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Previous studies have described significant impact of different types of noise on the linear behavior of heart rate variability (HRV).
However, there are few studies regarding the complexity of HRV during exposure to traffic noise. In this study, we evaluated the
complexity of HRV during traffic noise exposure. We analyzed 31 healthy female students aged between 18 and 30 years. Volunteers
remained at rest seated under spontaneous breathing during 10 minutes with an earphone turned off, and then they were exposed
to traffic noise through an earphone for a period of 10 minutes. The traffic noise was recorded from a very busy city street and
the sound was comprised of car, bus, and trucks engines and horn (71–104 dB). We observed no significant changes in the linear
analysis of HRV. CFP3 (Cohen’s 𝑑 = 1.28, large effect size) and CFP6 (Cohen’s 𝑑 = 1.11, large effect size) parameters of chaotic
global analysis and Shannon (Cohen’s 𝑑 = 1.13, large effect size), Renyi (Cohen’s 𝑑 = 1.06, large effect size), and Tsallis (Cohen’s𝑑 = 1.14, large effect size) entropies significantly increased (𝑝 < 0.005) during traffic noise exposure. In conclusion, traffic noise
under laboratory conditions increased the complexity of HRV through chaotic global analysis and some measures of entropy in
healthy females.

1. Introduction

Noise may be considered an unpleasant sound, which may
have effects on physiological variables. It is often found in
hazardous situations due to industrialization and urbaniza-
tion [1]. In this way, the research literature has previously
investigated the effects of different types of noise on auto-
nomic nervous system by analyzing heart rate variability
(HRV) [2]. Lee et al. [3] noted that white noise above 50 dB
influences spectral analysis of HRV, indicating significant
correlation between frequency domain analysis and sound
pressure level. Umemura and Honda [4] restated that this
type of noise also encourages deviations in HRV. Yet, until
now the research literature has only focused on traditional
linear indices of HRV analysis [2, 4, 5].

The linear analysis of HRV in the time and frequency
domains is not entirely suitable to provide information
about the complex dynamics of heartbeat origination. This is
because the mechanisms involved in cardiovascular physiol-
ogy interact with each other in a nonlinear way [6]. Further-
more, methods related to nonlinear behavior of HRV were
reported to present clinical relevance and to offer improved
interpretation about these pathological mechanisms [7, 8].

Most recently, the European Society of Cardiology
together with the European Heart Rhythm Association and
coendorsed by the Asia Pacific Heart Rhythm Society drew
attention to nonlinear methods for assessing HRV [9]. In
this review, the authors address entropy and regularity, long-
range correlation and fractal analysis, short-term complexity,
nonlinear dynamical systems, and chaotic behavior generally.
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Nevertheless, there is little in the research literature compar-
ing HRV analysis with chaotic global analysis and Shannon,
Renyi, and Tsallis entropies (see later section on nonlinear
analysis).

This information related to chaos theory, fractal math-
ematics, and the dynamic complexity of HRV has not yet
been fully applied in medical practice clinically. Yet, it is
a productive area for research and development of knowl-
edge in both health and disease [10]. Besides, the complex
measurement of the intervals between consecutive heart
beats (RR intervals) analysis during exposure to traffic noise
has not been studied. Studies analyzing HRV and traffic
noise exposed subjects to real traffic, which exposed subjects
to multiple stimuli (visual, conversation, temperature, and
humidity) that have a significant impact on the autonomic
nervous system. Sensitive techniques to identify autonomic
changes are necessary to avert possible physiological injury
in the organism. Consequently, we aimed to evaluate the
acute effects of traffic noise on the complexity of HRV under
laboratory conditions alone.

2. Method

2.1. Study Population. We examined 31 apparently healthy
female students aged between 18 and 30 years. All volunteers
were informed about the procedures and objectives of the
study and, after agreeing, signed a confidential consent
form. All study procedures were approved by the Research
Ethics Committee (REC) of the institution (case number
2011/382) and followed the Resolution 196/96 of the National
Health Council. We excluded women under the following
conditions: body mass index (BMI) > 30 kg/m2, systolic
blood pressure (SBP)> 140mmHg or diastolic blood pressure
(DBP) > 90mmHg (at rest), and endocrine, cardiovascular,
respiratory, and neurological related disorders or any condi-
tion that prevented the subject from performing the study. In
order to avoid effects related to sexual hormones, we did not
include women on the 11th to 15th and 21st to 25th days after
the first day of the menstrual cycle [11].

2.2. Initial Assessment. The subjects were identified by col-
lecting the following information: age,mass, height, and body
mass index (BMI). Mass was measured using a digital scale
(W200/5, Welmy, Brazil) with a precision of 0.1 kg. Height
was determined using a stadiometer (ES2020, Sanny, Brazil)
with a precision of 0.1 cm and being 220 cm long. The body
mass index (BMI) was calculated by the subsequent formula:
mass (kg)/height (m2). We measured heart rate and blood
pressure. Heart rate was measured with the Polar RS800CX
heart rate monitor (Polar Electro, Finland). Blood pressure
was indirectly measured by auscultation through calibrated
aneroid sphygmomanometer (Welch Allyn, New York, USA)
and stethoscope (Littmann, St. Paul, USA) with all subjects
seated.

2.3. Measurement of Auditory Stimulation. The measure-
ments of equivalent sound levels were performed in a sound-
proofed room, using an audio dosimeter SV 102 (Svantek,
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Figure 1: Equivalent sound level.

Finland). It was programmed in measuring circuit 7 in “A”
weighting, slow response [12].

We used theMIRE earphone, which was placed inside the
auditory canal of the subject and linked to a personal stereo.
Prior to each measurement, the earphones were calibrated
with the acoustic calibrator CR: Model 514 (Cirrus Research
plc).

This tool was used to analyze the Leq (A), which is
defined as the equivalent sound pressure level, and the sound
level corresponds to the same constant time interval. It
contained the same total sound energy, which also analyzed
the spectrum of sound stimulation (eighth track) frequency
[13] of traffic noise (71–104 dB) (Figure 1).

2.4. Experimental Protocol. Data collection was commenced
at room temperature between 21∘Cand 25∘Candwith humid-
ity between 50% and 60%. The subjects were instructed not
to ingest alcohol or caffeine for 24 hours prior to evaluation.
The data collection was achieved individually between 18:00
and 21:00 to avoid circadian influences. The volunteers were
instructed to remain at rest and avoid conversation during the
experiment.

After the initial evaluation, the heart monitor belt was
placed over the thorax, aligned with the distal third of the
sternum and the Polar RS800CX heart rate receiver (Polar
Electro, Finland) was placed on the wrist. Subsequently, the
volunteers remained at rest seated for 10 minutes with the
headset off.

Next, the volunteers were exposed to traffic noise through
an earphone for a period of 10 minutes. The traffic noise was
recorded from a very busy street in Maŕılia city, SP, Brazil.
The sounds were produced by cars, buses, trucks engineers,
and horns.

2.5. Analysis of HRV. The RR intervals were recorded by the
Polar RS800CX heart rate monitor with a sampling rate of
1000Hz. They were then transferred to the Polar Precision
Performance software (v. 3.0, Polar Electro, Finland). This
software allowed the visualization of the HR and the extrac-
tion of a file relating to a cardiac period (RR-interval) in a
“txt” file. After digital filtering supplemented with manual
filtering to eliminate artefacts and premature ectopic beats,
500 RR intervals were applied for data analysis. Only series
withmore than 95% of sinus beats were included in the study.
HRV was analyzed before and during traffic noise.
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2.6. Linear Analysis of HRV. The time domain analysis
was accomplished in terms of SDNN (standard deviation
of normal-to-normal RR intervals), pNN50 (percentage of
adjacent RR intervals with a difference of duration greater
than 50 milliseconds), and RMSSD (root-mean square of
differences between adjacent normal RR intervals in a time
interval) [14].

To obtain the spectral indexes for HRV analysis in
the frequency domain, the frequency recordings underwent
mathematical processing, thus generating a tachogram that
expressed the variation of RR intervals as a function of time.
The tachogram contained a signal that varied with time and
was processed by the mathematical Fast Fourier Transform
(FFT) algorithm.Welch’s periodogrammethod based on FFT
using a window width of 256 seconds and an overlap of 50%
was applied.

Low frequency (LF, ranging between 0.04 and 0.15Hz)
and high frequency (HF, ranging from 0.15 to 0.4Hz) spectral
components were selected in normalized units (nu). The
ratio between these components in absolute values (LF/HF)
represents the relative value of each spectral component in
relation to the total potential minus the very low frequency
(VLF) components. It is important tomention that the LF/HF
index may provide significant information on autonomic
regulation of sinus node under controlled conditions and
short-term recordings [14].

For computation of the linear indices, we applied the
HRV analysis software (Kubios HRV v.1.1 for Windows,
Biomedical Signal Analysis Group, Department of Applied
Physics, University of Kuopio, Finland).

2.7. Statistical Analysis of Linear Indices. Statistical methods
of the linear indices were approved for the computation of
means and standard deviations. Normal Gaussian distribu-
tion of the data was verified by the Shapiro-Wilk goodness-
of-fit test (𝑧 value > 1.0).

To enable a comparison of the variables between control
and traffic noise exposure, we applied the unpaired Student 𝑡-
test for parametric distribution and the Mann–Whitney test
for nonparametric distributions. Level of significance was set
at 𝑝 < 0.005, 0.5%.

2.8. Nonlinear Analysis

2.8.1. Detrended Fluctuation Analysis (DFA). Detrended fluc-
tuation analysis (DFA) [15] may be applied to datasets where
parameters such as mean, variance, and autocorrelation vary
with time. DFA computes the correlation within the signal.
It quantifies how the fluctuations of a signal scale with the
number of samples of that signal. According to Donaldson et
al. [16], the time series of length 𝑘 wasmanipulated as shown:

𝑦 (𝑘) = 𝑘∑
𝑖=1

(RR (𝑖) − mean (RR)) . (1)

The integrated time series was then divided into equally
sized and nonoverlapping windows of length 𝑤. A linear
regression line was fitted through the data in each window
and the time seriesmanipulated by subtracting the regression
line from the data.

The root-mean square fluctuation 𝐹(𝑤) of the integrated
and detrended time series was calculated for different values
of 𝑤, as follows:

𝐹 (𝑤) = [ 1𝑁
𝑁∑
𝑘=1

[𝑦 (𝑘) − 𝑦𝑤 (𝑘)]2]
1/2

. (2)

The scaling exponent (𝛼) was obtained as the slope of a
straight line fit to 𝐹(𝑤) against 𝑤 on a log-log plot:

𝐹 (𝑤) ∝ 𝑤𝛼. (3)

DFA is a technique extensively imposed in variability
analysis. It has been applied to the evaluation of posture
[17], exercise [18] and sleep stage classification [19], and
classification of asthma [20] and COPD [16, 21, 22].

2.8.2. Chaotic Global Analysis. Multitaper Method (MTM)
[23] is useful for spectral estimation and signal recon-
struction, of a time series of a spectrum that may contain
broadband and line components. MTM lessens the variances
of spectral estimates by using a small set of tapers (windows).
Data is premultiplied by orthogonal tapers created to min-
imize the spectral leakage owing to the finite length of the
time series. A set of approximations of the power spectrum
are calculated. These functions identified as Discrete Pro-
late Spheroidal Sequences (DPSS) sometimes called Slepian
Sequences [24] are a set of functions which optimize these
tapers. They are defined as eigenvectors of a Rayleigh-Ritz
minimization problem [25].

2.8.3. High Spectral Entropy. High spectral entropy (hsEnt-
ropy) [26] is a function of the irregularity of amplitude
and frequency of the power spectra peaks. It is derived by
applying Shannon entropy to the MTM power spectrum
(see Figure 2). Then, we calculate an intermediate parameter
which is the median Shannon entropy of the value obtained
from three different power spectra using the MTM power
spectra under three test conditions: (a) a perfect sinewave, (b)
uniformly distributed random variables, and finally (c) the
experimental oscillating signal. These values are normalized
mathematically so that the sine wave gives a value of zero,
uniformly random variables give unity, and the experimental
signal gives values between zero and unity. It is the final value
that corresponds to hsEntropy.

2.8.4. High Spectral DFA. As stated before, the DFA [26]
algorithm can be applied to datasets where statistics such as
mean, variance, and autocorrelation vary with time.The high
spectral detrended fluctuation analysis (hsDFA) algorithm
is where the DFA is applied to the frequency rather than
time on the horizontal axis (Figure 2). So, the 𝑥-axis is
frequency and the 𝑦-axis is amplitude. To obtain hsDFA, we
calculate the spectral adaptation in exactly the same manner
as for hsEntropy applying a MTM power spectrum with the
same settings, but DFA rather than Shannon entropy is the
algorithm enforced.
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Figure 2: A MTM power spectrum of a time series of 500 RR
intervals in a traffic noise exposure subject. sMTM is the area
beneath the spectrum, yet above the baseline created by broadband
noise as the signal becomes chaotic. High spectral entropy and high
spectral DFA are derived by applying the Shannon entropy and
detrended fluctuation analysis (DFA) functions to the MTM power
spectrum. Parameters for the MTM power spectra as set at (i)
sampling frequency of 1Hz, (ii) time bandwidth for the DPSS at
3, (iii) FFT length of 256, and (iv) Thomson’s “adaptive” nonlinear
combination method to combine individual spectral estimates.

2.8.5. Spectral Multitaper Method. Spectral Multitaper
Method (sMTM) [27] is founded on the increased intensity
of broadband noise in power spectra generated by irregular
and chaotic signals. sMTM is the area between the MTM
power spectrum and the baseline (see Figure 2).

2.8.6. Chaotic Forward Parameters (CFP 1 to CFP7). The
parameters (CFP 1–7) are referred to as chaotic forward
parameters (CFP) for the functions CFP1 to CFP7 below
where they are applied to normal and traffic noise exposure
subjects’ RR-interval time series. Since hsDFA responds to
chaos inversely to the others, we subtract its value from unity.
In this study, all three chaotic global values have weightings
of unity.

CFP1 = [([ ℎ𝑠Entropy
max (ℎ𝑠Entropy)])2

+ ([ sMTM
max (sMTM)])2

+ (1 − [ ℎ𝑠DFA
max (ℎ𝑠DFA)])2]

1/2

CFP2 = [([ ℎ𝑠Entropy
max (ℎ𝑠Entropy)])2

+ (1 − [ ℎ𝑠DFA
max (ℎ𝑠DFA)])2]

1/2

CFP3 = [([ ℎ𝑠Entropy
max (ℎ𝑠Entropy)])2

+ ([ sMTM
max (sMTM)])2]

1/2

CFP4 = [([ sMTM
max (sMTM)])2

+ (1 − [ ℎ𝑠DFA
max (ℎ𝑠DFA)])2]1/2

CFP5 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1 − [ ℎ𝑠DFA
max (ℎ𝑠DFA)])󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

CFP6 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨([ sMTM
max (sMTM)])󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

CFP7 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨([ ℎ𝑠Entropy
max (ℎ𝑠Entropy)])󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .

(4)

2.8.7. Shannon Entropy. Shannon entropy [28] is represented
by the degree of ambiguity associated with the occurrence of
the result. A higher value of entropy gives a more uncertain
outcome and is more difficult to predict.

Shannon entropy may be used globally, applying to the
time series wholly or nearby around specific points. This
measure can provide extra evidence about specific events
such as outliers or intermittent events. In contrast to Tsallis
[29] and Renyi [30] entropies, Shannon entropy is additive.
Hence, if the probabilities can be factorised into independent
factors, the entropy of the joint process is the sum of the
entropies of the distinct processes.

2.8.8. Renyi Entropy. Renyi entropy is a general statement of
Shannon entropy that is dependent on a specified parameter.
Renyi entropy depends on the entropic order 𝛼 (which we set
to 0.25). Renyi entropy approaches Shannon entropy as 𝛼 →1 which can be derived by l’Hôpital’s rule [31, 32]. As entropic
order increases, the procedures become more sensitive to the
values occurring at higher probabilities and less sensitive to
those of lower probabilities. Renyi entropy is described fully
in studies by Zyczkowski [33] and Lenzi et al. [30].

2.8.9. Tsallis Entropy. Tsallis entropy is a general statement
of the standard Shannon-Boltzmann-Gibbs entropy. It was
introduced in the application of statistical mechanics and
is used in computer sciences for pattern recognition. Tsallis
entropy is dependent on the specified parameter termed
entropic index 𝑞 (which we set to 0.25); Tsallis entropy
becomes the Shannon-Boltzmann-Gibbs entropy, as the
entropic index 𝑞 → 1. Tsallis entropy is discussed further
in the publications by dos Santos [29], A. R. Plastino and A.
Plastino [34], and Mariz [35].

2.8.10. Approximate Entropy. Approximate Entropy (ApEn)
was discussed by Pincus [36]. It is a procedure required



Complexity 5

to evaluate the level of uniformity and the unpredictability
of changes over time series. ApEn is the logarithmic ratio
of component-wise matching sequences from the signal
length, 𝑁. Other parameters include 𝑟, tolerance, and 𝑚, the
embedding dimension. Here we set the parameters of 𝑚 to
2 and 𝑟 to 20% of the standard deviation of the data. The
disadvantages of ApEn are that it is very dependent on the
length of the time series and is often lower than expected on
shorter time series. Finally, it is disadvantageous because it
lacks “relative consistency” [37].

A minimum value of zero for ApEn would indicate a
totally predictable time series, while a maximum value of one
would specify an entirely unpredictable time series. Most of
the time, the values are between these two values.

ApEn is mathematically described as in the Kubios HRV
Analysis Manual [38].

First a set of length 𝑚 vectors 𝑢𝑗 is formed; note the
embedding dimension,𝑚, and𝑁, the number of RR intervals.

𝑢𝑗 = (RR𝑗,RR𝑗+1, . . . ,RR𝑗+𝑚−1) ,
𝑗 = 1, 2, . . . , 𝑁 − 𝑚 + 1. (5)

The distance between these vectors is the maximum
absolute difference between the corresponding elements;
hence,

𝑑 (𝑢𝑗, 𝑢𝑘)
= max {󵄨󵄨󵄨󵄨󵄨RR𝑗+𝑛 − RR𝑘+𝑛

󵄨󵄨󵄨󵄨󵄨 | 𝑛 = 0, . . . , 𝑚 − 1} . (6)

Next for each 𝑢𝑗 the relative number of vectors 𝑢𝑘 for
which 𝑑(𝑢𝑗, 𝑢𝑘) ⩽ 𝑟 is calculated. This index is denoted with𝐶𝑚𝑗 (𝑟) and can be written in the form

𝐶𝑚𝑗 (𝑟) = number of {𝑢𝑘 | 𝑑 (𝑢𝑗, 𝑢𝑘) ⩽ 𝑟}
𝑁 − 𝑚 + 1 ∀𝑘. (7)

Due to the normalization, the value of 𝐶𝑚𝑗 (𝑟) is always
smaller than or equal to 1. Note that the value is, however,
at least 1/(𝑁 − 𝑚 + 1) since 𝑢𝑗 is also included in the count.
Then, take the natural logarithm of each 𝐶𝑚𝑗 (𝑟) and average
over 𝑗 to yield

Φ𝑚 (𝑟) = 1𝑁 − 𝑚 + 1
𝑁−𝑚+1∑
𝑗=1

ln𝐶𝑚𝑗 (𝑟) . (8)

Finally, the ApEn is obtained as ApEn(𝑚, 𝑟, 𝑁) = Φ𝑚(𝑟)−Φ𝑚+1(𝑟).
2.8.11. Sample Entropy. Sample entropy (SampEn) [37–39] is
analogous toApEnbut there are two significantmodifications
in its computation. For ApEn, in the computation of the
number of vectors 𝑢𝑘 for which 𝑑(𝑢𝑗, 𝑢𝑘) ⩽ 𝑟, also the
vector 𝑢𝑗 itself is contained within.This ensures that 𝐶𝑚𝑗 (𝑟) is
always greater than zero and the logarithm can be calculated.
Regrettably, it makes ApEn biased. SampEn was formulated
to lessen this bias. Yet again, the embedding dimension is 𝑚

and the tolerance parameter 𝑟. We set 𝑚 to 2 and 𝑟 to 20% of
the standard deviation of the time series. Equally, ApEn and
SampEn are estimations for the negative natural logarithm
of the conditional probability that data of length 𝑁, having
repeated itself within a tolerance 𝑟 for 𝑚 points, will also
repeat itself for 𝑚 + 1 points.

SampEn is also described as in the Kubios HRV Analysis
Manual [38].

In SampEn, the self-comparison of 𝑢𝑗 is eliminated by
calculating 𝐶𝑚𝑗 (𝑟) as

𝐶𝑚𝑗 (𝑟) = number of {𝑢𝑘 | 𝑑 (𝑢𝑗, 𝑢𝑘) ⩽ 𝑟}
𝑁 − 𝑚 ∀𝑘 ̸= 𝑗. (9)

Now the value of 𝐶𝑚𝑗 (𝑟) will be between 0 and 1.Then, the
values of 𝐶𝑚𝑗 (𝑟) are averaged to yield

𝐶𝑚 (𝑟) = 1𝑁 − 𝑚 + 1
𝑁−𝑚+1∑
𝑗=1

𝐶𝑚𝑗 (𝑟) . (10)

SampEn is described mathematically as
SampEn(𝑚, 𝑟, 𝑁) = ln(𝐶𝑚(𝑟)/𝐶𝑚+1(𝑟)).
2.8.12. Higuchi Fractal Dimension (HFD). Fractal systems
exhibit a characteristic termed self-similarity. A self-similar
object upon close examination is comprised of smaller
versions of itself. There are several algorithms which can be
applied to measure fractal dimension. There are those by
Higuchi [40], Katz [41], and Castiglioni [42]. Here, we apply
the technique formulated byHiguchi viewed frequently as the
most robust technique.

Higuchi derived this new algorithm tomeasure the fractal
dimension of discrete time sequences. It is a technique that
is enforced directly to the RR intervals. There is no power
spectrum step involved. As the reconstruction of the attractor
phase space is unnecessary, the algorithm is simpler and faster
than the Correlation Dimension [43, 44]. Khoa et al. [45]
describe the algorithm mathematically, adapted below.

It is based on a measure of length, 𝐿(𝑘), of the curve that
represents the considered time series while using a segment
of 𝑘 samples as a unit, if 𝐿(𝑘) scales like

𝐿 (𝑘) ∼ 𝑘−𝐷𝑓 . (11)

The curve is said to show fractal dimension 𝐷𝑓 because
a simple curve has dimension equal to 1 and a plane has
dimension equal to 2; value of 𝐷𝑓 is always between 1 (simple
curve) and 2 (curve which almost fills out the whole plane).𝐷𝑓measures complexity of the curve and so of the time series
this curve represents on a graph.

From a given time series, RR(1),RR(2), . . . ,RR(𝑁), the
algorithm constructs 𝑘 new time series:

RR𝑘𝑚 = {RR (𝑚) ,RR (𝑚 + 𝑘) ,RR (𝑚 + 2𝑘) , . . . ,
RR (𝑚 + int((𝑁 − 𝑚)𝑘 ) ⋅ 𝑘)} for 𝑚 = 1, 2, . . . , 𝑘,

(12)
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Table 1: Body mass index (BMI), age, height, and mass of the
volunteers. m: meters; kg: kilograms; bpm: beats per minute; ms:
milliseconds; mmHg: millimeters of mercury.

Variable Value
Age (years) 20.5 ± 1.4
Height (m) 1.62 ± 0.5
Mass (kg) 59.9 ± 12.1
BMI (kg/m2) 22.7 ± 4.5
where 𝑚 is initial time value, 𝑘 indicates the discrete time
interval between points (hence the delay, 𝑘max, is the maxi-
mum interval time), and int(𝑎) is integer part of a real number𝑎.

For each of the time series RR𝑘𝑚 constructed, the average
length 𝐿𝑚(𝑘) is then computed as

𝐿𝑚 (𝑘)
= 1𝑘 [(int((𝑁−𝑚)/𝑘)∑

𝑖=1

|RR (𝑚 + 𝑖 ⋅ 𝑘) − RR (𝑚 + (𝑖 − 1) ⋅ 𝑘)|)]
× 𝑁 − 1
int ((𝑁 − 𝑚) /𝑘) ⋅ 𝑘 ,

(13)

where 𝑁 is total number of RR intervals. Afterwards, the
length of the curve for time interval 𝑘 is expressed as the
sum value over 𝑘 sets of 𝐿𝑚(𝑘) as illustrated by the following
equation:

𝐿 (𝑘) = 1𝑘
𝑘∑
𝑚=1

𝐿𝑚 (𝑘) . (14)

Finally, the slope of the curve ln(𝐿(𝑘))/ ln(1/𝑘) is esti-
mated using least squares linear best fit and the resulting slope
is the HFD. To select a suitable value for 𝑘max, HFD values
are plotted against a range of 𝑘max. The point at which the
fractal dimension plateaus is considered a saturation point.
That 𝑘max value should be selected. No saturation point is
achieved with the data we measured here.

2.8.13. Effect Size. To quantify the magnitude of difference
between protocols for significant differences, the effect size
was calculated using Cohen’s 𝑑 for significant differences
(𝑝 < 0.005). Effect size was considered large for values ≥ 0.9,
medium for values between 0.9 and 0.5, and small for values
between 0.5 and 0.25 [46].

3. Results

Table 1 illustrates the values for mass, height, and BMI of
the volunteers; all values were within normal physiological
standards.

According to Figures 3 and 4, we illustrate that traffic
noise did not induce significant changes in linear indices of
HRV analysis. There was no significant change in the time
(heart rate, SDNN, Mean RR, pNN50, and RMSSD) and
frequency domain (LF and HF in absolute and normalized
units and LF/HF ratio) indices of HRV.

3.1. Chaotic Global Analysis. In Table 2 and Figure 5, we
display mean values and standard deviation for the chaotic
forward parameters (CFP1 toCFP7) for the normal and traffic
noise exposure subjects. There are 500 RR intervals through-
out and both the parametric one-way analysis of variance
(ANOVA1) and the nonparametric Kruskal-Wallis tests of
significance are applied. The following are the inconclusive
tests of normality (see below).

There are seven permutations of the three chaotic global
parameters. All chaotic global values have equal weighting.
The chaotic forward parameter (CFP) enables different com-
binations of chaotic globals to be applied to ensure that we
have the best combination to be verified later by amultivariate
analysis. It is anticipated that the CFP which applies all
three should be the most robust. This is because it takes
the information and processes it in three different ways. The
summation of the three would be expected to deviate greater
than single or double permutations. The potential analytical
hazard here is that since we are only calculating spectral
components, the phase information is lost.

When implementing parametric statistics, normal distri-
bution of data is assumed. To test this assumption, we apply
the Anderson-Darling and Lilliefors tests. In the case of the
Anderson-Darling test, an empirical cumulative distribution
function is applied, while the Lilliefors test is beneficial when
the number of subjects is low. The results from both tests
reveal similar numbers of nonnormal and normal distribu-
tions, so we apply both the Kruskal-Wallis and ANOVA1 tests
of significance.

3.2. Principal Component Analysis. Principal Component
Analysis (PCA) is a multivariate technique for analyzing the
complexity of high-dimensional datasets. PCA is useful when(1) sources of variability in the data need to be explained
and (2) reducing the complexity of the data and through this
assessing the data with less dimensions. The primary goal of
PCA is to rationalize the sources of variability in the data and
to represent the data with fewer variables while sustaining the
majority of the total variance (Figure 6).

CFP1t has the First Principal Component (PC1) of 0.358
and the Second Principal Component (PC2) of −0.406.
However, CFP3t has PC1 of 0.191 and PC2 of −0.540. Only
the first two components need be considered due to the steep
scree plot. The cumulative influence as a percentage is 58.1
percent for the PC1 and 99.5 percent for the cumulative total
of the PC1 and PC2. PC2 has an influence of 41.3 percent.
So, CFP1 which applies all three chaotic global techniques is
the optimal and most robust overall combination regarding
influencing the correct outcome (Figure 6).

Table 3 illustrates the relevant Principal Component
Analysis for CFPt for 7 groups of 31 traffic noise exposure
subjects. The CFP values are deduced from RR-interval time
series and with the chaotic global algorithms enforced.

3.3. Higuchi Fractal Dimension (HFD). Thedescriptive statis-
tics of the Higuchi fractal dimension from the control
subjects (𝑁 = 31) for 500 RR intervals are presented in
Table 4. The parameter was calculated repeatedly for values
of 𝐾max between 10 and 150 at intervals of 10.
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Figure 3: Mean heart rate and HRV analysis before (control) and during traffic noise exposure. pNN50: the percentage of adjacent RR
intervals with a difference of duration greater than 50ms; RMSSD: root-mean square of differences between adjacent normal RR intervals in
a time interval; SDNN: standard deviation of normal-to-normal RR intervals; HR: heart rate; 𝑝: level of significance.
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Figure 4:HRV analysis before (control) and during traffic noise exposure. LF: low frequency;HF: high frequency; LF/HF: low frequency/high
frequency ratio; n.u.: normalized units; ms: milliseconds; HR: heart rate; 𝑝: level of significance.

The descriptive statistics of theHiguchi fractal dimension
from the traffic noise exposure subjects (𝑁 = 31) for 500
RR intervals are presented in Table 5. The parameter was
calculated repeatedly for values of 𝐾max between 10 and 150
at intervals of 10.

Figure 7 illustrates the box-and-whiskers plot for Higuchi
fractal dimension of RR intervals of the control subjects (a)

and the traffic noise exposure subjects (b), calculatedmultiple
times from 10 to 150 in equidistant units for different levels
of 𝐾max. The point closest to the zero is the minimum and
the point farthest away is the maximum.The boundary of the
box closest to zero indicates the 25th percentile, a line within
the box marks the median (not the mean), and the boundary
of the box farthest from zero indicates the 75th percentile.
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Figure 5: The boxplots illustrate the values of chaotic forward parameters one to seven (CFP1 to CFP7) for control (a) and traffic noise
exposure (b) subjects with 500 RR intervals throughout. The point closest to the zero is the minimum and the point farthest away is the
maximum.The boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the median (not the mean), and
the boundary of the box farthest from zero indicates the 75th percentile. The difference between these points is the interquartile range (IQR).
Whiskers (or error bars) above and below the box indicate the 90th and 10th percentiles, respectively.

Table 2: Mean values and standard deviation for the chaotic forward parameters (CFP) for the normal and traffic noise exposure subjects.

Chaotic
global

Mean ± SD
Normal (𝑛 = 31) Mean ± SD

Traffic (𝑛 = 31) ANOVA1
(𝑝 value)

Kruskal-
Wallis

(𝑝 value)
Effect size

CFP1 0.7853 ± 0.1602 0.8491 ± 0.1620 0.1243 0.0704 -

CFP2 0.6889 ± 0.1003 0.6325 ± 0.1105 0.0395 0.0043 0.53
(medium)

CFP3 0.4182 ± 0.1790 0.6368 ± 0.1598 <0.0001 <0.0001 1.28 (large)
CFP4 0.7439 ± 0.2022 0.7749 ± 0.2281 0.5739 0.4182 -

CFP5 0.6428 ± 0.1524 0.5376 ± 0.1676 0.0121 0.0011 0.65
(medium)

CFP6 0.3620 ± 0.1646 0.5517 ± 0.1764 <0.0001 <0.0001 1.11 (large)
CFP7 0.1440 ± 0.1698 0.2316 ± 0.2084 0.0748 0.0016 0.46 (small)

Table 3: Principal Component Analysis for CFPt for 7 groups of 31 traffic noise exposure subjects.

Chaotic global PC1 PC2
CFP1t 0.358 −0.406
CFP2t 0.066 −0.577
CFP3t 0.191 −0.540
CFP4t 0.490 0.086
CFP5t 0.446 0.253
CFP6t 0.494 −0.023
CFP7t −0.384 −0.371
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Table 4: Higuchi fractal dimension statistics through 𝐾max between 10 and 150 at intervals of 10 in the control protocol.

Property Higuchi fractal dimension Statistics (control)

𝐾max Mean SE
mean

StDev Minimum 𝑄1 Median 𝑄3 Max

10 1.6768 0.0309 0.1722 1.1992 1.5644 1.6971 1.7999 1.9369
20 1.7446 0.0274 0.1526 1.2605 1.7057 1.7664 1.8479 1.9496
30 1.7783 0.0259 0.1441 1.3436 1.7341 1.8055 1.8879 1.9604
40 1.8017 0.0253 0.1408 1.3984 1.7661 1.8355 1.9092 1.9723
50 1.8194 0.0242 0.1350 1.4385 1.7921 1.8589 1.9115 1.9709
60 1.8333 0.0233 0.1295 1.4514 1.8088 1.8785 1.9219 1.9711
70 1.8436 0.0224 0.1246 1.4686 1.8302 1.8824 1.9283 1.9688
80 1.8509 0.0216 0.1205 1.4868 1.8348 1.8883 1.9298 1.9664
90 1.8573 0.0211 0.1173 1.5063 1.8488 1.8995 1.9315 1.9675
100 1.8618 0.0207 0.1151 1.5267 1.8565 1.9007 1.9334 1.9702
110 1.8659 0.0203 0.1133 1.5473 1.8655 1.9080 1.9344 1.9697
120 1.8709 0.0203 0.1128 1.5659 1.8799 1.9131 1.9358 1.9705
130 1.8760 0.0202 0.1126 1.5682 1.8928 1.9216 1.9388 1.9695
140 1.8808 0.0201 0.1119 1.5743 1.8944 1.9298 1.9437 1.9715
150 1.8852 0.0201 0.1117 1.5769 1.8915 1.9311 1.9484 1.9755

Table 5: Higuchi fractal dimension statistics through 𝐾max between 10 and 150 at intervals of 10 in the traffic noise protocol.

Property Higuchi fractal dimension statistics (traffic noise exposure)

𝐾max Mean SE
mean

StDev Minimum 𝑄1 Median 𝑄3 Max

10 1.6971 0.0279 0.1555 1.2606 1.6284 1.7171 1.8040 1.9496
20 1.7644 0.0265 0.1477 1.2952 1.7010 1.8077 1.8462 1.9383
30 1.7898 0.0256 0.1428 1.3544 1.7507 1.8447 1.8762 1.9450
40 1.8082 0.0242 0.1347 1.3912 1.7775 1.8533 1.8811 1.9579
50 1.8240 0.0227 0.1264 1.4132 1.8103 1.8590 1.9000 1.9703
60 1.8358 0.0217 0.1208 1.4290 1.8232 1.8741 1.9082 1.9691
70 1.8446 0.0214 0.1193 1.4368 1.8208 1.8879 1.9161 1.9722
80 1.8507 0.0212 0.1178 1.4372 1.8269 1.8934 1.9140 1.9762
90 1.8568 0.0210 0.1171 1.4337 1.8414 1.8922 1.9194 1.9804
100 1.8613 0.0209 0.1163 1.4326 1.8497 1.8990 1.9243 1.9837
110 1.8660 0.0207 0.1151 1.4383 1.8569 1.9076 1.9267 1.9824
120 1.8694 0.0203 0.1130 1.4474 1.8613 1.9121 1.9286 1.9811
130 1.8727 0.0200 0.1115 1.4597 1.8701 1.9103 1.9338 1.9831
140 1.8769 0.0197 0.1099 1.4732 1.8809 1.9070 1.9397 1.9810
150 1.8806 0.0193 0.1075 1.4888 1.8854 1.9066 1.9380 1.9795
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Table 6: Higuchi fractal dimension at varying levels of 𝐾max
between 10 and 150 at equidistant intervals of 10.

Property Higuchi fractal dimension statistics (control
versus traffic)

𝐾max ANOVA1 (𝑝 value) Kruskal-Wallis (𝑝 value)
10 0.6269 0.6322
20 0.6059 0.5543
30 0.7534 0.6523
40 0.8539 0.9215
50 0.8904 0.8880
60 0.9367 1.0000
70 0.9742 0.9215
80 0.9940 0.8108
90 0.9855 0.7675
100 0.9860 0.7568
110 0.9981 0.7354
120 0.9585 0.5082
130 0.9082 0.3041
140 0.8911 0.2910
150 0.8683 0.3175

The difference between these points is the interquartile range
(IQR). Whiskers (or error bars) above and below the box
indicate the 90th and 10th percentiles, respectively.

The levels of significance for parametric ANOVA1 and
nonparametric Kruskal-Wallis test of significance for values
of the Higuchi fractal dimension at varying levels of 𝐾max
between 10 and 150 at equidistant intervals of 10 are displayed
in Table 6.

3.4. Five Entropies and DFA

3.4.1. ANOVA1 and Kruskal-Wallis Tests. Once more, we
apply the Anderson-Darling and Lilliefors tests to the data to
assess the normality.The results from both tests reveal similar
numbers of nonnormal andnormal distributions. So againwe
apply the Kruskal-Wallis and ANOVA1 tests of significance.

Table 7 reveals the mean values and standard deviation
for the five entropic measures and DFA for the control and
traffic noise exposure subjects RR intervals. The number
of RR intervals is 500. ANOVA1 and Kruskal-Wallis test of
significance were applied to results.

3.4.2. Principal Components Analysis. Here again we must
complete a multivariate analysis. Shannon entropy has the
First Principal Component (PC1) of 0.470, the Second Prin-
cipal Component (PC2) of 0.258, and the Third Principal
Component (PC3) of −0.245. But, Renyi entropy has the PC1
of 0.485, PC2 of 0.187, and PC3 of −0.200. However, Tsallis
entropy has the PC1 of 0.472, PC2 of 0.249, and PC3 of−0.242.

Only the first three components need be considered due
to the relatively steep scree plot.The cumulative influence as a
percentage is 65.4 percent for the PC1 and 95.4 percent for the
cumulative total of the PC1 and PC2. Finally, it is 99.3 percent
for the cumulative total of the PC1, PC2, and PC3.
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Figure 6:The plot illustrates the component loadings CFP1 to CFP7
for the 500 RR intervals of 31 traffic noise exposure subjects. The
CFP values are deduced by using the MTM spectra throughout.The
properties of the MTM spectra are as follows: sampling frequency
1Hz, DPSS of 3, FFT length of 256, and Thomson’s nonlinear
combination at “adaptive.” CFP1 and CFP3 are the most influential
components when assessed by PCA.

PC2has an influence of 30.0 percent. PC3has an influence
of 3.9 percent. So, Shannon, Renyi, and Tsallis are the optimal
and most robust statistically overall combination regarding
influencing the correct outcome.This is the case by means of
theANOVA1, Kruskal-Wallis, and themultivariate technique,
hence PCA.

Table 8 illustrates the relevant Principal Component
Analysis for five entropies and DFA of 31 traffic noise
exposure subjects. The five entropy values and DFA are again
deduced from 500 RR-interval time series.

4. Discussion

To provide further evidence regarding the interaction
between auditory processing and the autonomic nervous
system, we attempted to investigate whether acute exposure
to traffic noise influenced the complexity of HRV. As a main
outcome, we noticed that the traditional linear indices of
HRV were unchanged during traffic noise exposure while
some nonlinear approaches evidenced that the complexity of
heart rate autonomic control increased during exposure to
traffic noise.

In this context, previous studies suggest that noise expo-
sure affects the sympathetic component of heart rate auto-
nomic control [47, 48]. Tzaneva et al. [47] exposed subjects
to 135min of noise with Leq 95 dB (A) sound pressure and
analyzed HRV before, during, and after noise exposure.
They revealed an increase in the sympathetic regulation of
heart rate under noise exposure. Björ et al. [48] investigated
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Table 7: Entropic measures for the control and traffic nose exposure subjects RR intervals.

Entropy
or DFA

Mean ± SD
Control (𝑛 = 31)

Mean ± SD
Traffic noise
(𝑛 = 31)

ANOVA1
(𝑝 value)

Kruskal-Wallis
(𝑝 value) Effect size

Approximate 0.7443 ± 0.2354 0.7890 ± 0.2235 0.4465 0.3107 -
Sample 0.6923 ± 0.2300 0.7047 ± 0.2165 0.8278 0.8658 -
DFA 0.1722 ± 0.1943 0.1483 ± 0.1871 0.6222 0.6831 -
Shannon 0.5564 ± 0.1289 0.7017 ± 0.1272 <0.0001 <0.0001 1.13 (large)
Renyi 0.9840 ± 0.0058 0.9898 ± 0.0051 <0.0001 <0.0001 1.06 (large)
Tsallis 0.5981 ± 0.1193 0.7322 ± 0.1159 <0.0001 <0.0001 1.14 (large)
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Figure 7: Box-and-whiskers plot for Higuchi fractal dimension of RR intervals of the control subjects (a) and the traffic noise exposure
subjects (b), calculated multiple times from 10 to 150 in equidistant units for different levels of 𝐾max.

healthy men and women and also noted increased values of
the LF/HF ratio during noise exposure, indicating increased
sympathetic control of heart rate.

Yet, an important point to be highlighted in their studies
is the limitation of the LF/HF ratio to provide information
regarding the sympathetic modulation of heart rate. The
sympathovagal balance index that was added to their investi-
gation, calculated by the LF/HF ratio, has been demonstrated
to be theoretically flawed and empirically unsupported.
Though many criticisms of this measure abound, the most
serious concern is that LF index does not represent the
sympathetic component. Thus, there is a lack of rationale
and/or compelling evidence that its strength in relation to the
HF index componentwould indicate relative strength of vagal
and sympathetic signaling. Furthermore, the physiological
significance of LF/HF ratio is erroneous and represents a
superficial understanding of autonomic regulatory mecha-
nisms [49–51]. We therefore emphasize that spectral analyses
of HRV under controlled situations are the most effective

markers of heart rate autonomicmodulation. Yet, they do not
accurately measure neural traffic or autonomic activity (i.e.,
pupil dilation, salivation, facial vasodilation, etc.).

Equally, Sim et al. [2] evaluated the effects of different
noises on linear HRV. The authors enrolled 40 healthy men
(23.9±1.8 years old, and average BMI being 23.7±2.1 kg/m2)
and submitted them to self-made traffic noise composed by
aircraft and road traffic noise.The authors observed that traf-
fic noise exposure increased SDNN and HF band in absolute
units, indicating that traffic noise acutely increased HRV.

Although we did not observe any significant effects of
traffic noise on time and frequency domain indices of HRV,
we reported significant changes in the nonlinear parameters
of HRV during traffic noise exposure. Entropic and chaotic
global analysis of HRV revealed that the complexity of
heart rate autonomic control increased during traffic noise
exposure, suggesting increasing randomness in the system.

According to our findings, Shannon entropy values
increased (large effect size) during traffic noise exposure.
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Table 8: The relevant Principal Component Analysis for five entropies and DFA of 31 traffic noise exposure subjects.

Entropy (or DFA) PC1 PC2 PC3
Approximate 0.397 −0.415 0.497
Sample 0.405 −0.419 0.307
DFA 0.007 0.700 0.708
Shannon 0.470 0.258 −0.245
Renyi 0.485 0.187 −0.200
Tsallis 0.472 0.249 −0.242

Entropy is theoretically related to the amount of disorder of
particles in a system; if the entropy decreases, the predictabil-
ity of the process increases and the system becomes less
complex [52].The Shannon entropy quantifies the complexity
of a system by means of an average information content
[52]. In a recent study, heart beat time series were quantified
by Shannon entropy and decreased values were associated
with increased severity of pathological condition [53]. Also,
decreased Shannon entropy values were found in leprosy
victims when HRV was investigated [54].

We also revealed that Renyi entropy values were higher
during exposure to traffic noise (large effect size). The Renyi
entropy generalizes the Shannon entropy and considers the
Shannon entropy as a singular case [55]. The Renyi entropy
was previously reported to identify cardiac autonomic neu-
ropathy [56]. It was recently shown as an effective method
in real-time monitoring of atrial fibrillation patients and for
prediction and diagnosis of paroxysmal atrial fibrillation [57].

Based on our data, Tsallis entropy analysis confirmed
that the complexity of HRV increased during traffic noise
exposure and Cohen’s 𝑑 calculation exhibited large effect size.
This nonlinear approach is not chiefly used in HRV analysis;
Eduardo Virgilio Silva and Otavio Murta [58] applied Tsallis
entropy in time series and suggested it as a potential method
for complexity system analysis, thus supporting our conclu-
sions.

Our results demonstrated through chaotic global analysis
of HRV that CFP3 and CFP6 significantly increased (large
effect size) during traffic noise exposure, indicating higher
complexity of RR-intervals oscillations during auditory stim-
ulation. A previous study reported that chaotic global analysis
was unable to identify HRV changes during mental task [59].
Another research study investigated chaotic global analysis in
RR intervals during exposure to heavy metal music [60]. The
authors failed to reveal influences of this music style on the
complexity of HRV.

Nonlinear analysis of HRV is a complex issue owing to its
physiological interpretation. Conversely, the literature shows
that decreased complexity of HRV represents a physiological
impairment. Accordingly, our data points to an interesting
interpretation that acute traffic noise exposure in a laboratory
situation does not cause stressful autonomic responses. An
elegant systematic review reported that themajority of studies
performed at the roadside evidenced stressful effects of traffic
noise on cardiovascular, respiratory, and metabolic health
[61]. However, in view of our results, we deduced that

the stress induced by exposure to road traffic noise is not
only due to the auditory stimulus but due to the roadside
environmental situation.

The interaction between auditory processing and heart
rate autonomic control has been reviewed before [62]. Naka-
mura et al. [63] reported that auditory stimulation influenced
renal sympathetic nerve activity and blood pressure in anes-
thetized rats.The same researchers observed that vagal gastric
nerve activity was similarly influenced by music [64]. The
authors indicated that the suprachiasmatic nucleus of the
hypothalamus is involved in this process [63].

Amongst the important points to be addressed in our
study, we allow for the laboratory conditions the volunteers
were exposed to. This is because we intended to discard
the influence of the traffic environmental impact on HRV,
that is, pollution, visual stimulation, and conversation. We
investigated only women in order to avoid influence of sexual
hormones. We believe that a combination of different factors
during traffic noise stimulus would induce tougher effects on
HRV, since the ANS is sensitive to innumerous exogenous
elements [14].

The luteal and follicular phase of the menstrual cycle
were also controlled, since there is previous evidence of its
influence on nonlinear HRV [11].

Another fact worth highlighting is that, in our study,
nonlinear methods of HRV were more sensitive at detecting
changes in the RR-interval fluctuations. This is possibly
because some information may be erroneous if only linear
analysis is undertaken. Nonlinear analysis was revealed to be
a more powerful approach to identify complex systems [9].

5. Conclusion

Traffic noise exposure did not significantly alter linear indices
of HRV. Higuchi fractal dimension, DFA, and Approximate
and Sample entropies were similarly significantly unaffected.
Yet, it significantly changed chaotic global analysis (combi-
nations CFP3 and CFP6) and Shannon, Renyi, and Tsallis
entropies. Our results indicate that traffic noise acutely
enhances the complexity of heart rate autonomic control in
healthy women.
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E. Valenti, “Globally chaotic analysis of Heart Rate Variability
during acute auditory stimulus by heavy metal music,”Medical
Express, vol. 2, no. 5, 2015.

[61] A. Recio, C. Linares, J. R. Banegas, and J. Dı́az, “Road traffic
noise effects on cardiovascular, respiratory, and metabolic
health: An integrative model of biological mechanisms,” Envi-
ronmental Research, vol. 146, pp. 359–370, 2016.

[62] V. E. Valenti, H. L. Guida, A. C. F. Frizzo, A. C. V. Cardoso, L.
C. M. Vanderlei, and L. C. de Abreu, “Auditory stimulation and
cardiac autonomic regulation,” Clinics, vol. 67, no. 8, pp. 955–
958, 2012.

[63] T. Nakamura, M. Tanida, A. Niijima, H. Hibino, J. Shen, and
K. Nagai, “Auditory stimulation affects renal sympathetic nerve
activity and blood pressure in rats,” Neuroscience Letters, vol.
416, no. 2, pp. 107–112, 2007.

[64] T. Nakamura, M. Tanida, A. Niijima, and K. Nagai, “Effect of
auditory stimulation on parasympathetic nerve activity in ure-
thane-anesthetized rats,” In Vivo, vol. 23, no. 3, pp. 415–420,
2009.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

