) toLL(mcm) = toLL(msm)
28) hasParam(msm, toLL(gs))
29) toLL(mnm) = returnV alue(mnm)
30) toLL(mss) = returnV alue(mnm)
31) ∀C ∈ ConcreteStrategies· trigs(mc,masC)
32) ∀C ∈ LeafCommands· trigs(mm,mlsC)
33) ∀C ∈ LeafCommands·

mlsC..sig = C.operation⇒
¬∃mmm ∈ messages·

trigs(mlsC ,mmm) ∧ isOp(mmm)

Figure 14. Specification of Request Handling Pattern

V. CASE STUDY

In the GoF book, the documentation for each pattern
concludes with a brief section entitled Related Patterns. A
few words are devoted to the comparisons and contrasts that
this title would suggest, but the section mostly consists of
suggestions for how other patterns may be composed with
the one under discussion. These compositions are the subject
of our case study.

On page 106 of the GoF book, for example, it is stated that
A Composite is what the builder often builds. This suggests a
composition of the Composite and Builder patterns, and that
composition can formally be specified using our operators

as follows:

(Builder ∗ Composite)[Product = Component].

Figure 15 shows the relationships between patterns that
we have successfully formalised. The formal definitions of
the relationships are given in Table II; the two numbers
in each row are the arrow label followed by the page
number in the GoF book. The column "Description of the
Relationship"’ quotes what are described in the GoF book.
The column "Formal Expression" gives the expression of the
relationship using the operators.

A similar diagram appears in the GoF book but we have
added five new arrows, numbered in bold font, for the

Ta
bl

e
II

F
O

R
M

A
L

D
E

FI
N

IT
IO

N
S

O
F

T
H

E
C

O
M

P
O

S
IT

IO
N

A
L

R
E

L
A

T
IO

N
S

H
IP

S
B

E
T

W
E

E
N

PA
T

T
E

R
N

S

N
o.

Pa
ge

D
es

cr
ip

tio
n

of
th

e
re

la
tio

ns
hi

p
Fo

rm
al

ex
pr

es
si

on
1

10
6

A
C

om
po

si
te

is
w

ha
t

th
e

bu
ild

er
of

te
n

bu
ild

s.
(B

u
il
d
er
∗
C
o
m
p
o
si
te
)
[P

r
o
d
u
ct

=
C
o
m
p
o
n
en

t]
2

17
3,

O
ft

en
th

e
co

m
po

ne
nt

-p
ar

en
t

lin
k

is
us

ed
fo

r
a

C
ha

in
of

R
es

po
n-

si
bi

lit
y.

(C
o
m
p
o
si
te
∗
C
h
a
in

O
f
R
es
p
o
n
si
bi
li
ty
)

[H
a
n
d
le
r
=

C
o
m
p
o
n
en

t
∧

O
p
er

a
ti
o
n
=

H
a
n
d
le
∧

m
u
lt
ip
li
ci
ty

=
1
]

23
2

C
ha

in
of

R
es

po
ns

ib
ili

ty
is

of
te

n
ap

pl
ie

d
in

co
nj

un
ct

io
n

w
ith

C
om

po
si

te
.T

he
re

,a
co

m
po

ne
nt

’s
pa

re
nt

ca
n

ac
t

as
its

su
cc

es
so

r.
3

17
3

W
he

n
D

ec
or

at
or

an
d

C
om

po
si

te
ar

e
us

ed
to

ge
th

er
,

th
ey

w
ill

us
ua

lly
ha

ve
a

co
m

m
on

pa
re

nt
cl

as
s.

(C
o
m
p
o
si
te
′
∗
D
ec
o
r
a
to
r
)
[D

ec
o
r
a
to
r
=

C
o
m
p
o
si
te
′
∧

C
o
m
p
o
si
te
′ .
C
o
m
p
o
n
en

t
=

D
ec
o
r
a
to
r.
C
o
m
p
o
n
en

t
∧

C
o
m
p
o
si
te
′ .
O
p
er

a
ti
o
n
=

D
ec
o
r
a
to
r.
O
p
er

a
ti
o
n
∧

C
o
n
cr
et
eC

o
m
p
o
n
en

t
=

L
ea

f
]

4
17

3
Fl

yw
ei

gh
t

le
ts

yo
u

sh
ar

e
co

m
po

ne
nt

s
[o

f
C

om
po

si
te

].
(C

o
m
p
o
si
te
∗
F
ly
w
ei
g
h
t)

[L
ea

f
s
=
{C

o
n
cr
et
eF

ly
w
ei
g
h
t,
U
n
sh

a
r
ed

C
o
n
cr
et
eF

ly
w
ei
g
h
t}
]

20
6

T
he

Fl
yw

ei
gh

t
pa

tte
rn

is
of

te
n

co
m

bi
ne

d
w

ith
th

e
C

om
po

si
te

pa
tte

rn
to

im
pl

em
en

t
a

lo
gi

ca
lly

hi
er

ar
ch

ic
al

st
ru

ct
ur

e
in

te
rm

s
of

a
di

re
ct

ed
-a

cy
cl

ic
gr

ap
h

w
ith

sh
ar

ed
le

af
no

de
s.

5
17

3
It

er
at

or
ca

n
be

us
ed

to
tr

av
er

se
co

m
po

si
te

s.
(C

o
m
p
o
si
te
∗
I
te
r
a
to
r
′)

[C
o
n
cr
et
eA

g
g
r
eg

a
te

=
C
o
m
p
o
n
en

t]
6

17
3

V
is

ito
rl

oc
al

is
es

op
er

at
io

ns
an

d
be

ha
vi

ou
rt

ha
tw

ou
ld

ot
he

rw
is

e
be

di
st

ri
bu

te
d

ac
ro

ss
co

m
po

si
te

an
d

le
af

cl
as

se
s

[i
n

th
e

C
om

po
si

te
].

(C
o
m
p
o
si
te
∗
V
is
it
o
r
)
[E

le
m
en

t
=

C
o
m
p
o
n
en

t
∧

O
p
er

a
ti
o
n
=

A
cc
ep

t(
v
)
∧

C
o
n
cr
et
eE

le
m
en

ts
=
{L

ea
f
,C

o
m
p
o
si
te
}]

7
24

2
A

C
om

po
si

te
ca

n
be

us
ed

to
im

pl
em

en
t

M
ac

ro
C

om
m

an
ds

[i
.e

.,
C

on
cr

et
eC

om
m

an
d

in
C

om
m

an
d]

.
(C

o
m
p
o
si
te
∗
C
o
m
m
a
n
d
)
[C

o
m
m
a
n
d
=

C
o
m
p
o
n
en

t
∧

ex
ec
u
te

=
o
p
er

a
ti
o
n
∧

C
o
n
cr
et
eC

o
m
m
a
n
d
=

L
ea

f
]

8
25

5
Fl

yw
ei

gh
t

sh
ow

s
ho

w
to

sh
ar

e
te

rm
in

al
sy

m
bo

ls
w

ith
in

th
e

ab
st

ra
ct

sy
nt

ax
tr

ee
.

(I
n
te
r
p
r
et
er
∗
F
ly
w
ei
g
h
t)

[T
er

m
in

a
lE

x
p
r
es
si
o
n
=

F
ly
w
ei
g
h
t]

9
25

5
V

is
ito

r
ca

n
be

us
ed

to
m

ai
nt

ai
n

th
e

be
ha

vi
ou

r
in

ea
ch

no
de

in
th

e
ab

st
ra

ct
sy

nt
ax

tr
ee

in
on

e
cl

as
s.

(I
n
te
r
p
r
et
er
∗
V
is
it
o
r
)[
E
le
m
en

t
=

A
bs
tr
a
ct
E
x
p
r
es
si
o
n
∧

I
n
te
r
p
r
et

=
A
cc
ep

t(
v
)∧

C
o
n
cr
et
eE

le
m
en

ts
=
{N

o
n
T
er

m
in

a
lE

x
p
r
es
si
o
n
,T

er
m
in

a
lE

x
p
r
es
si
o
n
}]

10
95

A
bs

tr
ac

tF
ac

to
ry

cl
as

se
s

ar
e

of
te

n
im

pl
em

en
te

d
w

ith
fa

ct
or

y
m

et
h-

od
s

of
Fa

ct
or

y
M

et
ho

d.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
((
F
a
ct
o
r
y
M

et
h
o
d
↑
P
r
o
d
u
ct
)
⇑
F
a
ct
o
r
y
M

et
h
o
d
))

[C
r
ea

to
r
=

A
bs
tr
a
ct
F
a
ct
o
r
y
∧

#
A
n
O
p
er

a
ti
o
n
s
=

1
∧

P
r
o
d
u
ct
s
=

A
bs
tr
a
ct
P
r
o
d
u
ct
s
∧

cr
ea

te
M

et
h
o
d
s
⊆

F
a
ct
o
r
y
M

et
h
o
d
s
∧

C
o
n
cr
et
eC

r
ea

to
r
s
=

C
o
n
cr
et
eF

a
ct
o
r
ie
s
∧

A
bs
tr
a
ct
F
a
ct
o
r
y
.C

o
n
cr
et
eP

r
o
d
u
ct
s
=

F
a
ct
o
r
y
M

et
h
o
d
.C

o
n
cr
et
eP

r
o
d
u
ct
s]

11
95

A
bs

tr
ac

tF
ac

to
ry

cl
as

se
s

ca
n

al
so

be
im

pl
em

en
te

d
us

in
g

Pr
ot

ot
yp

e.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
(P

r
o
to
ty
p
e
↑
C
li
en

t)
)
[C

o
n
cr
et
eF

a
ct
o
r
ie
s
⊆

C
li
en

ts
∧

A
bs
tr
a
ct
P
r
o
d
u
ct
s
⊆

P
r
o
to
ty
p
es
∧

C
r
ea

te
P
r
o
d
u
ct
O
p
er

a
ti
o
n
s
⊆

O
p
er

a
ti
o
n
s]

12
95

A
co

nc
re

te
fa

ct
or

y
in

th
e

A
bs

tr
ac

tF
ac

to
ry

is
of

te
n

a
si

ng
le

to
n.

(A
bs
tr
a
ct
F
a
ct
o
r
y
∗
(S

in
g
le
to
n
↑
{S

in
g
le
to
n
})
)
[S
in

g
le
to
n
s
⊆

C
o
n
cr
et
eF

a
ct
o
r
ie
s]

13
11

6
Fa

ct
or

y
m

et
ho

ds
ar

e
of

te
n

ca
lle

d
w

ith
in

Te
m

pl
at

e
M

et
ho

ds
.

(T
em

p
la
te
M

et
h
o
d
∗
F
a
ct
o
r
y
M

et
h
o
d
)

[A
bs
tr
a
ct
C
la
ss

=
C
r
ea

to
r
∧

T
em

p
la
te
M

et
h
o
d
=

A
n
O
p
er

a
ti
o
n
]

14
19

3
A

bs
tr

ac
tF

ac
to

ry
ca

n
be

us
ed

w
ith

Fa
ca

de
to

pr
ov

id
e

an
in

te
rf

ac
e

fo
r

cr
ea

tin
g

su
bs

ys
te

m
ob

je
ct

s
in

a
su

bs
ys

te
m

-i
nd

ep
en

de
nt

w
ay

.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
F
a
ca

d
e)

[A
bs
tr
a
ct
F
a
ct
o
r
y
=

F
a
ca

d
e]

15
16

1
A

bs
tr

ac
t

Fa
ct

or
y

ca
n

cr
ea

te
an

d
co

nfi
gu

re
a

pa
rt

ic
ul

ar
br

id
ge

.
(A

bs
tr
a
ct
F
a
ct
o
r
y
∗
B
r
id
g
e)

[A
bs
tr
a
ct
P
r
o
d
u
ct
s
=
{A

bs
tr
a
ct
io
n
,I

m
p
le
m
en

to
r
}]

16
19

3
us

ua
lly

on
ly

on
e

Fa
ca

de
ob

je
ct

is
re

qu
ir

ed
.

T
hu

s
Fa

ca
de

ob
je

ct
s

ar
e

of
te

n
Si

ng
le

to
ns

.
(F

a
ca

d
e
∗
S
in

g
le
to
n
)[
F
a
ca

d
e
=

S
in

g
le
to
n
]

17
24

2
A

M
em

en
to

ca
n

ke
ep

st
at

e
th

e
co

m
m

en
d

[i
n

C
om

m
ka

nd
]

re
qu

ir
es

to
un

do
its

ef
fe

ct
.

(C
o
m
m
a
n
d
∗
M

em
en

to
)[
O
r
ig
in

a
to
r
=

C
o
m
m
a
n
d
]

18
24

2
A

co
m

m
an

d
[i

n
C

om
m

an
d]

th
at

m
us

t
be

co
pi

ed
be

fo
re

be
in

g
pl

ac
ed

on
th

e
hi

st
or

y
lis

t
ac

ts
as

a
Pr

ot
ot

yp
e.

(C
o
m
m
a
n
d
∗
P
r
o
to
ty
p
e)
[C

o
m
m
a
n
d
=

P
r
o
to
ty
p
e]

19
27

1
Po

ly
m

or
ph

ic
ite

ra
to

rs
re

pl
y

on
fa

ct
or

y
m

et
ho

ds
to

in
st

an
tia

te
th

e
ap

pr
op

ri
at

e
It

er
at

or
su

bc
la

ss
.

(I
te
r
a
to
r
∗F

a
ct
o
r
y
M

et
h
o
d
)
[C

o
n
cr
et
eC

r
ea

to
r
=

C
o
n
cr
et
eA

g
g
r
eg

a
te
∧

C
r
ea

to
r
=

A
g
g
r
eg

a
te
∧

P
r
o
d
u
ct

=
I
te
r
a
to
r
∧
C
o
n
cr
et
eP

r
o
d
u
ct

=
C
o
n
cr
et
eI

te
r
a
to
r
∧
A
n
O
p
er

a
ti
o
n
=

C
r
ea

te
I
te
r
a
to
r
]

20
27

1
A

n
ite

ra
to

r
ca

n
us

e
a

m
em

en
to

to
ca

pt
ur

e
th

e
st

at
e

of
an

ite
ra

tio
n.

T
he

ite
ra

to
r

st
or

es
th

e
m

em
en

to
in

te
rn

al
ly

.
(M

em
en

to
∗
I
te
r
a
to
r
)
[C

o
n
cr
et
eA

g
g
r
eg

a
te

=
O
r
ig
in

a
to
r
]

21
28

2
C

ol
le

ag
ue

s
ca

n
co

m
m

un
ic

at
e

w
ith

th
e

m
ed

ia
to

r
us

in
g

th
e

O
b-

se
rv

er
.

(M
ed

ia
to
r
∗
O
bs
er

v
er

)
[C

o
n
cr
et
eC

o
ll
ea

g
u
es

=
{C

o
n
cr
et
eS

u
bj
ec
t,
C
o
n
cr
et
eO

bs
er

v
er
}]

22
30

3
T

he
C

ha
ng

eM
an

ag
er

[a
n

in
st

an
ce

of
th

e
M

ed
ia

to
rp

at
te

rn
]m

ay
us

e
th

e
Si

ng
le

to
n

pa
tte

rn
to

m
ak

e
it

un
iq

ue
an

d
gl

ob
al

ly
ac

ce
ss

ib
le

.
(M

ed
ia
to
r
∗
S
in

g
le
to
n
)
[C

o
n
cr
et
eM

ed
ia
to
r
=

S
in

g
le
to
n
]

23
31

3
T

he
Fl

yw
ei

gh
t

pa
tte

rn
ex

pl
ai

ns
w

he
n

an
d

ho
w

St
at

e
ob

je
ct

s
ca

n
be

sh
ar

ed
.

(F
ly
w
ei
g
h
t
∗
S
ta
te
)
[F

ly
w
ei
g
h
t
=

S
ta
te
∧
H
a
n
d
le

=
O
p
er

a
ti
o
n
(e
x
tr
in

si
cS

ta
te
)]

24
31

3
St

at
e

ob
je

ct
s

ar
e

of
te

n
Si

ng
le

to
ns

.
(S

ta
te
∗
(S

in
g
le
to
n
⇑
S
in

g
le
to
n
))

[S
in

g
le
to
n
s
⊆

C
o
n
cr
et
eS

ta
te
s]

25
20

6
It

’s
of

te
n

be
st

to
im

pl
em

en
t

St
ra

te
gy

ob
je

ct
s

as
Fl

yw
ei

gh
t.

(S
tr
a
te
g
y
∗
F
ly
w
ei
g
h
t)

[S
tr
a
te
g
y
=

F
ly
w
ei
g
h
t
∧
a
lg
o
r
it
h
m
I
n
te
r
f
a
ce

=
O
p
er

a
ti
o
n
(e
x
tr
in

si
cS

ta
te
)]

* Defining
grammar

* Defining
traversal

* Changing Skin
versus guts

(25) Sharing
strategies

(24)

(23) Sharing
states

(21) Complex
dependency
management

(22)

(20) Saving
state of iteration

(19)

(18)

(17) Avoiding
hysteresis

(16) Single
instance

(15)
(14)

(13) Often
uses

(12) Single
instance

(11) Configure
factory dynamically

(10) Implement
using

(9) Adding
operations

(8) Sharing
terminal symbols

(7) Composed
using

(6) Adding
operations

(2) Defining
the chain

(4) Sharing
composites

(1) Creating
composites

Composite

Iterator

Builder

Decorator

Strategy

Flyweight

Interpreter

Visitor

Memento
Command

Chain of
Responsibility

Observer

Mediator

Template
Method

Factory
MethodAbstract

Factory

Singleton
Prototype

Bridge ProxyAdapter

(5) Enumerating
children

(3) Adding
responsibilities

to objects

Facade

State

* Defining
algorithm

steps

Figure 15. Case Study on Formalising Relationships between GoF Patterns

relationships we have formalised that are discussed in the
main text but not shown on the original diagram. Four other
relationships are unnumbered but asterisked. These do not
represent compositions and so have not been formalised. In
particular, and for a start, it is a specialisation relation that
links Composite and Interpreter. The relationship between
Decorator and Strategy is about the differences between
them, not a suggested composition. So too is the relationship
between Strategy and Template Method. And finally, the
relationship between Iterator and Visitor, has been left
unformalised for the different reason that it is mentioned
in GoF only on the diagram, and not expanded upon in
the main text. Therefore, our case study has covered all the
compositional relationships in the GoF book.

Comparing Table II with Table 2 of [44], which express
the same relationships using composition with overlaps, we
can see that those compositional relationships that require
one-to-many and many-to-many overlaps can all be repre-
sented more accurately using our operators.

In summary, the case studies demonstrated that the oper-
ators defined in this paper are expressive enough to define
compositions of design patterns. Other work by us [44]
has shown that their logic properties and algebraic laws are
useful for proving the properties of pattern compositions.

VI. CONCLUSION

In this paper, we proposed a set of operators on design
patterns that enable compositions to be formally defined with
flexibility. We illustrated the operators with examples. We
also reported a case study on the relationships suggested by

the GoF book [2]. This demonstrated the expressiveness of
the operators when used to compose patterns.

A. Related Work

As far as we know, there is no similar work in the
literature that defines operators on design patterns for pattern
composition or instantiation. The closest work is perhaps
that of Dong et al. [37] and Taibi [18], [42], [43], as
previously discussed in Section I. Here we discuss the
relationship between their work and ours more formally,
using their notation for expositional clarity.

In [38], Dong et al. describe a composition P of patterns
P1, P2, · · ·Pn using a composition mapping C : P1 × · · · ×
Pn → P . This is, in fact, intended to formally represent a
set of signature mappings Ci such that Ci maps the sets of
component names in pattern Pi to P so the properties θi for
each Pi is translated into another property θ′i = C(θi) as a
part of the properties of P . In [39], the composition mapping
is better defined as from the union of the variables in Pi.
For instantiation, the mapping is to constants of classes,
attributes, methods, etc.

The approach of Taibi et al. [42], [43] is very similar
except that they directly rename the components using sub-
stitution. Again, composition replaces variables with vari-
ables, whereas instantiation replaces them with constants.
Formally, if pattern P1 have properties ϕ1 and pattern P2

have properties ϕ2 then the properties of their composition
are given by

Subst{v1\t1, · · · , vn\tn}, ϕ1 ∧ ϕ2,

which, informally, is the conjunction of ϕ1 and ϕ2 after
variables vi have each been replaced by terms ti. Here,

terms ti are either variables or constants. This approach
has an advantage over that of Dong et al. that instantiation
and composition are represented in the same notation, but
apart from that it is mathematically equivalent, because
substitutions are mappings with the terms restricted to be
either variables or constants. Since substitutions and sig-
nature mappings must both preserve variable types for the
translations to be syntactically valid, neither approach can
express one-to-many or many-to-many overlaps. Moreover,
they are both mathematically equivalent to an application of
our restriction operator with conditions in the simplest form,
u = v. That is why our approach is more expressive, as we
have demonstrated in the case study.

B. Further work

Formal reasoning about design patterns and their com-
positions can naturally be supported by formal deduction
in first-order logic. This activity is well understood, and
well supported by software tools such as theorem provers.
It is desirable to employ or develop such tools for automatic
reasoning about pattern compositions that are expressed as
applications of the operators.

We have seen that pattern compositions can be represented
by different but equivalent expressions. For example, we saw
in Section III that Adapter1 can be expressed either using
the restriction operator or by using the flatten operator, and
these two expressions are equivalent. Inspired by this, we
have investigated the algebraic laws that the operators obey.
This led us to a calculus of pattern composition for reasoning
about the equivalence of such expressions. The results have
been reported in a separate paper [48], thus omitted here.

One of the more important questions in the study of
pattern composition is whether a composition is appropriate
for a particular pair of patterns. Dong et al. addressed this
issue in [37] with their notion of faithfulness conditions.
A composition is faithful to the composed patterns if it
satisfies two conditions: (a) no pattern loses any properties
after composition, and (b) the composition does not add any
new facts to its components. However, Taibi and Ngo argued
that although the first condition is relevant, it is not always
necessary [43]. So further investigation seemed warranted
on how to formalise the notion of appropriateness, and to
prove that the operators presented in this paper have such a
property.

REFERENCES

[1] I. Bayley and H. Zhu, “A formal language of pattern compo-
sition,” in Proceedings of The 2nd International Conference
on Pervasive Patterns (PATTERNS 2010). Xpert Publishing
Services, Nov. 2010, pp. 1–6.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best
Practices and Design Strategies, 2nd ed. Prentice Hall, 2003.

[4] M. Grand, Patterns in Java: A Catalog of Reusable Design
Patterns Illustrated with UML,Volume 1. John Wiley & Sons,
2002.

[5] ——, Patterns in Java, volume 2. John Wiley & Sons, 1999.

[6] ——, Java Enterprise Design Patterns. John Wiley & Sons,
2002.

[7] M. Fowler, Patterns of Enterprise Application Architecture.
Addison Wesley, 2003.

[8] G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison Wesley, 2004.

[9] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oriented Software Architecture. vol. 4: A Pattern Language
for Distributed Computing. John Wiley & Sons, 2007.

[10] M. Voelter, M. Kircher, and U. Zdun, Remoting Patterns. John
Wiley & Sons, 2004.

[11] M. Schumacher, E. Fernandez, D. Hybertson, and F.
Buschmann, Security Patterns: Integrating Security and Sys-
tems Engineering. John Wiley & Sons, 2005.

[12] C. Steel, Applied J2EE Security Patterns: Architectural Pat-
terns & Best Practices. Prentice Hall, 2005.

[13] L. DiPippo and C. D. Gill, Design Patterns for Distributed
Real-Time Systems. Springer-Verlag, 2005.

[14] B. P. Douglass, Real Time Design Patterns: Robust Scalable
Architecture for Real-time Systems. Addison Wesley, 2002.

[15] R. S. Hanmer, Patterns for Fault Tolerant Software. Wiley,
2007.

[16] P. S. C. Alencar, D. D. Cowan, and C. J. P. de Lucena, “A
formal approach to architectural design patterns,” in Proc. of
FME’96, Springer-Verlag, 1996, pp. 576 – 594.

[17] T. Mikkonen, “Formalizing design patterns,” in Proc. of ICSE
1998. IEEE CS, April 1998, pp. 115–124.

[18] T. Taibi, D. Check, and L. Ngo, “Formal specification of
design patterns-a balanced approach,” Journal of Object Tech-
nology, vol. 2, no. 4, Jul.-Aug. 2003.

[19] E. Gasparis, A. H. Eden, J. Nicholson, and R. Kazman,
“The design navigator: charting Java programs,” in Proc. of
ICSE’08, Companion Volume, 2008, pp. 945–946.

[20] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioural features of design patterns,” Journal of
Systems and Software, vol. 83, no. 2, pp. 209–221, Feb. 2010.

[21] J. Niere, W. Schäfer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery,” in Proc.
of ICSE 2002. IEEE CS Press, May 2002, pp. 338–348.

[22] D. Hou and H. J. Hoover, “Using SCL to specify and check
design intent in source code,” IEEE Transactions on Software
Engineering, vol. 32, no. 6, pp. 404–423, June 2006.

[23] N. Nija Shi and R. Olsson, “Reverse engineering of design
patterns from Java source code,” in Proc. of ASE 2006, Sept.
2006, pp. 123–134.

[24] A. Blewitt, A. Bundy, and I. Stark, “Automatic verification of
design patterns in Java,” in Proc. of ASE 2005. ACM Press,
Nov. 2005, pp. 224–232.

[25] D. Mapelsden, J. Hosking, and J. Grundy, “Design pattern
modelling and instantiation using dpml,” in Proc. of Tools
Pacific 2002. Australian Computer Society, 2002, pp. 3–11.

[26] J. Dong, Y. Zhao, and T. Peng, “Architecture and design
pattern discovery techniques - a review,” in Proc. of SERP
2007, H. R. Arabnia and H. Reza, Eds., vol. II. CSREA Press,
Jun. 25-28 2007, pp. 621–627.

[27] D.-K. Kim and L. Lu, “Inference of design pattern instances
in UML models via logic programming,” in Proc. of ICECCS
2006. IEEE CS Press, Aug. 2006, pp. 47–56.

[28] D.-K. Kim and W. Shen, “An approach to evaluating structural
pattern conformance of UML models,” in Proc. of SAC’07.
ACM Press, March 2007, pp. 1404–1408.

[29] ——, “Evaluating pattern conformance of UML models:
a divide-and-conquer approach and case studies,” Software
Quality Journal, vol. 16, no. 3, pp. 329–359, 2008.

[30] H. Zhu, I. Bayley, L. Shan, and R. Amphlett, “Tool support
for design pattern recognition at model level,” in Proc. of
COMPSAC 2009. IEEE CS Press, Jul. 2009, pp. 228–233.

[31] H. Zhu, L. Shan, I. Bayley, and R. Amphlett, “A formal
descriptive semantics of UML and its applications,” in UML
2 Semantics and Applications, K. Lano, Ed. John Wiley &
Sons, Nov. 2009.

[32] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oirented Software Archiecture. vol. 5: On Patterns and Pat-
tern Languages. John Wiley & Sons, 2007.

[33] D. Riehle, “Composite design patterns,” in Proc. of OOP-
SLA’97. ACM Press, Oct. 1997, pp. 218–228.

[34] J. Vlissides, “Notation, notation, notation,” C++ Report, Apr.
1998.

[35] J. Dong, S. Yang, and K. Zhang, “Visualizing design patterns
in their applications and compositions,” IEEE Transactions
on Software Engineering, vol. 33, no. 7, pp. 433–453, Jul.
2007.

[36] J. M. Smith, “The pattern instance notation: A simple hi-
erarchical visual notation for the dynamic visualization and
comprehension of software patterns,” Journal of Visual Lan-
guages and Computing, vol. 22, no. 5, pp. 355–374, Oct.
2011, doi:10.1016/j.jvlc.2011.03.003.

[37] J. Dong, P. S. Alencar, and D. D. Cowan, “Ensuring structure
and behavior correctness in design composition,” in Proc. of
ECBS 2000. IEEE CS Press, Apr. 2000, pp. 279–287.

[38] J. Dong, P. S. C. Alencar, and D. D. Cowan, “Correct
composition of design components,” in Proc. of the 4th In-
ternational Workshop on Component-Oriented Programming
in conjunction with ECOOP’99, 1999.

[39] J. Dong, P. S.C.Alencar, and D. Cowan, “A behavioral
analysis and verification approach to pattern-based design
composition,” Software and Systems Modeling, vol. 3, pp.
262–272, 2004.

[40] J. Dong, T. Peng, and Y. Zhao, “Automated verification
of security pattern compositions,” Information and Software
Technology, vol. 52, no. 3, p. 274–295, Mar. 2010.

[41] ——, “On instantiation and integration commutability of
design pattern,” The Computer Journal, vol. 54, no. 1, pp.
164–184, Jan. 2011.

[42] T. Taibi, “Formalising design patterns composition,” Software,
IEE Proceedings, vol. 153, no. 3, pp. 126–153, Jun. 2006.

[43] T. Taibi and D. C. L. Ngo, “Formal specification of design
pattern combination using BPSL,” Information and Software
Technology, vol. 45, no. 3, pp. 157–170, March 2003.

[44] I. Bayley and H. Zhu, “On the composition of design pat-
terns,” in Proc. of QSIC 2008, IEEE CS Press, Aug. 2008,
pp. 27–36.

[45] H. Zhu, “On the theoretical foundation of meta-modelling
in graphically extended BNF and first order logic,” in Proc.
TASE 2010. IEEE CS Press, Aug. 2010, pp. 95–104.

[46] ——, “An institution theory of formal meta-modelling in
graphically extended BNF,” Frontier of Computer Science,
(In Press).

[47] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
oriented Software Architecture. Vol. 1: A System of Patterns.
John Wiley & Sons, 1996.

[48] H. Zhu and I. Bayley, “Laws of pattern composition,” in Proc.
of ICFEM 2010, LNCS, vol. 6447. Springer, Nov. 17-19 2010,
pp. 630–645.

