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Abstract

An increasing number of data applications such as monitoring weather data, data streaming, data web logs,
and cloud data, are going online and are playing vital in our every-day life. The underlying data of such
applications change very frequently, especially in the cloud environment. Many interesting events can be
detected by discovering such data from different distributed sources and analyzing it for specific purposes
(e.g., car accident detection or market analysis). However, several isolated events could be erroneous due to
the fact that important data sets are either discarded or improperly analysed as they contain missing data.
Such events therefore need to be monitored globally and be detected jointly in order to understand their
patterns and correlated relationships. In the context of current cloud computing infrastructure, no solutions
exist for enabling the correlations between multi-source events in the presence of missing data. This paper
addresses the problem of capturing the underlying latent structure of the data with missing entries based
on association rules.This necessitate to factorize the data set with missing data.

The paper proposes a novel model to handle high amount of data in cloud environment. It is a model
of aggregated data that are confidences of associations rules. We first propose a method to discover the
association rules locally on each node of a cloud in presence of missing rules. Afterward, we provide a tensor
based model to perform a global correlation between all the local models of each node of the network.

The proposed approach based on tensor decomposition, deals with a multi modal network where missing
association rules are detected and their confidences are approximated. The approach is scalable in terms of
factorizing multi-way arrays (i.e. tensor) in the presence of missing association rules. It is validated through
experimental results which show its significance and viability in terms of detecting missing rules.

Keywords: Distributed mining, association rules, cloud computing, tensor.

environment and the drivers state. It will need to
collect information from various different sources
which are distributed across different locations. For
instance, real time information from road sensors,

1. Introduction

Today every organization is facing the issue
of handling a potentially large volume of data

that come from multiple and distributed data
sources. Data applications such as weather data,
data streaming, sensor data, web logs and pub-
lish /subscribe applications, produce and consume
large volume data. The underlying data of such
applications is very dynamic and changes very fre-
quently. Many interesting events can be detected
by discovering such data from different distributed
sources and analyzing it for specific purposes 23,
For instance, in the vehicle industry, the future
driver assistance systems will need to discover, col-
lect and analyze dynamic information about cars

radars, GPS, video and eye-tracking systems need
to be instantly discovered, collected and analyzed.
In addition, such systems require that the correla-
tion of information from different sources is neces-
sary in order to get a consistent view of the real
world and help drivers in making appropriate de-
cisions and taking appropriate actions. However,
the appropriate discovery, collection and analysis
of such data are affected by various factors. For
instance, reliable analysis of data collected can be
affected by missing data. The loss of information
and errors in the data collection process are the



two main contributing factors to the missing data.
The consequence of erroneous and missing data is
that some important data sets may be discarded or
improperly analyzed giving incorrect information.
Further, several isolated events may also have to
be monitored globally and jointly detected in or-
der to understand their patterns and correlation
relationships, leading to adapt the system behav-
ior and take appropriate actions considering a par-
ticular conjunction of events. Moreover, in a large
network of computers or sensors, each of the com-
ponents has some data about the global state of
the system and much of the systems functionality
relies on modeling the global state of the system
which is constantly changing. It is necessary to
keep the models up-to-date and seek for incomplete
information. Computing global data mining mod-
els e.g. decision trees, k-means clustering in large
distributed systems may be very costly due to the
scale of the system and due to communication cost,
which may be high. The cost further increases in a
dynamic scenario when the data changes rapidly .

The aforementioned issues will be studied in this
paper in a new type of distributed environment i.e.
the cloud computing *by handling specific data that
are the ”association rules”®. Cloud computing is
the most hyped trends for the last few years. How-
ever, to our knowledge, currently there exist no so-
lution that enables the correlations between multi-
source events in the cloud computing.

The paper proposes a novel model to handle high
amount of data in cloud environment. The pro-
posed model takes into account aggregated data
that are confidences of associations rules. This pa-
per addresses the issue of discovering and predicting
the missing association rules from incomplete data
on a cloud node, and by correlating them with data
coming from other nodes. The proposed approach
is distributed and is based on tensor decomposi-
tion%. The decompositions are applied to data ar-
rays for extracting and explaining their properties.
The proposed model deals with a multi modal net-
work where missing association rules are detected
and their confidences are approximated. For that,
the association rules i.e. their confidences will be
represented as arrays in each node, where the ob-
tained arrays are incomplete and the results of cor-
relation between the association rules with other
nodes are represented by a tensor. In other words,
our goal at first attempt is to capture the latent
structure of the data via higher-order factorization
in the presence of missing association rules. The

second attempt is to recover the missing entries
toward distributed correlation of association rules
over the cloud network.

The paper proposes a novel approach in order to
discover the association rules locally on each node
of a cloud and globally correlates the local results
(over the cloud) to predict missing association rules.

Our salient contributions in this paper are:

e Global correlation model. To handle and an-
alyze efficiently the high amount of data on
the cloud network, we propose an aggregation
data model related to confidences of associa-
tion rules in presence of missing data.

o A scalable algorithm. We developed a scal-
able algorithms for tensor factorization to cor-
relate the association rules in presence of miss-
ing rules over the cloud network and recover
these missing entries.

e Fxperiments. To validate the obtained results,
the distributed approach is evaluated with nu-
merical experiments on simulated data sets in
presence of incomplete and missing data.

The remainder of the paper is organized as fol-
lows: section 2 presents a set of definitions and
background that are used in the design of the pro-
posed approach. Section 3 gives an overall picture
of the proposed approach. Section 4 describes the
local mining step with data representation and the
applied algorithm. Section 5 presents the second
step of distributed mining based on tensor con-
cept. Section 6 gives experimental results of the
approach. Finally, we provide and outlook on fu-
ture work and conclusion of the paper in section
7.

2. Background

Notation

In data mining, association rule is a popular
and well research method for discovering interest-
ing relations between variables in large databases”.
Agrawal introduced associations for discovering
regularities between products in large scale trans-
action data recorded in supermarkets.The deduced
information can be helpful for decisions about mar-
keting activities

This section describes some basic definitions and
concepts which are used in the design of the pro-
posed model.



Table 1: Notation Table

i) : The k€€ item
I : Itemset
T : A set of transaction
Freq(I) Frequency
R : Association rule
conf(R) confidence
(X;R) Tensors of order N > 3
(A;B;C) Matrices
(a;b;¢) Vectors
N; : The 7€ node

2.1. Ttemsets and association rules

2.1.1. Definitions
Following Agrawal’definition, the problem of as-
sociation rule mining is defined based on itemsets.

Definition 1 (Itemset). Let I = {i1;ia--;ix} be
a set of k binary attributes called items and let
T = {t1;t2 - --;t,} be a set of transactions, an item
4; is an attribute and I C T

An itemset is characterized by the following con-
cepts:

e Support. A support of an itemset I denotes
supp(I) is defined as the proportion of transac-
tions in the data set which contains the itemset
and is equal to the number of object contain-
ers.

e Frequency. The frequency of an itemset I is
the probability that I occurs in set of trans-
actions T', which is denoted by Freq(I) and

1
is equal to % where card(T) means the
total number of transactions in 7'.

It is known that itemset is frequent if its support
is greater than or equal to a minimum threshold.

Theorem 1. All itemsets form an ideal order in
(2M, C) (compared to the frequency constraint)

We deduce that any subset of a frequent itemset
is frequent, and any superset of an infrequent
itemset is infrequent.

Definition 2 (Association rule). An  associa-
tion rule is expressed as: R : X — Y ,with X € T,
Y €T and XNY ={. The concepts related to a
rule are:

e Support The support of a rule is expressed
by the amount of objects in T containing
X UY, (supp(R) = P(X UY)) We measure
the strength of an association rule by the confi-
dence which is equal to the proportion of trans-
actions containing X that also contain Y,

P(XUY)
P(X)
Two types of rules emerge from the confidence

measure: Exact rule if Conf(R) = 1 and rules
of thumb if Conf(R) < 1

e Confidence. conf(R) =

e The 7[ift” rule measures the improvement
provided by the association rule in relation to

a set of random transactions (where X and Y
P(XUY

are independent). It is defined by W
A 7lift” greater than 1 indicates a positive
correlation between X and Y, and thus the

significance of the association.

2.2. Algorithms

A set of algorithms have been provided to dis-
cover the associations rules. Among them one
can cite the Apriori algorithm developped by
Agrawall®which uses a bottom-up method in which,
at each stage, subsets are expanded to a common
item. After the Apriori was proposed, many new
algorithms or improvements to existing algorithms
have been published. But finding all the frequent
itemsets remains a difficult task because the search
space is exponential function the number of items in
the database. Among the most significant changes
to Apriori that have been proposed include? and
Toivonen sampling algorithm!® . The first algo-
rithm to generate all candidates by a depth-first
approach (Approach type Depth-First), Eclat, was
published in 2000'!. In this paper the local data
correlation will be based on Apriori algorithm. De-
tails of the algorithm will be presented in section
4

2.5. tensor

The notion of tensor science is not new. But
in recent decades, their use have greatly developed
in psychometrics'? chemometrics'® . In these ar-
eas, data can depend on several factors. It may be,
for example, to measure different individuals in dif-
ferent situations. Tensor decomposition is used to



analyze the data according to all modes, to sum-
marize with few components and describe their in-
teractions. The methods for decomposing a tensor
allow it to capture the underlying information that
could not find a matrix analysis®™. Tensors can
also be used in social networks network analysis or
Internet (web mining)!®. The data can represent
several types of similarities or several types of rela-
tionships between nodes in a graph. They can also
take into account the evolution time of a relation-
ship between nodes.

Definition 3 (Tensor). A tensor is a multidi-
mensional array. The order of a tensor is the num-
ber of dimensions (or modes). More formally, an
N-way or Nth-order tensor is an element of the
tensor product of Nvector spaces, each of which
has its own coordinate system.

Notations

Tensors of order N > 3 are denoted by Euler
script letters (XC; R), matrices are denoted by bold-
face capital letters (A;B;C), vectors are denoted
by boldface lowercase letters (a;b;c), and scalars
are denoted by lowercase letters (a, b, ¢). Columns
of a matrix are denoted by boldface lower letters
with a subscript (a;; asz;as3) are first three columns
of A. Entries of a matrix or a tensor are de-
noted by lowercase letters with subscripts, i.e., the
(i15i9;...;in) entry of an N-way tensor X is de-

Example 1. A third-order tensor has three in-
dexes as shown in Figure 1. A first-order tensor
is a vector, a second-order tensor is a matrix, and
tensors of order three or higher are called higher-
order tensors.

1;2--

/5
A
; y
o

J=12---M

Figure 1: Tensor X € RNVXMxK

Mathematically, a tensor is defined more rigorous
as an intrinsic part of multi-linear algebra.

This notion of tensors is not to be confused with
tensors in physics and engineering (such as stress
tensors) %, which are generally referred to as tensor
fields in mathematics.

Definition 4 (Tensor Slice/Fiber). The tensor
is referenced with tensor slice and fibre:

e A tensor slice is a two-dimensional fragment
of a tensor, obtained by fixing all indices but
two. For example, the horizontal, lateral, and
frontal slides of a third-order tensor X are de-
noted by X;.., X.;., and X..,, respectively.

e A tensor fiber is a one-dimensional fragment
of a tensor, obtained by fixing all indices but
one. Tensor fibers are the higher-order ana-
logue of matrix rows and columns. Third-order
tensors have column, row, and tube fibers, de-
noted by X.ji, Xi.x, and Xjj., respectively. A
tensor coupe is depicted in Figure 2.

Xi:: W
X, [ | Tk

[/

Tij:
Xk X ﬂ‘? Tk
Slices Fibres

Figure 2: Tensor Coupe

3. Overall picture of the distributed data
correlation framework on the cloud

This section presents the proposed framework.
The objective of the framework is to predict asso-
ciation rules in the cloud computing environment.
In cloud, data is distributed across different nodes
(or computer systems) which are connected through
networks such as Internet. The framework deals
with the situation where data, discovered and re-
trieved from different nodes, is incomplete and may
prone to errors.

There exist various approaches that deal with is-
sues related to incomplete and erroneous data in



classical databases such as discovery of association
rules discovery and prediction of missing data'C.
However, applying traditional approaches to cloud
is problematic for the following reasons:

e Centralization: Data in traditional approaches
is generally centralized. Thus it is relatively
straightforward to discover and predict data
when data is centrally stored at one location.
However, this is not the case with cloud com-
puting in which data is stored at different lo-
cations and in different systems. This signifi-
cantly complicates the process of discovery and
prediction of data.

e Missing data: Traditional algorithms designed
for discovering associations rules do not deal
with missing data. However, given the nature
of cloud computing it is more likely that some
data (that need to be discovered and analysed)
might be missing. This will also result in creat-
ing situation wherein the resulted association
rules could be incomplete.

The proposed approach is:

e Distributed: the approach does not collect all
data from nodes on a centralized data ware-
house. It performs local discovering of associ-
ation rules on each node.

e Discovering missing association rules: discov-
ering association rules on incomplete data of a
given node leads to missing association rules.
The proposed approach makes correlation of
all the local association rules to predict miss-
ing one in each node.

The above issues provide the rationale for the
design and development of a new framework that
deals with the discovery of distribution of data
across different nodes of the cloud as well as tackle
the issues created by the missing data and incom-
plete association rules. In this paper we design and
develop a framework that deals with these issues.
The fundamental principles of the proposed frame-
work are described as follows:

1. Distributed data: The framework discovers
and collects data from different nodes that are
distributed across the cloud. Unlike traditional
approaches, it does not collect all data from
nodes on a centralized data warehouse. It per-
forms local discovery of association rules on

each node. This then feeds into the discovery
of missing association rules at the global level
(or cloud level).

2. Discovering missing association rules: Discov-
ering association rules on incomplete data of a
given node leads to missing association rules.
The proposed approach makes correlation of
all the local association rules to predict miss-
ing ones in each node.

Based on the above the proposed framework is
designed by following the following major stages,
which are also depicted in Figure3.

1. Local Data Correlation: In this stage, the lo-
cal data correlation process discovers local as-
sociation rules on each node. This task is done
separately on each node. It therefore does not
require centralizing data of all nodes. The dis-
covered association rules and their respective
confidences are represented in a matrix, called
local confidence matrix. A local confidence ma-
trix is computed for each node. The discovery
of association rules is done by applying the A
Priori algorithm locally on each node. Further
details are provided in section 4.

2. Global Data Correlation: In this stage, the
resulted local association rules are correlated
in order to discover missing local association
rules. Discovering missing association rules is
performed for each node in the following two
steps:

(a) Identifying missing association rules: In
this step, the missing association rules are
identified by correlating the local discov-
ering results obtained from all the nodes
of the cloud. Our intuition is that data
of different nodes of the cloud are related
(for a particular application, e.g., market
analysis). Given this, the missing asso-
ciation rules at a given node N; are all
the local association rules discovered on
either all or at least one other node. Thus
if Ay denotes the set of local association
rules, discovered on node Ng, then the
missing association rules on Ny, is the set
M= (U4;) — A

j=1:R,j#k

(b) Discovering missing association rules:
This step discovers the missing associa-
tion rules. At the global correlation, the
confidence of missing association rules My
is unknown in the confidence matrix of



the node Nj. The global data correlation
aims to predict the unknown confidences
of missing association rules for each node.
This prediction is made by correlating
results of local correlations, namely the
computed confidence matrices. Note that
the global correlation is not a centralized
process. Global correlation does not ag-
gregate data of nodes but only their sum-
maries, which consist of confidence matri-
ces of locally discovered association rules.
The confidence matrices are aggregated
into a tensor model and the prediction of
missing confidences is done using the con-
jugate gradient algorithm. The details are
provided in the section 5.

4. Local Data Correlation

In this step, data are correlated locally at each
node for discovering association rules.

The association rules discovering consists of iden-
tifying the frequent itemsets and then, forming con-
ditional implication rules among them.

On a node N;, data is set of transactions, also
called transactional basis.

The classic problem of discovering association
rules can be described as follows: let I =
{iy;ig---ix} a k —items. Let D = {t1;...;tn}
be a set of transactions stored at the node N; of
the cloud. Each transaction ¢; is a set of items,
uniquely identified by an identifier tid.

The extraction is done in two steps:

1. Step 1: frequent itemsets Iy;...;I,, are ex-
tracted using the Apriori algorithm (see Algo-

rithm 1).
2. Step 2: association rules are generated from
the frequent itemsets Iy;...;1[,. The asso-

ciation rules X — Y is generated from the
frequent itemset I}, if:

X = {il; .
and
conf(X = Y) > minconf

sl CLand Y = I — X,

Let us consider a database on the node N; de-
picted in Table 2,

The extracted frequent itemsets using the Apriori
algorithm are presented in Table 3.

From the itemsets of Table 3, association rules
can be generated only from the frequent itemset
{ac} and given in Table 4.

input : D, minsup
output: |J Ly
k

Ly : { set of 1-item that appear in at least
three transactions};
k=2
while £;_1 # () do
Cy = generate(Ly—1) /Generates the
candidate set/ ;
for t €T do
Ct = subset(Cy, t) /Selection of
candidates Cj present in t/;
for c € C; do
| count|c] = count[c] + 1
end
end
Ly, ={c € C)/count[c] > minsup};
E=k+1
end

Algorithm 1: The Apriori algorithm

Table 2: Example of a database on node N;

N;
tid transaction
1 abc
2 ac
3 ad
4 be f
5 abef

Table 3: Frequent itemsets of the database on N; with
minsupp = 50%

| Ni |
Frequent itemsets support
{a} 80%
b} 60%
{c} 60%
{ac} 60%

5. Global Data Correlation

In this section we present the tensor-based ap-
proach for the approximation of missing confi-
dences. The approximation problem is the mini-
mization of tensor-based cost function after decom-
position. We first present the model and discuss
the approximation method and the proposed algo-
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Figure 3: Framework of distributed data correlation on the cloud

Table 4: Association rules of the database on N; with
minconf = 70%

| N;
Association rules confidence
{a = ¢} 0.75
{¢ = a} 1

rithm.

5.1. The tensor-based model for global correlation

The correlation model is represented by the con-
fidence tensor.

Definition 5 (Confidence tensor). Confidence
tensor R is defined by the uplet (R, G, W) where:

e R is a network of nodes: Ny, Ns...Npg.
e (5; is the set of frequent itemsets in the node

N, G= U G
i=1:R

e R is a tensor defined on the space RVXNVxE
with values in [0, 1], the fiber r;;. represents all
confidence related to association rules between
itemsets ¢ and j in all nodes.

e W;; is a weight matrix, defined by:

W — 1 if 74 is known
Y1 0 if 7y is missing

R, | —

1
Chi

k" Node  conf(I; — I;)

Figure 4: Confidence Tensor



The task of predicting relational patterns i.e., the
missing association rule confidences will be to try
to find all relational patterns for all zero values of
the matrix W. For this, we find a decomposition
CP as close as possible to the original tensor R for
relations known.

In order to perform this task, the following prop-
erties are defined.

Definition 6 (Properties on tensor). The
properties comprise a set of definitions:

e the scalar product of two N way tensors X, R

is :
X-R= E LijkLijk

ijk

e Norm of tensor. The norm of an N-way tensor
X ¢ Rllxlg...xIN is

I =2 = afy,

ijk

e Mode-n matriz product. The mode matrix
product of a tensor X € RIXT2XXIN with a
matrix U € R/*!» is denoted by X x,, U and
is of sizely X ... X Iy X J X Ipq X ..o X Iy.
Element-wise, we have :

I,
X X Uiy i jinga i = E Tiyig...in Ujip -

ip=1

Multiple mode-n matrix products can be per-
formed in any order (X x,, U) x,, B = (X x,,
B) x, A

e cxterior product.The exterior product of three
vector u; € ]Rh7 Uy € R and us € R de-
noted by u1 o ug o us is a tensor X € RIt>*l2xTs
as :

V(isjs k) € RIvx2xts 00,0 = uy; x U X U3}

5.2. Approzimating confidence of missing associa-
tion rules

This problem of approximating the confidences
of association rules in presence of missing rules be-
tween nodes can be rewritten as a problem of ap-
proximating R by finding a tensor X of the same
size that minimizes a cost of R defined as follows:

N
LX) = ) Wijl|Rij. — Xije|)?

ij=1

The approximated tenor X is calculated by min-
imization L(X) using an iterative algorithm. For
this aim, we use the conjugate gradient algorithm
depicted is Algorithm 2.

Before using the gradient algorithm, the tensor X
has to be decomposed into vectors or matrices. We
use the CANDECOMP /PARAFAC decomposition
method (CP)® depicted as follows:

L A A Y &%

Rl [ °
X %Ial +@a2 Ao+ W AR

Figure 5: CANDECOMP /PARAFAC tensor decomposition

Then, the tensor X is decomposed as follows:

K
X =~ le(cl) o...o:l:l(cN)
k=1

We denote for the study of our model CP de-
composition given by the three matrices 5.2 : X =
(A, B,C]]

By setting X = [[A, B, C]], we obtain:

N R K
LX) = D > Wii(Rijr — > AixBjCri)?
k=1

i,j=1r=1

input : zg ;
We set dy = —V f(x0)

output: z minimum of f

while Not convergence do
Tkt+1 = Tk + prdi with pp optimal ;
dypy1 = =V [(2ps1) + Brdy with :
5 97 Gousn) [
IV f) 1?7

end

Algorithm 2: The gradient algorithm

To establish the norm of the gradient of the form
L(X) we determine the partial derivatives for the
three directions X = A, Y =B and Z = C:
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5.3. Distributed data correlation algorithm

The entire approach combining the local and
global correlations is processed by the distributed
algorithm depicted in Algorithm 3.

The algorithm follows three steps:

1. First, the algorithm applies Apriori algorithm
on each node of the cloud to calculate the asso-
ciation rules in presence of missing data. The
obtained results are a set of confidence matri-
ces. The combination of them will provide a
confidence tensor R in presence of missing as-
sociation rules. Confidence of missing associa-
tion rules is unknown in the tensor.

2. Second, the algorithm performs the decompo-
sition of the confidence tensor using the CP
decomposition.

3. Finally, the algorithm approximates the un-
known confidences in the tensor by means of
the conjugated gradient.

6. Experimental results

In this section we simulated three-way data in
order to assess the performance of the proposed al-
gorithm in terms of its ability to find the underlying
factors in the presence of missing confidences of as-
sociation rules.

For simulation purpose, we generate a database

input : {D1;Da;---Dr} A set of database in
all nodes;
€; minsup

output: X: A confidence tensor approaching
missing value in R

for r < 1 to R do
Apriori(D;;minsup)
for i < 1 to N do
for j + 1 to N do
| Rijr =conf(I; — I ) in node r
end
end
end
for i < 1 to N do
for j + 1 to N do
for r < 1 to R do
[[A;B; C]| = CP(R)
X =GC(Lw;e)
end
end
end

Algorithm 3: Distributed data correlation al-
gorithm

D. For each node it has removed a random part
of the database. The resulting databases are:
{D; -+ D1p}. The Apriori algorithm was applied to
each node {N;|i = 1---10},The confidence matrix
were generated in all nodes. Table 5 gives details
on the statistics of our database.

Table 5: Statistics application

Nodes 10
Total number of frequent itemset 55
Total number of missing confidence 2360

Confidence tensor X € R?5*55x10  3()25()

The number of frequent itemsets for missing 10
nodes is given in Figure 6.

Several ranks of the tensor have been tested nu-
merically. The weight matrix was filled with a focus
on how we want to determine the missing associa-

tion rules. We defined the relative error in the node
. experimental confidence— theorical confidence

Nl by max( theorica! confidence . )’

the relative errors are shown in the following figure

6. We note that the error does not depend on the
number of unknown association rules in the node 1.

From this experiment 6, it was verified that the
approximation error depends on the number of
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Figure 6: Missing frequents itemsets

Table 6: Model Results

Ny No N3 Ny
Nb of frequents Itemsets 46 50 52 54
Relative error ~ 6% ™% 3% 5%
Ns Ng N7 Ng Ng Ny
45 48 53 48 54 51
6% 7% 8% ™% 1.5% 5%

Error

15%

10%F

5%t | 1 | 1
\ ’ \ ’
. ;

0% | | | | | | | | | |
Nt N2 N3 N4 N5 N6 N7 N8 N9 N10

Figure 7: The relative error

missing values in effect in the nodes 9 and 3 was re-
moved or less, the error was 2%. Nevertheless, the
error is generally random but stable demonstrating
the mutual impact between nodes.

In Figure 6 shows the evolution of the average error
as a function of the amount of missing values. This
curve shows some stability in our model, the evo-
lution of the error effect is linear, with a maximum
value that does not exceed 15%.
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Figure 8: The Error evolution

7. Related work

Mining data sets in a distributed way has been
studied in the past time. Some of the works may
choose to download the data set in a single site and
performs the data mining operations at the central
location. However, the decision should be based on
the properties of computing, storage, a,d communi-
cation capabilities. A survey of such works is pre-
sented in'®. For instance in'"considers collective
data mining to address data analysis for heteroge-
neous environment, where instead of combining in-
complete local data models, it seeks to find globally
meaningful pieces of information from each local
sites. In'® discusses how to find the right trade-
off between the abstraction levels of the local data
sources and the global model accuracy is crucial for
getting the optimal abstraction, especially when the
local data are inter-correlated to different extents,
and it is proposed the optimal abstraction task as
a game and compute the Nash equilibrium as a so-
lution.

Furthermore, current literature contains signif-
icant work on other aspects of cloud computing.
For instance,!? investigates into the performance
analysis of high performance computing applica-
tions in the cloud environment. The work in2° con-
cerns Service Level Agreements (SLA). It presents
an architecture for detecting SLA violation through
sophisticated resource monitoring. Further,?! pro-
poses a business-oriented federated Cloud comput-
ing model in order to facilitate cooperation between
multiple independent infrastructure providers so
that they seamlessly provide IT infrastructure while
taking into account the QoS aspects. Though these
approaches have interesting contributions, their fo-
cus is different than the work presented in this pa-

per.

Missing Confidence



In a new application such as vehicle telematics
products innovative distributed data mining tech-
niques are a necessity as mentioned in??. Addi-
tionally, few works addresses the data mining prob-
lems on the cloud, but some discussions rises where
does cloud computing platform help to perform
data analysis on big data?for instance?? discusses
a strategy and a model based on the use of services
for the design of distributed knowledge discovery
services and discuss how Grid frameworks can be
developed as a collection of services and how they
can be used to develop distributed data analysis
tasks and knowledge discovery processes using the
SOA model. In?* describe the design and imple-
mentation of a distributed file system called Sector
and an associated programming framework called
Sphere that processes the data managed by Sector
in parallel. A recent vision paper highlights the
distributed data mining in big data in2°.

8. Conclusions and future work

This paper investigated into the critical issues
related to cloud data discovery and analysis. In
particular it has addressed the problem of discover-
ing missing association rules in circumstances where
data is distributed across different nodes of the
cloud and some data is missing or erroneous.

A tensor-based framework has been designed and
developed in order to model the association rules,
the missing data, and to approximate their confi-
dences. Accordingly, we developed a distributed
and scalable algorithm to correlate the association
rules on a local cloud node with the rules of the
global cloud nodes in the presence of missing rules.
The algorithm effectively provided an approxima-
tion of the confidences of missing rules. Various
experiments have been conducted and numerical re-
sults are obtained.

In the current approach, the confidence ten-
sor considers the missing data having zero values,
which is based relatively on simple hypothesis. The
future includes extending the framework to handle
(1) more complex hypothesis (2) to discover and
analyse data of streaming applications.
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