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ABSTRACT 

Energy Pay-Back Time has almost universally been adopted as the indicator of choice to 

express the energy performance of PV. In this paper, an in-depth review of the methodology and 

all underlying assumptions and conventions is presented. A prospective analysis of the potential 

evolution of the EPBT of PV over the next four decades is then performed, assuming optimistic 

grid penetration figures and taking into account expected technological improvements. Results 

show that combining the two opposing effects of a reduction in cumulative energy demand for 

PV manufacturing and an increase in grid efficiency will likely result in severely limited 

reductions, or even possible increases, in the EPBT of PV. This is entirely due to how EPBT is 

operationally defined, and it has nothing to do with the actual energy performance of PV in the 

future. 

KEYWORDS: EPBT, efficiency, scenarios, electric grid, primary energy 

 

1. INTRODUCTION 

The adoption of Energy Pay-Back Time (EPBT) as the de facto standard metric for the energy 

performance of photovoltaic (PV) systems ensues from a time when the first commercial modules 

were very energy-intensive to produce, and obviously this had serious consequences on their 

associated environmental impact, and impaired the credibility of PV as a truly viable ‘green’ 

alternative [1; 2]. As a result, the most common preoccupation at that time was that of testing 

whether, and how quickly, the complete PV systems would be able to ‘pay back’ the same amount 

of energy that was required to manufacture and operate them. Since then, modern PV systems have 

come a long way towards much improved energy performance, as amply documented by a large 

body of scientific literature [3; 4; 5; 6; 7; 8]. Yet, the EPBT metric has stuck as the indicator of 



choice, in spite of the availability of alternative metrics, such as for instance EROI [9; 10], which 

are more commonly adopted when dealing with other (non-PV) energy technologies. 

In this paper, I present a thorough review of the underlying assumptions, and perform a prospective 

analysis with the intent of evaluating whether EPBT may still be an appropriate indicator to 

describe the energy performance of PV, once we move away from a conventional grid that is 

heavily reliant on fossil electricity, and of which PV constitutes but a negligible fraction. 

2. METHODS AND ASSUMPTIONS 

Operationally, EPBT is measured in years, and it is calculated as [8]: 

Eqn. 1)  EPBT = EPP / EOUT-eq,yr 

where: 

EPP  = primary energy for the construction and end-of-life (EoL) of the PV system (power 

plant) [MJp] 

EOUT-eq,yr = net yearly energy output (i.e. subtracting direct energy use in the operation 

phase), expressed in terms of primary energy equivalent [MJp/yr] 

EOUT-eq,yr is calculated by taking the ratio of the net electricity produced by the PV system in one 

year to the life-cycle energy efficiency of the current electric grid: EOUT-eq,yr = (EOUT,yr / ηgrid). 

Thus, a wordier but arguably less ambiguous definition of EPBT could be “how many years it will 

take for a PV system to produce as much electricity as could be produced by the current grid mix, 

using the same amount of primary energy (EPP)”. This latter phrase makes it clearer that EPBT is 

intrinsically a comparative indicator, which is only rigorously defined within the framework of a 

specific reference grid efficiency (ηgrid). In order to correctly interpret the information provided by 

EPBT, it is therefore essential to be unambiguous about how ηgrid is defined and calculated, and 

clearly state all the associated assumptions and conventions. 

In its latest World Energy Outlook [11], the International Energy Agency states that: “The choice of 

methodology to calculate the total primary energy demand (TPED) that corresponds to a given 

amount of final energy (such as electricity and heat) is important [...] but not straightforward. [...] 

For coal, oil, gas, biomass and waste, TPED is based on the calorific value of the fuels. For other 

sources, the IEA assumes an efficiency of 33% for nuclear and 100% for hydro, wind and solar 

photovoltaics (PV). [...] As a result, for the same amount of electricity produced, the TEPD 

calculated for biomass will be several times higher than the TPED for hydro, wind or solar PV.” 



In the widely-employed and well-respected life cycle assessment (LCA) database Ecoinvent [12], a 

similar but slightly more refined approach is adopted. Specifically, in the case of PV, “the use of 

solar energy is calculated with the amount of electricity delivered by the cell to the inverter” [13], 

and the ratio of the primary energy in the captured solar radiation to the output electricity is taken to 

be 3.85 MJp/kWhel. This corresponds to assuming a 93.5% primary energy-to-electricity conversion 

efficiency for the PV system (ηconv), due to the average inverter losses. The other energy losses, e.g. 

due to system degradation and atmospheric depositions, which typically add up and result in an 

overall life-cycle performance ratio of ≈ 0.8, are not taken into account here, as they affect the PV 

system’s ability to capture the solar energy (ηcap) and not its subsequent conversion into electricity 

(ηconv). 

To sum up, for conventional thermal electricity generation, we have that, in the operation phase: 

POUTOUTP EE      E E  th
th   

where: 

EP  = primary energy in the feedstock fuel [MJp] 

EOUT  = delivered electricity [MJel] 

ηth = primary energy-to-electricity conversion efficiency (heat rate) of the thermal power 

plant 

On the full life-cycle scale, we have: 

Eqn. 2)  
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where: 

EPP  = additional (non-feedstock) primary energy required over the system’s life cycle 

[MJp] 

ηth,LC = life-cycle primary energy-to-electricity conversion efficiency of the thermal 

electricity production system 

Eqn. 2 applies to all thermal electricity generation systems, i.e. oil-, gas-, coal-, and biomass-fired, 

as well as nuclear systems (for the latter, ηth = 0.33 is assumed). 

Instead, for PV electricity, we have: 

POUTOUTPIN EE      E E E  conv
convcap   



where: 

EIN  = primary energy in the total incident solar radiation [MJp] 

ηcap = effective solar energy capture efficiency of the PV modules, including all losses 

due to degradation, soiling, etc. 

EP  = primary energy in the captured solar radiation [MJp] 

EOUT  = delivered electricity [MJel] 

ηconv = primary energy-to-electricity conversion efficiency of the PV system (i.e. inverter 

efficiency, typically = 93.5% according to Ecoinvent) 

Thus, on the full life-cycle scale, we have: 

Eqn. 3)  
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where: 

EPP  = additional (non-solar) primary energy required over life cycle [MJp] 

ηPV,LC = life-cycle primary energy-to-electricity conversion efficiency of the PV system 

This corresponds to taking the captured (not the total incident) solar radiation (EP) as the conceptual 

homologue of the primary energy in the fuel that is fed to a conventional thermal power plant. 

Eqn. 3 also applies to other renewable electricity generation systems (wind and hydro), in which 

case EP stands for the respective captured primary energy (‘kinetic energy in wind’ and ‘potential 

energy in hydropower reserve’). 

In the end, the life-cycle energy efficiency of the electric grid is calculated as: 

Eqn. 4)   
i

LCiigrid ,  

where i = (oil, gas, coal, biomass, nuclear, hydro, wind, or PV). 

It is noteworthy that in virtually all LCAs and energy analyses, the reported life-cycle cumulative 

energy demand (CED) of a PV system does not include the converted renewable primary energy 

(EP), i.e. CED is taken to coincide with EPP. This is a potential source of confusion and internal 

inconsistency, since EP is instead included in the calculation of ηPV,LC and hence ηgrid, which in turn 

plays a role in the calculation of EPP, given that a part of the energy input to manufacture a PV 

system is in fact electricity sourced from the grid. Such potential issue remains of course negligible 



as long as PV represents a tiny contributor to the electric grid (i.e. ωPV ≈ 0 in Eqn. 4), but it may no 

longer remain ‘hidden’ if and when PV expands and starts to play a major role in the electricity 

generation mix. 

3. SCENARIOS AND DISCUSSION 

In order to draft my scenarios for the future evolution of ηgrid and EPBT, I took cadmium telluride 

(CdTe) as the reference PV technology, which, according to the latest life cycle analyses performed 

independently by myself and colleagues [6; 7; 8], is the best-performing PV technology to date, 

from the points of view of its life-cycle cumulative energy demand and EPBT. It should be noted, 

however, that the trends shown and discussed here essentially depend on the intrinsic definitions of 

EPBT and ηgrid, and not on the specific type of PV modules employed. Therefore, from a qualitative 

point of view, all results are transferable to all other PV technologies as well, including those still 

under development. 

The latest published LCA studies converge in indicating that modern CdTe PV has a cumulative 

energy demand (CED = EPP) of roughly 1,400 MJp/m2 [6; 7; 8]. Assuming a typical performance 

ratio of 0.8 [14] and in the average southern EU insolation conditions of 1,700 kWh/(m2·yr), one 

square metre of CdTe PV (11% module efficiency) thus produces approximately 4,500 kWh ≈ 

16,000 MJ of electricity over its expected 30-year life span. Adopting Ecoinvent’s 93.5% primary 

energy-to electricity factor (ηconv), as explained in Section 2, we may thus calculate ηPV,LC for CdTe 

PV, according to Eqn. 3, as: 
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Since such ηPV,LC is considerably higher than the current average grid mix efficiency (ηgrid), if we 

gradually increased PV grid penetration (ωPV in Eqn. 4) to, say, x, in first approximation the 

resulting new η'grid would be improved by a factor of (η'grid / ηgrid) = 1 + x · [(η'grid / ηgrid) – 1]. 

However, such a simple ceteris paribus calculation is in fact incorrect, since the improved grid 

efficiency would in turn affect the EPP of PV (reducing it), given that part of the energy that is 

required for PV is itself sourced from the electric grid. In order to estimate the evolution of the life-

cycle energy efficiency of the electric grid (ηgrid) as PV penetration increases, an iterative 

calculation is therefore required. The results of two such iterative calculations are presented in 

Figure 1, where PV grid penetration is made to increase linearly from today’s negligible 0.2% to an 

optimistic 21% in 2050, corresponding to EPIA’s ‘paradigm shift’ scenario [15]. The initial value of 

ηgrid is taken as today’s average for the EU-25 (0.31), and, for the sake of simplicity, none of the 



non-PV technologies composing the grid are allowed to change their respective life-cycle 

efficiencies (ηi,LC). The two scenarios differ in assuming, respectively: 

- constant electricity demand for the manufacturing and EoL of CdTe PV, and constant 

module efficiency (11%) for the ‘stagnant PV technology’ scenario; 

- progressive technological improvement leading to a –1% per year reduction in the electricity 

demand for the manufacturing of CdTe PV, and a +1% per year relative improvement in 

module efficiency (leading to 16.5% efficient modules in 2050) for the ‘improving PV 

technology’ scenario1. 

 

Figure 1 Scenarios for the evolution of grid efficiency, under two sets of conditions. 

 

The efficiency of the grid mix rises considerably ( ~ +35% in relative terms, and ~ +11% in 

absolute terms by 2050) in both scenarios, due to the increase in ωPV; the differences between the 

two scenarios are instead subtle, because the improvements in PV technology are relatively small, 

compared to the large gap between ηPV,LC and the initial value of ηgrid. 

Figure 2 then shows how EPBT evolves in the same two scenarios. A third line is also added in 

Figure 2, indicating the evolution that EPBT would have due to the same technological 

improvements, but if it were calculated by artificially keeping ηgrid constant at its 2010 value. This 

latter set of data is of course no longer consistent with how EPBT is defined, and it is only reported 

in order to put in full evidence the opposite effects on EPBT of (i) improvements in PV technology, 

and (ii) an increase in PV grid penetration. 

 

Figure 2 Scenarios for the evolution of the EPBT of CdTe PV, under three sets of conditions. 

 

Figure 2 sheds light on the consequences of sticking to using EPBT as the standard energy indicator 

for PV when the grid penetration of the latter rises beyond today’s essentially negligible 

proportions. Unless it were agreed to choose to change the way EPBT is defined at some arbitrary 

point in the future, the two opposing effects of a reduction in EPP and increase in ηgrid will likely 

result in severely limited reductions, or even possible increases, in the EPBT of PV. 

                                    
1 Such incremental improvements are consistent with past trends, and are deemed to be attainable (First Solar Inc., 
2009. Personal communication). The generally agreed-upon full efficiency potential for CdTe modules is 18%. 



It is important to stress that this is an unavoidable consequence of how EPBT is operationally 

defined, and it has nothing to do with how good the actual energy performance of PV will 

intrinsically be in the future. In fact, going back to the proposed alternative wording of the EPBT 

definition given in Section 2 ("how many years it will take for a PV system to produce as much 

electricity as could be produced by the current grid mix, using the same amount of primary 

energy"), this seemingly paradoxical result actually makes perfect sense. If the PV system under 

study is set up against a (much) improved grid mix, it is quite obvious that it will have a harder time 

‘paying back’ its energy investment, in terms of the primary energy equivalent to its yearly 

electricity production (the latter being calculated as the ratio EOUT,yr / ηgrid). 

Switching to a simpler and absolute energy performance indicator such as the Energy Return On 

Investment (EROI), instead of sticking to an intrinsically comparative indicator like EPBT, might 

provide a way out of this conundrum, and avoid potential misunderstandings and foreseeable 

difficulties in communicating the results of future environmental assessments of PV. EROI, in its 

simple definition, is the ratio of the energy delivered by a process (EOUT) to the investment of 

primary energy to make it happen (EPP) [9; 10]. However, as discussed elsewhere [16], 

inconsistencies have occurred in the existing EROI literature, where ambiguities have resided in the 

strict definition of ‘investment’. 

4. CONCLUSIONS 

The Energy Pay-Back Time indicator has been almost ubiquitously employed in the published PV 

literature, and remains a valuable indicator of the life-cycle energy performance of PV systems, as 

compared to the existing electric grid. In the future, as more and more PV power is installed, and 

the grid itself comes to be powered by PV in a non-negligible proportion, EPBT may no longer 

provide the best indication of performance improvements in PV systems, though. In anticipation of 

this, it may be advisable to start complementing, or possibly even replacing, EPBT with a different 

performance indicator having an absolute, rather than comparative, meaning. Above all, clear and 

unambiguous definitions of underlying assumptions and system boundaries are and will always 

remain essential corner stones of any meaningful analysis, regardless of the chosen indicators. 
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