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A B S T R A C T

Adipose tissue is a complex and multi-faceted organ. It responds dynamically to internal and external stimuli,
depending on the developmental stage and activity of the organism. The most common functional subunits of
adipose tissue, white and brown adipocytes, regulate and respond to endocrine processes, which then determine
metabolic rate as well as adipose tissue functions. While the molecular aspects of white and brown adipose
biology have become clearer in the recent past, much less is known about sex-specific differences in regulation
and deposition of adipose tissue, and the specific role of the so-called pink adipocytes during lactation in
females. This review summarises the current understanding of adipose tissue dynamics with a focus on sex-
specific differences in adipose tissue energy metabolism and endocrine functions, focussing on mammalian
model organisms as well as human-derived data. In females, pink adipocytes trans-differentiate during
pregnancy from subcutaneous white adipocytes and are responsible for milk-secretion in mammary glands.
Overlooking biological sex variation may ultimately hamper clinical treatments of many aspects of metabolic
disorders.

1. Introduction

Adipose tissue is a complex, essential and highly active metabolic
and endocrine organ widely recognized to fulfil a variety of functions.
These include mechanical protection and thermic insulation, regulated
storage and release of energy, immune responses, and non-shivering
thermogenesis [1–3]. In the recent decades, excess adipose tissue
accumulation (obesity) has emerged as one of the major medical
challenges in societies worldwide. Obesity leads to overall increased
incidences of metabolic complications, such as insulin resistance and
diabetes, dyslipidaemia and cardiovascular dysfunction, but also neu-
rodegenerative diseases and cancer [4–7]. Adipose tissues, as compo-
nent of connective tissues, occur as depots either under the skin
(subcutaneous depots) or in the visceral cavity, where they surround
the inner digestive organs and thus are considered a multi-depot organ
[2]. Excess white adipose tissue in overweight or obese patients is
generally seen as risk factor, and this risk association is strongest in
obese patients with visceral adiposity [8].

The general cytology of the key functional units of adipose tissue,

the adipocytes, is well understood [2,3,9] (Fig. 1). White and brown
adipocytes differ clearly in their physiology and structural character-
istics [2,3,9]. While brown adipocytes transform energy for thermo-
genesis, e.g. the production of heat, white adipocytes store and release
energy according to the metabolic needs of the organism [1]. In the
recent past, an intermediate type of brown-like fat cells, the so-called
beige [10] or brite (brown-in-white) [11] adipocytes, has been de-
scribed. These cells occur interspersed within depots of white adipose
tissue (WAT), and trans-differentiate from mature white adipocytes
[12,13], or may also, to some extent, derive from de novo differentia-
tion of progenitors [14]. Beige/brite adipocytes develop mostly in
response to cold exposure or other mechanisms of adrenergic stimula-
tion of the WAT depots [15,16]. A female-specific cell type, the so-
called pink adipocyte, arises during pregnancy from subcutaneous
depots. It produces and secretes milk and plays a key, if transient, role
in the female metabolism during the early stages of offspring fostering
[17] (Fig. 1). Just as white adipocytes trans-differentiate into beige
adipocytes during browning, white adipocytes also transform into milk-
producing pink adipocytes in pregnant females [13]. As indicated in
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Fig. 1, pink adipocytes are milk-secreting alveolar glands that are
quickly re-constituted into regular white adipocytes after weaning. Not
surprisingly therefore, once the mammary glands have re-shaped into
subcutaneous adipocytes again, the energy demands of the female
returns to baseline. In humans, postpartum weight retention however is
very common, and often gives rise to long-term overweight and obesity
[18].

A substantial body of knowledge has been assembled in relation to
maladaptive pathologies, adipose tissue biology and obesity, and has
been reviewed in great detail before [19–22]. However, one area that
has received comparatively little attention is the transferability of
research results between different sexes of the same model organism
and sex-specific metabolic functions of lipids metabolism, e.g. the
process of lactation. Differentiation between sex-specific metabolic
differences that translate into altered distribution of fat stores as well
as mobilization of lipids in response to metabolic challenges may help
to better understand the contemporary obesity epidemic. This review
aims to summarize the current knowledge on sex-specific differences in
adipose tissue energy metabolism, focussing on mammalian model
organisms as well as human-derived data. We also discuss the sex
differences in nutrient homeostasis as well as metabolic hormone/
adipokine regulation (Fig. 2).

2. Adipose tissue energy metabolism

Mammalians have evolved a precisely tuned endogenous system
controlling energy balance, i.e. energy/food intake and expenditure.
This involves local processes in the peripheral adipose organs, such as
lipid mobilization and storage, as well as release of endocrine signals in
the form of hormones and other signalling molecules. On the other
hand, central mechanisms integrate food intake regulation, energy
expenditure and environmental cues with such endocrine signals to
achieve metabolic balance (Fig. 2). Several models have been put
forward to explain this elaborate control system (summarised in [23]).

The set point model proposes the existence of an active feedback loop
that determines overall fat mass of the body, thus linking energy stores
in adipose tissue to expended energy using a pre-determined level that
presumably is set in the brain [23]. On the molecular level, this model
system proposes the existence of a fat-derived signal, a lipostat, that is
sensed by the brain to control influx of nutrients, e.g. hunger, or
outflow of excess nutrients for instance by thermogenic dissipation
[24]. In the more recent past, the hormone leptin, secreted from
adipocytes, has been introduced as a potential mediator of the set
point [25–27]. While this model is suitable to explain most biological
aspects of body fatness, it is difficult to incorporate extrinsic aspects,
such as societal and sociological cues, that also contribute to the
development of adiposity [20].

As an alternative, the settling point hypothesis suggests a passive
feedback between the size of the fat depots and energy dissipation [23].
Here, the level of energy influx also determines the outflow of energy,
and has been likened to the more or less stable water levels of a lake,
where the extent of water leaving is equal to the water addition from
the environment. Both of these models, however, fail to explain the
gene-by-environment interactions, which are the key to a constant body
mass [23]. Thus, two additional models, the general intake model and
the dual intervention point model are currently tested [23]. These two
models provide an evolutionary rationale to explain why harmonised
systems to control energy intake and expenditure might have evolved.
The dual intervention point model [28] in particular proposes a lower
and an upper intervention point for body fatness predicted by the risk of
starvation on the one hand, and by the risk of falling prey to a predator
due to immobility on the other hand [28]. To date, the aspect of
biological sex has not yet been addressed in context with the above-
enumerated models on the regulation of body fatness. We envisage that
the models may be applicable to both sexes similarly. However, the
exact localization of the upper and lower intervention point may be
somewhat shifted in females due to the outstanding energy demands
during lactation (see subchapter on lactation).

Key to the fine tuning of energy and food intake and providing the
basis of all the above-mentioned models is the interplay of the three
metabolic hormones leptin, ghrelin and insulin [29], and a number of
other important regulatory signals. Leptin and its receptor are innately
connected to adipose tissue function due to their ability to convey
information on the nutritional status and to modulate metabolic rates
accordingly [29]. Leptin was among the original cytokines to be
identified as adipokines, e.g. endocrine signals secreted from adipose
tissue [30], and is now recognized as a major regulator of energy
homeostasis [29,31,32]. Since then, a wide range of new adipokines
with diverse biological effects have been identified, reshaping the
traditional role of adipose tissue depots as energy storage units to
major endocrine organs [32,33]. Similarly, the gastrointestinal peptide,
ghrelin, which was discovered in 1999, plays a key role in feeding
behaviour and metabolism [34,35]. Finally, pancreatic islet-derived
insulin drives rates of lipolysis and triacylglycerol uptake from the
blood into adipose tissue and skeletal muscles and therefore is the third
major player in the regulation of body fatness (Fig. 2).

Fig. 1. Schematic general cytology of the three cell types constituting the adipose tissue organ: white, brown and pink adipocytes. LD=Lipid droplet, M Mitochondrion, N Nucleus, G
Golgi Apparatus, ER Endoplasmic reticulum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 2. Feedback loop scheme involved in the regulation of body fatness. Sex-specific
differences may impact on each of the given factors.
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3. Sex-specific differences in adipose tissue distribution patterns
and metabolic control

Traditionally, the net amount of body fat is considered in diagnosing
body fatness in mammals, which in humans is reflected by the
computation and importance of the body mass index (BMI), [36]. The
distribution of adipose tissue depots has recently received a more
differentiated level of attention. While visceral (and abdominal-sub-
cutaneous) fat is associated with features of the Metabolic Syndrome,
such as type 2 diabetes, cardiovascular disease, atherosclerosis and
hypertension, fat accumulation in subcutaneous gluteal-femoral depots
of body fat may be protective against mechanical loads as well as
buffering during times of food scarcity [37]. As such, the distribution of
adipocytes in specific depots is far more important for the pathogenesis
of adiposity and associated diseases than purely quantitative considera-
tions of body fatness [37,38].

Aside from the well-known pathophysiological consequences of an
unhealthy distribution or accumulation of adipose depots, the per-
ceived ideal of a beautiful body in many cultures favours little or no
accumulation of visible fat mass. Surprisingly, in a recent epidemiolo-
gical study of ten populations from diverse African, Asian and
Caucasian backgrounds, an inverse correlation between body fatness
or BMI and subjective perception of physical attractiveness was
uncovered [39]. As adipose tissue is mostly perceived as unattractive
and harmful, and even indicative of an intemperate and unhealthy
lifestyle, it has received little scientific attention until some decades
ago, when it was identified as a vital organ in vertebrate physiology
[31,32,40]. Based on the assumption that greater body fatness may
reflect a higher potential to survive famines and/or produce viable
offspring, it was suggested that increased body fatness may therefore
signal evolutionary fitness, a prediction that does not hold true [39].
Aesthetics aside, recent studies suggest an optimum adipose tissue
quantity, which is thought to assist in surviving periods of energy
shortage, illness or other situations during which fat depots buffer the
energy needs of the organism [40,41]. Accordingly, absence or
complete lack of adipose tissue reduces fertility and survival rates in
almost all stressful and energetically challenging conditions (sum-
marised in Table 1). Interestingly, recent analyses have found that a
certain level of mild overweight may even be beneficial in relation to
all-cause mortality and life expectancy [42].

Females and males differ quite markedly in adipose tissue distribu-
tion, but the biological underpinnings of these associations remain to be
investigated in more detail [38]. While the android fat deposition refers

to fat accumulation in the upper body and upper abdominal areas, i.e.
above the waist, also known as the so-called apple shape in obese men,
the gynoid fat deposition is described as accumulation of body fat
below waist around the hips and thighs, i.e. the so-called pear shape
[38]. It has been proposed that circulating gonadal steroids determine
these sex-specific differences in adipose tissue distribution, which can
be observed even after menopause, but are much more pronounced
during the reproductive phase [43]. However, sex specifics already
occur before puberty, suggesting that at least some mechanisms of
differential adipose tissue distribution are unrelated to sex steroids
[44,45]. Interestingly, and apart from gonadal steroids, the number of X
chromosomes also contributes to sex-specific differences in obese mice
[46], and in 47, XYY men a trend to elevated central adiposity is
observed [47]. It should be noted that there is no equivalent android
(apple) or gynoid (pear) shape body fat distribution types in laboratory
rodents, even though differences in adiposity between the sexes are
well documented [43].

To date, evidence is accumulating that sex-specific differences in the
functionality of each type of adipose tissue are not solely based on the
size of a specific depot (e.g. visceral vs. subcutaneous fat), but also on
differential gene expression patterns between the sexes leading to
different proteins expressed in, and potentially secreted form, visceral
and subcutaneous adipose tissues [38,43]. The epidemiological and
clinical evidence has clearly established a differential risk association
with high risk for metabolic disease in the android/apple shaped
obesity-type, whereas gynoid/pear-shaped adiposity appears to show
less association or may even exert protective effects [48,49]. For
instance, correction for visceral adipose accumulation in men and
women essentially abolished sex-specific differences in the develop-
ment of cardiovascular disease [50], and preferential accumulation of
adipose tissue in peripheral and gluteofemoral depots protects against
development of atherosclerosis [51–53]. In summary, a fat distribution
pattern more pronounced in female individuals contributes to a
healthier metabolic profile and may even be involved in the determina-
tion of overall life expectancy, which is well known to be elevated in
women compared to men. The physiological consequences of excess or
insufficient fat storage remain incompletely understood in many
regards. One of the key remaining questions is to determine the
limitations to metabolic flexibility that either allow appropriate hand-
ling of dietary nutrients or lead to failure to do so, which will ultimately
lead to obesity and metabolic disease. Most important in this context is
the apparent and prominent difference in adipose tissue distribution
between men and women, colloquially referred to as the apple- and the
pear-shaped obesity [38]. To highlight sex-specific differences pertain-
ing to the most important functions of adipose tissue, we compiled the
available data from mammals depending on physiological states and by
referring to different adipose depots and types in the body (Table 1).
Adipose tissue thus is key during phases of net energy expenditure such
as reproduction and famines, during disease and frailty, during cold
when body temperature needs to be conserved and also as an outer
barrier against mechanical stress (Table 1).

In the last two decades, white adipose tissue also emerged as “a
pivotal organ controlling lifespan” [54]. Numerous target genes relating
to adipose tissue metabolism to date are supposed to be involved in
aging [54,55]. The link between aging and adipose tissue is intuitive as
body mass increases with age, particularly in the post-reproductive age
[56,57]. In old age, body fat and accordingly the entire phenotype of
gene expression and metabolomics is changed [58]. Among possibly
hundreds of other genes, sirtuin 1 (SIRT1), ubiquitously expressed and
present in white adipose tissue, was shown to down-regulate the stress-
responsive inducers of cell death (p53), apoptosis and the forkhead
family of transcription factors (FOXO) during caloric restriction [54].
Similarly, tissue-specific knockout of the insulin receptor also induces
lipolysis and extends lifespan in mice [59]. Thus, in order to delay
aging, a reduction in white adipose tissue seems to be the general
recommendation although body fat mass of senescent mammals shows

Table 1
Main functions of adipose tissue in mammals.

Physiological state Tissue function Location in body References

Reproduction, Lactation,
Survival of energy
shortages, Age/
Frailty, Disease

Energy storage All white depots,
Visceral,

[1,113]

Subcutaneous

Non-shivering
thermogenesis

Source of heat Supraclavicular, [114]
Paravertebral,
Cervical,
Interscapular,
Axillary,
Mediastinal

Temperate and polar
regions: Marine
animals

Thermal
insulation

Subcutaneous [1]
(“blubber”)

Metabolism, Starvation,
Food intake,
Digestion, Endocrine
control

Production of
hormones,
Signalling
molecules

All depots, [41,62]
Visceral,
Subcutaneous

Mechanical load Support,
Buffering
capacity

Subcutaneous, [115]
Epicardial

T.G. Valencak et al. Redox Biology 12 (2017) 806–813

808



complicated dynamics [55,60]. For the life-shortening effects of excess
white adipose tissue both the modification of white adipose tissue
derived adipokines and the higher risk for age-related metabolic
diseases such as type 2 diabetes were made responsible [54,55].
However, recent exciting research also reveals that white adipose
tissue, lipolysis and lipolytic enzymes play a key role for survivability
of cancer [61]. Cachexia is a life-threatening condition of dramatic loss
of adipose tissue as observed in late-stage cancer patients with a limited
survival prognosis [61]. Absence of ATGL and HSL, however, delayed
the development of cachexia [63], suggesting that reduced ability for
lipid mobilization may be a suitable approach to attenuate progression
of cachexia. The role of sex-specific differences in development of
cachexia related to malfunction of the lipolytic enzymes still needs to be
identified.

Obese female mice contained more adipose tissue mass compared to
weight-matched males, but were more glucose tolerant, displayed
elevated expression of adiponectin and reductions in adipose tissue
immune cell infiltration as well as oxidative stress levels. This observa-
tion suggests that the protective benefits of oestrogen on oxidative
stress is retained during adiposity and may help to ameliorate metabolic
defects in female compared to male mice [64]. Along these lines, it was
previously recognized that oestrogen itself has antioxidant properties
and induces expression of several longevity genes, which may in turn
help to promote stress resistance [65]. In summary, the well-known
effect of longer life expectancy may at least in part rely on metabolic
differences and may particularly pertain to molecular and functional
sex differences in adipose tissue depots.

4. Sex-specific differences in endocrine function and adipokine
secretion

In view of the above-mentioned major contributors to metabolic
control, it is not surprising that the scientific progress in endocrinology
raised the status of white adipose tissue from a passive repository of
excess lipids to a key endocrine organ [31]. When discussing the wide
array of secreted molecules acting as adipokines, it should not be
overlooked that indeed fatty acids are quantitatively the most impor-
tant secretory products of adipose tissue.

Fatty acids per se have been linked to lipotoxicity, and are therefore
usually metabolised rapidly to minimize this potentially pathogenic
effect [66]. In women, non-oxidative FFA disposal rates were signifi-
cantly increased compared to men [67]. Noradrenaline derived from
the sympathetic nervous system drives the breakdown of triacylglycer-
ols into free fatty acids and glycerol during lipolysis, which is activated
by cold exposure, caloric restriction or other situations characterized by
increased metabolic demand for energy equivalents [68]. In light of the
potential involvement of lipostat signals in setting metabolic rates and
energy intake, one needs to consider nutrient sensing on all levels, e.g.
in peripheral organs as well as in the central nervous system. Metabolic
pathways involved in nutrient sensing play a critical role and are
extensively reviewed in [69].

While substantial research is conducted to elucidate the molecular
steps of the lipolysis pathways [62], and to identify new adipokines and
their function, only limited attention has been paid to sex-specific
differences of these adipose tissue derived factors. Researchers tend to
avoid the use of female animals in the biomedical sciences for reasons
around potentially higher metabolic variabilities related to the female
hormonal cycle [70]. Analyses of sex-specific differences in circulating
levels of some adipokines have revealed important differences. For
instance, circulating levels of the hormone leptin are increased in
women compared to men [71,72], whereas male mice show higher
leptin concentrations compared to female mice [73,74], suggesting that
some relationships between adipokines and energy metabolism as seen
in females do not hold true in males and vice versa (Table 2). Another
prominent example is adiponectin, a more recently discovered adipo-
kine, primarily produced by subcutaneous white adipose tissue and

inversely correlated to overall fat mass and metabolic perturbations
[75]. As subcutaneous white adipose tissue is the main source for
adiponectin, it is also thought to be the reason why there are no or little
detrimental health associations for people with a high degree of
subcutaneous adiposity [48,49]. Ever since its discovery in 1995, this
adipokine has repeatedly been associated with improved metabolic
outcomes such as enhanced insulin sensitivity and reduced risk for
cardiovascular complications in obese patients [76,77]. Adiponectin
levels are higher in females than in males for so far unknown biological
reasons [75]. Similarly, it was found in adipose tissue biopsies that
adipocyte size, basal lipolysis and fatty acid oxidation rates as well as
exercise driven lipolysis differ significantly between men and women
[78]. From studies in humans, differences in fatty acid mobilization,
oxidation and also storage are well documented [37,78]. Moreover,
cyclical reproductive hormones do not correlate well with adipokine
levels [79].

In light of these facts, failure to consider sex-specific differences in
adipose tissue and its pathophysiological complications are potentially
significant. A rather marked male study subject bias is well described,
with an average of 3.7 males to one female subject contributing to
overall scientific knowledge [70]. A prevalent explanation among
researchers is the higher variability in metabolic parameters being
affected by cyclical fluctuation of reproductive hormones, potentially
leading to a more complicated experimental set-up and more complex
and difficult interpretation of data [70]. Other reasons may range from
matters of convenience, to reluctance to accept sex-specific effects, and
finally additional costs arising from larger sample sizes. However, the
assumption that female mammals are innately more variable than
males seems not fully appropriate [80]. Notably, inclusion of women in
clinical trials was mandated only in 1993 [80], and research on female
animals or female-derived cell systems was not expressly sanctioned by
the NIH until 2014 [81]. As impressively summarised by Beery et al.
[80], sex-specific differences in pharmacokinetics and pharmacody-
namics of many clinical therapies already affect women's health,
showing the importance of following the recommendation to pursue a
gender-balanced research strategy [80]. In summary, the differences in
adipose tissue distribution between women and men, as discussed in the
previous chapter, and the different survival probabilities of obese
women and men [82,83], make consideration of both sexes an
important necessity and cannot be overlooked to the same extent as
in rodent studies where sex differences may be more subtle and less
apparent. Not surprisingly therefore, comprehensive reviews on human
white adipose tissue metabolism exist [37,77] that discuss information
on the sex-specific secretion of the most important adipokines.

5. Sex-specific differences in brown adipose tissue and regulation
by steroid hormones

Apart from its role in energy storage (Table 1) [1], adipose tissue
serves as a source of heat to maintain body temperature and for thermal
insulation. Its low specific weight and the high-energy yield of
triglycerides compared to carbohydrates and proteins render it the
favoured storage form for energy equivalents in the evolution of
modern species. Not surprisingly therefore, small mammals below
20 kg body mass rely on physiological measures such as lower meta-
bolic rates by means of torpidity to utilize less body fat, and still survive
winter or periods of food scarcity.

Brown adipocytes with more fragmented, e.g. multilocular, lipid
droplets and numerous mitochondria make up the thermogenic com-
ponent of this type of adipose tissue. Mediated by uncoupled protein 1
(UCP-1), a protein uniquely expressed in brown as well as beige/brite
adipocytes, substrate oxidation is uncoupled from ATP synthesis, and
heat is released instead [2,3,16,84,85]. In a process generally consid-
ered a white-to-brown trans-differentiation of adipocytes, commonly
referred to as browning, the recruitment of beige cells under in vivo
conditions takes place in response to cold or adrenergic stimulation
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[16,84]. In terms of sex differences, female mice are more responsive
than males to browning of abdominal and subcutaneous white adipose
tissue during β-adrenergic stimulation [86]. In humans, a greater
abundance of BAT in women was reported early on [87,88]. Consis-
tently, female rats display higher levels of thermogenesis in ad libitum
feeding conditions [89]. Of note, sex specific differences in BAT were
reported for its lipid composition, while WAT depots showed a much
less pronounced dimorphism [90]. Under caloric restriction, female rats
deactivate facultative thermogenesis to a greater degree than males,
which results in increased conservation of metabolic organ mass, and
which has been proposed to ultimately be advantageous for female
survival in food-limited situations [91].

While metabolic rates appear to be similar in women and men when
adjusted to lean mass [38], the level of oestrogen-dependent sympa-
thetic innervation was higher in females than in males [86], altogether
suggesting that females are able to adjust their ability for thermogenesis
more acutely than males. This sexual dimorphism seems to be due to
differences in several aspect of brown adipocyte function that occur in
female compared to male brown adipocytes. For instance, mitochon-
drial function, as indicated by increased cristae height and density in
mitochondria of female BAT, and sensitivity of brown adipocytes to
beta-adrenergic stimulation, was higher in females compared to males
[92]. This is further corroborated by the observation that expression of
thermogenic genes is lower in BAT of males fed a high fat diet than in
females [91]. On the molecular level, expression of the major sex
steroid receptors, e.g. androgen, oestrogen and progesterone receptors,
have been documented on brown adipocytes [94]. Moreover, the
actions of sex steroids on the nervous system have also been proposed
as mediators of sexual dimorphisms in energy balance [95]. Oestrogen
receptor (ER) knockout mice display lower metabolic rates and are
obese, while ovariectomised mice become obese and display BAT
atrophy [96–98]. These phenotypes could potentially be mediated by
changed central signalling, and thus indirect effects of this hormone of
BAT [95].

Similar to ER-deficient mice, androgen receptor (AR) knockout mice
become obese, which is likely due to lowered energy expenditure and
reduced expression of thermogenic genes such as UCP1, which inciden-
tally contains an androgen-response element in its promoter [99]. In the
case of androgen signalling, however, the available scientific evidence
is complex: Some studies have suggested a negative regulatory role on
UCP1 expression as in vitro treatment with testosterone decreased
UCP1-expression [100], while no effect on thermogenesis was observed
in animals treated with testosterone [101]. In summary, the role of AR
in brown adipogenesis is not fully understood, and the literature
suggests that direct aspects on brown adipocytes as well as control of
food intake-dependent effects on metabolism [95]. Lastly, progesterone
stimulates expression of UCP1 and lipolysis rates, and enhanced
mitochondrial biogenesis [100,102,103]. Taken together, steroid hor-
mones appear to play an important role in brown adipocyte metabolism
and may well mediate the sexual dimorphisms observed in this adipose
tissue type.

6. Lactation as female-specific aspect of lipid/energy metabolism:
specialised demands on female metabolic energy balance and the
identification of pink adipocytes

White adipose tissue is the most efficient depot of triglyceride
storage. During the process of lipolysis, three main enzymes regulate
the mobilization of free fatty acids from triacylglycerols stored in
cellular lipid droplets (Fig. 2, Table 2): hormone sensitive lipase (HSL),
lipoprotein lipase (LPL) and adipose triglyceride lipase (ATGL), (re-
viewed in [62]). HSL is located directly on the surface of the lipid
droplet, and is stimulated by catecholamines such as the hormone
epinephrine, depending on the physiological state [62]. Sex-specific
differences in the expression of HSL were reported previously in skeletal
muscles, where women were found to have higher intramuscular
triacylglycerol during exercise than men, and also higher mRNA levels
of HSL in the muscle [104]. Yet, as HSL activity during prolonged
exercise is higher in men than in women, it is likely that enzyme-
substrate interactions differ between the sexes [104]. Sex-specific
differences in sustained and peak metabolic rates in mammals make
great sense in the light of their evolutionary ecology, as females are the
ones supporting offspring with milk, the major and unique source of
energy for new-born mammals, whether monotreme, marsupial, or
eutherian [105]. Maternal milk secretory products of the mammary
gland involve multiple casein proteins, milk lipids i.e. milk fat globules,
and milk sugars, i.e. lactose [105]. Milk was shown to have an ancient
evolutionary origin of ca. 310 million years ago and is unique to
mammals, although its composition is highly variable in different
species [105], with fat contents ranging from a few per cent in
rhinoceroses to around 60% in ice-breeding seals [106].

Conceivably, by far the most energy-demanding phase known from
mammals is lactation, when females reach sustained metabolic rates
about 6–8 times higher than resting levels, while ingesting food at peak
rates and synthesising milk to support the young [17,107,108]. To meet
these high energy demands over protracted periods of several weeks or
even months, many mammalian species store adipose tissue prior to
conception or during gestation for use later during reproduction [108].
Apart from being energy demanding, lactation comes with another side
effect, the generation of substantial amounts of surplus metabolic heat
[109], which needs to be balanced by increased heat loss. Hyperther-
mia during lactation may elevate the female's body temperature by
0.5–1.5° above non-reproductive levels, indicating the significant
impact of the milk production process on overall energy balance
[109]. In view of all this it is not surprising that during lactation,
brown adipose tissue atrophies, lowered mitochondrial content, and a
reduced gene expression of Ucp-1 were reported [109,110]. Similarly,
the down-regulation of UCP-1 driven thermogenesis observed during
lactation has mainly been attributed to a decrease in the sympathetic
nervous system activity to mediate suppression of thermogenesis by
brown adipose tissue [111]. Along these lines, it was suggested from a
study conducted in rats that a lower progesterone response during
lactation plays a role in the impairment of non-shivering thermogenesis

Table 2
Sex- specific secretion of adipokines in humans, summarised from [37].

Adipokine Abbreviation Women Men Role of site-specifity and adipose tissue vs. circulating

Leptin ↑ ↓
Adiponectin ↑ ↓
Retinol-binding protein 4 RBP-4 ? ?
Plasminogen activator inhibitor-1 PAI1 ? ?
Dipeptidyl peptidase-4 (DPP)-4 ? ?
Chemerin/ Retinoic acid receptor responder 2 RARRES2 ↑ ↓ Site-specific differences
Lipocalin 2/neutrophil gelatinase-associated lipocalin 24p3 ↑↓ ←→ ? Site-specific differences
Glypican-4 Gpc4 ↑ ↓ Site-specific differences
Omentin ↓ ↑ Site-specific differences
Secreted frizzled-related proteins SFRPs ↑ ↓
Vaspin (visceral adipose tissue-derived serine protease inhibitor) Serpin A12 ↑ ↓ Adipose tissue≠ circulating levels
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during lactation [112]. Meanwhile it has become quite clear that sex
steroid receptor expression profiles in brown adipose tissue differ
markedly between males and females, and that understanding those
discrepancies in brown adipose metabolism will require studying both
sexes [94].

The down-regulation of non-shivering thermogenesis is not the only
metabolic adaptation in anticipation of and during lactation: Trans-
differentiation of subcutaneous white adipocytes into milk producing
alveolar glands takes place already during mid-pregnancy [13]. Lineage
tracing has revealed that white adipocytes convert into alveolar
epithelial cells during gestation but that they back-transform rapidly
into normal adipocytes after weaning of the offspring, indicating a very
high level and a new dimension of adipose tissue plasticity [13]. As the
colour of the adipose tissue organ during gestation is pink, Giordano
and colleagues proposed the label of pink adipocytes, also in reference
to the brown/beige/brite nomenclature of thermogenic fat cells [17].
More recently, the researchers observed that post-lactational pink
adipocytes may trans-differentiate into brown adipocytes, indicating
further and unexpected plasticity of adipose tissue [113]. Clearly,
further research is required to identify the destiny of milk producing
alveolar glands in the metabolism of post-reproductive females. In view
of the well-known problem of body weight control and energy balance
after childbirth and lactation [18], we are proposing to consider the
recent discoveries from adipose tissue functional anatomy.

7. Summary

Here, we summarize the prevalence of sex-specific differences in
human metabolic disease and adipose tissue biology, and the potential
arguments leading to an apparent reluctance to conduct research on
both sexes in human patients as well as laboratory animals. Ignoring
such sex-specific biological variation may ultimately hamper progres-
sion in the treatment of many aspects of metabolic pathophysiology and
may restrain the concept of gender medicine, which has received
significant attention in the recent scientific literature. Other areas that
may be related to sex-specific differences in adipose tissue function may
pertain to the microbiome, which has become a recent focus in many
areas of research. Similarly, the interactions of adipose tissue, sex and
the aging process have not been investigated in great detail, and clearly
warrant further investigation. Ultimately, improved understanding of
female adipose tissue biology in the same level of detail as is currently
the case in male organisms could not only lead to gender-specific
equality in medical treatments, but also to a more broad understanding
of the pathological understanding of metabolic diseases in general.
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