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Abstract/Summary 
Ovarian cancer causes more than 100,000 deaths globally per year. Despite intensive research 
efforts there has been little improvement in the overall survival of patients over the past three 
decades. Most patients are not diagnosed until the cancer is at an advanced stage, by which 
time their chances of still being alive after five years are appallingly low. Attempts to extend 
life in these patients have been, for the most part, unsuccessful. This owes partly to the lack 
of suitable biomarkers for stratifying patients at the molecular level, into responders and non-
responders. This would lead to more drugs being shown to have a clinical benefit and being 
approved for use in subgroups of patients. On the other hand there is also a desperate need for 
improved biomarkers for earlier detection of ovarian cancer; if the disease is detected sooner 
there is a significantly improved outlook. In this review we outline the evidence that miRNAs 
are deregulated in ovarian cancer, what this can tell us about tumour progression and how it 
could be used to improve patient stratification in clinical trials. We will also describe the 
potential for circulating miRNAs, both associated with proteins or carried in vesicles, to be 
used as diagnostics for earlier detection or as biomarkers for informing clinicians on the 
prognosis and best treatment of ovarian cancer.  
 
Key Points 
The transcriptional landscape of miRNAs in the blood is altered during ovarian cancer 
progression; levels correlate with survival and prognosis as shown by numerous studies. 
miRNAs in Extracellular Vesicles in the blood also appear to reflect the characteristics of the 
primary ovarian carcinoma.  
Hence miRNAs as well as EVs are potential biomarkers, providing a bio-accessible route for 
monitoring the presence and behaviour of tumours in the body.  
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1. Introduction  

 
Ovarian cancer is the most deadly gynaecological cancer, with approximately 200,000 new 
cases diagnosed globally each year and more than 150,000 deaths due to the disease 
annually[1]. The overall five-year survival for ovarian cancer is approximately 45% [2]. 
Important reasons for this low survival rate include the acquisition of chemotherapeutic 
resistance frequently seen in these tumours, and the difficulty in diagnosing the disease which 
often leads to late presentation of the condition [3,4]. Strikingly, patients whose tumours are 
diagnosed in the early stages have a five-year survival rate of over 70% [5]. Epithelial 
ovarian carcinomas (EOC) represent by far the major type of ovarian tumour, and of these a 
further classification can be made on the basis of histological morphology: serous (70%, of 
which the majority are high grade serous carcinomas and the remainder are low grade serous 
carcinoma), clear cell (approx. 10%), endometrioid (approx. 7%) and mucinous carcinoma 
(approx. 3%) [6]. However, despite differences in their formation (both in terms of their 
tissue of origin and molecular causation) they are all considered essentially as one disease 
when it comes to treatment regime.  
 
A number of biological molecules are being investigated for their potential in detecting 
ovarian cancer in earlier stages or for informing clinicians on the subtype of the disease or its 
likelihood to respond to different treatments. Two potential biomarkers include microRNAs 
(miRNAs) and extracellular vesicles (EVs). miRNAs are single-stranded RNA molecules 
approximately 19-23 nucleotides in length that lack protein-coding ability and are able to 
regulate the expression of other genes [7]. The human genome encodes more than a thousand 
miRNAs, and each miRNA is able to regulate the expression of multiple genes, generally via 
their incorporation into the RNA-induced silencing complex (RISC) and repression of target 
mRNA (via sequence-specific base-pairing between the miRNA and mRNA) [8]. This 
repression is achieved by inhibition of mRNA translation or degradation of the mRNA 
transcript [7]. Various experimental approaches have demonstrated that miRNAs are 
important regulators of key developmental processes such as cell division and differentiation, 
embryonic development and stress response [9-12]. It has also been shown that miRNAs 
deregulation can be involved in the formation of ovarian tumours and the acquisition of drug 
resistance in these tumours [13-18].  
 
EVs are a type of vesicle released by cells into the extracellular space [19]. It was initially 
unclear what the importance and roles of EVs might be, with some suggesting that their 
primary function was to remove unwanted cellular material, but with a recent explosion of 
interest in EV biology it has emerged that they do play a variety of roles in many biological 
processes in cells and organisms [20-21]. Human cells can produce different kinds of EVs 
which can (to a certain extent) be distinguished by their size and protein composition: e.g. 
exosomes (approx. 40-150 nm in diameter) are released when multivesicular bodies fuse with 
the plasma membrane; larger microvesicles are produced by shedding of vesicles at the cell 
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surface; apoptotic bodies are thought to be released by cells undergoing programmed cell 
death. EVs can carry various types of cargo, including proteins and miRNAs, which can be 
delivered to other cells following uptake via a number of different endocytic pathways 
[22,23]. Given their importance in roles such as cell signalling, angiogenesis and modulation 
of the immune system, it is not surprising that EVs can be deregulated in disease, including 
cancer [24]. Indeed, their propensity to carry proteins and nucleic acids from their cell of 
origin, combined with their presence in every biological fluid tested thus far, makes them an 
ideal candidate as biomarkers to inform on the presence and nature of a developing tumour. 
In this review we will outline our current understanding of how miRNAs and EVs can be 
used to diagnose and characterise ovarian cancer.  
 
 
2. Ovarian cancer, classification and treatment  

Epithelial ovarian carcinoma (EOC), as is being discovered for so many different tumour 
types, is in fact a variety of diseases. These include clear cell carcinoma (CCC), mucinous 
carcinoma (MC), endometrioid carcinoma (EC), low grade serous ovarian carcinoma (LGSC) 
and high grade serous carcinoma (HGSC) [25]. Whilst there are regional variations in the 
proportions of each subtype, the most commonly presenting disease is HGSC. Using a broad 
dualistic classification the subtypes of EOCs can be divided into two main groups: type I and 
type II. These different subtypes differ in their origin, response to chemotherapy and 
prognostic outlook (table 1). Type I tumours tend to be less aggressive (the exception to this 
is CCC) and, although they don’t tend to respond as well to chemotherapy, if diagnosed 
before the tumour has spread beyond the ovary the prognosis is relatively good [26-28]. Type 
II tumours (HGSC) are usually diagnosed in the later stages of the disease. After responding 
well (in most cases) to chemotherapy they tend to relapse and prognosis is rather poor [29].  
 
Treatment for EOC usually involves surgical removal of the affected ovary (if the disease is 
in an early stage) or ‘debulking’, in which as much of the tumour is removed as possible. 
Debulking has been shown to improve overall survival, with the amount of residual tumour 
remaining following surgery one of the few factors to correlate well with survival [30,31]. 
Following surgery the patient is treated with platinum-based compounds, primarily 
carboplatin [32]. These platinum compounds form cross-links with the DNA and induce 
apoptosis in rapidly dividing cells. Platinum has been used as a first line treatment of EOC 
since the 1970s; in recent years the use of taxanes (inhibitors of microtubule dynamics) such 
as paclitaxel was shown to improve overall survival and is now a standard part of EOC 
treatment [32-34]. Recent improvements in our understanding of the molecular pathogenesis 
of tumours, including EOC, have led to a raft of new potential drugs which are being 
explored in various trials. Inhibitors of angiogenesis appear to have potential, with trials for 
Bevacizumab showing improvements in overall survival within some subgroups of patients 
[35]. The use of Poly(ADP-ribose) polymerase (PARP) inhibitors is also emerging as a 
potential tool to treat EOC. PARP is an enzyme involved in repairing single-strand breaks 
(SSBs) in DNA. In wild type cells the use of PARP inhibitors prevents the repair of single 
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strand breaks which are then converted to double strand breaks (DSBs) during DNA 
replication; these can then be repaired by the homologous recombination (HR) DNA repair 
machinery. However, in many EOCs the HR system is deficient, so treatment with PARP 
inhibitors can induce accumulation of DSBs which are toxic to the cell. This is known as 
synthetic lethality: the inhibition of PARP is not in itself lethal, but when combined with a 
mutation that affects HR it becomes lethal [36,37]. A number of PARP inhibitors are 
currently in trials with other first line chemotherapeutics.  Whilst many of these drugs lead to 
improvements in progression free survival, there has been very little improvement in overall 
survival or cure rate over the last 30 years [38]. There is a need for better molecular 
understanding of EOC, so that we may uncover novel potential drugs and stratify patients and 
better understand those who respond better to specific treatments.  
 
 
3. Molecular characterisation of EOC 

The advent of high throughput genomic technologies has yielded a powerful tool for gaining 
better of understanding EOC. The findings from several sequencing, microarray, 
transcriptomic and epigenomic studies are giving new insight into the disease but also give 
new potential for further stratification of tumour types [39].  
 
Sequencing studies have revealed patterns of mutation which are characteristic of type I and 
II EOCs. Virtually all HGSCs harbour a TP53 mutation, and about half of them also have 
mutations in genes involved in the homologous recombination DNA repair mechanism [40]. 
Other commonly seen changes in HGSC include the presence of genomic instability and 
amplifications of the CCNE1 gene [40]. Type I EOCs carry mutations in a greater variety of 
genes including PIK3CA (a subunit of the Phosphatidylinositol 3-kinase complex), PTEN, 
ARID1A, ERBB2, KRAS [41], ERK and BRAF [41], with the prevalence of these mutations 
different across the subtypes (table 1). The specific patterns of mutation can sometimes be 
linked to outcome; for example: LGSCs with a mutation in BRAF were found to be diagnosed 
at an earlier stage and had a better outcome than those with KRAS mutations [42]. Mutations 
in BRCA1/BRCA2 are associated with better response to platinum-based treatment, longer 
progression-free survival and overall survival [43,44]. Increased expression of HOXA10 in 
CCC is associated with reduced overall survival [45].  
 
Type II tumours can be further classified on the basis of morphology or transcriptomic 
landscape. Morphologically HGSC can be divided into those with classical appearance and a 
second group known as the SET variant (Solid pseudoEndometrioid Transitional) in which 
there are more tumour-infiltrating lymphocytes and a higher mitotic index. The SET tumours 
are more often associated with BRCA1 mutations, are more likely to occur in younger women 
but also have a better clinical outcome [46,47]. Further heterogeneity of HGSC is revealed by 
transcriptomic studies; analysis of gene expression in these tumours shows that the disease 
can be divided into four subtypes – Differentiated, Immunoreactive, Proliferative and 
Mesenchymal [40,48]. Subsequent studies have shown that these molecular subtypes can be 
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correlated with outcome, with best survival for patients with the Immunoreactive subtype but 
worst for the Proliferative and Mesenchymal subtypes [49]. A 193-gene transcriptional 
signature was also found to be a good predictor of overall survival [40] . A gene expression 
analysis in high grade clear cell and endometrioid carcinoma showed similar subgroupings as 
the high grade serous carcinoma, as well as an additional two expression subgroups 
associated with early stage tumours [50]. Other molecular signatures such as lin28b/let-
7a/IGF-II  and let-7a/HIWI  are also shown to be associated with overall survival and 
prognosis [51,52]. Taken together these results underscore the potential of molecular 
profiling in characterising the nature of EOC.  
 
There are numerous benefits to analysing EOCs at the molecular level. It gives new insight 
into potential therapeutic targets and who might benefit from them. For example, the finding 
that 50% of HGSCs have a defect in the HR system could be a good indicator of who might 
benefit from the use of PARP inhibitors [40, 53]. Indeed, the use of Olaparib, a PARP 
inhibitor, was recently approved for late stage patients in combination with a test for 
BRCA1/2 mutations [54]. Sequencing studies have revealed activation of certain signalling 
pathways in some EOC subtypes, which may allow us to specifically target these pathways in 
the therapeutic setting. In a pre-clinical model of CCC it was shown that EZH2 inhibitors 
(which target the histone methyltransferase Enhancer of Zester homolog 2) induced synthetic 
lethality but only when the ARID1A gene was compromised [55]. Finally, further molecular 
characterisation of EOCs gives clinicians and researchers the opportunity to stratify patients 
according to molecular subtypes and thus discover which patients benefit most when given a 
certain drug [56]. Such stratification also increases the probability that new drugs can be 
developed that gain approval for use in the clinic.  
 
 
4. The role of miRNAs in molecular characterisation of EOC 

There is a wealth of evidence emerging that miRNAs are deregulated in EOC (table 2) [57]. 
Whilst there are few examples of mutations in miRNAs during the development of ovarian 
cancer, de-regulation of expression has been observed in numerous studies [58]. Loss of 
miRNA function can also be achieved by epigenetic mechanisms, deletion of larger genomic 
regions, sequestration by pseudogenes/ ceRNA acting as endogenous sponges or blocking of 
miRNA maturation  [40,59-62].  
 
Early studies aimed to characterise the changes that occur in EOC compared to normal 
ovarian tissue. In one of the earliest studies of its kind, Iorio et al showed that the miR-200 
family (which contains miR-141, miR-200a, miR-200b, miR-200c and miR-429) is 
upregulated in EOC, whilst miR-199a, miR-140, miR-145 and miR-125b-1 were down-
regulated [63]. Another study showed that several miRNAs, including miR-100, miR-199a*, 
miR-200a and miR-214, are frequently deregulated in EOC [64].  
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The pattern of expression also has the potential to inform clinicians on the subtype of EOC. 
For example, one study showed that expression of miR-509 and miR-510 could distinguish 
between CCC and HGSC [65]. miR-153, miR-485-5p and miR-519a can also vary in their 
levels between the subtypes [66]. Others have also observed specific expression signatures 
for different EOC subtypes [64].  
 
Further studies aimed to identify miRNAs whose de-regulated expression was indicative of 
cancer stage, prognosis, and outcome (table 3). A large scale molecular analysis of more than 
400 HGSCs showed that there were three subtypes based on miRNA expression patterns [40] 
Survival of patients with miRNA subtype 1 was significantly longer than those with subtypes 
2 or 3, again demonstrating the ability of miRNA levels to stratify patients and help to predict 
outcome [40].  
 
Vecchione et al showed that the levels of three miRNAs, miR-484, miR-217 and miR-642 
can be used to predict chemoresistance following treatment [67]. Interestingly, the link 
between miR-484 and chemosensitivity appears to be modulated through regulation of 
angiogenesis and thus the vasculature within the tumour microenvironment [67]. In another 
study it was shown that decreased level of miR-145 was associated with advanced stage, 
metastasis, lymph node involvement, earlier recurrence and worse overall survival in patients 
with HGSC [68,69]. Higher miR-506 levels appear to associate with better overall survival, 
reduced progression free survival and improved response to treatment, possibly by inhibiting 
expression of the double strand repair protein RAD51 or EMT regulators [70,71].  
 
The let-7 family of miRNAs has been implicated in a variety of cancers, including EOC. The 
ratio of the HMGA2 gene over its regulator, let-7d, was associated with worse progression 
free survival [72]. Decreased let-7i was associated with chemoresistance and reduced 
progression free survival [73]. Lower levels of let-7b (and miR-199a) were associated with 
worse prognosis [74]. A microarray study revealed that miR-21 and miR-let7 family 
members were the most frequently downregulated in ovarian cancer, whilst miR-221 was up-
regulated [75]. Low levels of let-7a were linked with were associated with better progression 
free survival, overall survival and better response to the combination of platinum and 
paclitaxel [76]. High methylation of the let-7a-3 gene correlates with better overall survival 
[77]. Indeed, miRNAs are known to affect resistance to chemotherapy via a variety of 
molecular mechanisms, which would ultimately impact on the overall survival of the patient 
[18].  
 
In some cases the link between miRNA expression and outcome is less clear. The case of the 
miR-200 family provides one such example. Some studies show that its reduced expression is 
associated with relapse and shortened overall survival [78-81], whereas authors of other 
studies have concluded the opposite and that higher levels of expression are associated with 
worse survival [65, 74, 82]. This could be due to technical differences in sampling, 
processing or analysis of samples in different studies, or it could be because miR-200 family 
members have context-dependent roles. For example, miR-200, which is known to repress 
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epithelial to mesenchymal transition (EMT), could be lost during the invasive phase of 
tumour spread but then raised when cancer cells undergo mesenchymal to epithelial transition 
(MET) at a secondary site [83]. The differential effect may also come from the activity of 
additional factors; in one analysis of EOC tumour samples it was shown that miR-200c 
correlated with good or bad outcome depending on the subcellular localisation of the RNA-
binding protein HuR [84]. Further study should eventually allow us to understand these 
conflicting results and get further insight into the role of the miR-200 family in EOC.  
 
Results for other miRNAs also show conflicting results. In a cohort of 50 serous ovarian 
carcinoma samples it was seen that high levels of miR-29b were associated with reduced 
disease free survival [85], whilst the opposite was found in another study [86].  Similarly, 
miR-30d is found to be associated with worse clinical outcome in one study [87] but with 
better outcome in another [88]. Indeed, despite the large number of studies (not all of which 
have been described in the main text, though many of which are summarised in table 3) that 
have tried to correlate expression of miRNAs with EOC subtype, stage, grade, relapse, 
chemoresistance and survival, there is little consensus amongst the different studies. There 
are several reasons why this might be. Differences in the detection methodology, sampling 
and analysis methods could affect the outcome of miRNA profiling. In addition, many studies 
that try to compare tumour miRNA levels to surrounding healthy tissue do not accurately 
isolate normal epithelial but instead sample stromal tissue [89]. There are also differences in 
sample size and the clinical data associated with the cohorts in different studies [57]. Intra 
and inter tumour variability is also an issue which needs to be better understood in order to 
better characterise the effects of miRNAs in EOC [90]. Another variable is that the subtypes 
of EOC are essentially different diseases, and when combining subtypes in various analysis it 
can affect whether molecular markers correlate with clinical parameters [91]. In order to 
make experiments more comparable there needs to be a concerted effort to understand the 
effects of these differences on the overall quantification of miRNAs in EOC, and a greater 
degree of standardisation across the field. 
  
Better understanding of miRNA deregulation will be beneficial in the long run. miRNAs 
represent a molecular biomarker that could directly inform treatment choice, and could help 
to stratify patients into groups that are more likely to respond to one treatment compared to 
another. For example, patients with BRCA1/2 mutations are more sensitive to chemotherapy 
and also to PARP inhibitors [92]. However, only a small proportion of patients have 
mutations in BRCA1/2, yet many still respond well to treatment [40]. It is conceivable that in 
some cases of EOC the BRCA1/2 genes (or any others involved in HR) are not mutated but 
are instead being repressed by a miRNA which is being aberrantly over-expressed. Indeed, in 
one study it was shown that over-expression of miR-145a, miR-148a or miR-545 (which can 
all target BRCA1/2) is associated with improved overall survival (OS) and progression free 
survival (PFS) in patients with wild-type BRCA1/2 [93]. There is thus a real need to better 
characterise the deregulation of miRNAs in ovarian cancer.  
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5. Early diagnosis of EOC – the potential for miRNAs 

The treatment for EOC is costly and has not improved a great deal in the last couple of 
decades. There is a strong argument for focusing efforts on earlier detection and diagnosis of 
the disease. The majority of EOC is detected once the tumour has reached a later stage. If the 
tumour is detected in stage I them the five-year survival rate is 93%, but this reduces to 70% 
in stage II and plummets to 37% and 25% in stages III and IV, respectively [94]. Better 
biomarkers are therefore urgently needed to reliably detect EOC before it progresses to later 
stages.  
 
There is currently no useful biomarker for the early detection of cancer. Cancer antigen 125 
(CA125) is known to be raised in the serum of a high proportion of patients with EOC [95], 
but a number of other conditions can also be associated with higher levels of serum CA125, 
including pregnancy, menstruation and endometriosis [96]. In some cases of EOC, 
particularly during early stages, the level of CA125 is not raised [97]. The use of CA125 
therefore is not sufficient by itself to reach the level of sensitivity and specificity of a good 
diagnostic assay. Indeed, clinical trials using CA125 as a screening tool show no or modest 
improvements on overall survival [98,99].  
 
A number of imaging techniques are also available for detecting or characterising EOC [100]. 
This includes the use of transvaginal ultrasound, but clinical trials thus far show that it is of 
limited value in reducing mortality due to ovarian cancer [98,99]. The combination of more 
than one biomarker could be a way to improve sensitivity and specificity of such tests. For 
example, the Risk of Malignancy Index (which combines CA125 levels, ultrasound results 
and menopausal status), the Risk of Ovarian Malignancy Algorithm (which combines CA125 
quantification with the levels of human epididymal secretory protein 4 [HE4]) and the OVA1 
test (which combines quantification of five markers: CA125, transthyretin, apoliprotein A1, 
transferrin and β-2 microglobulin) can all improve sensitivity and specificity compared to 
using CA125 levels alone [101-104]. However, no biomarker thus far identified has been able 
to show a positive impact on overall survival. Indeed, definitive diagnosis of disease is only 
really possible once the patient is examined during surgery.  There is therefore a real need for 
improved biomarkers for diagnosis of EOC as well as for predicting outcome, informing 
treatment and monitoring drug response of the tumours.  
  
The use of miRNAs as non-invasive biomarkers for EOC has been explored by several 
groups. miRNAs represent a good candidate in this context, as they can be excreted by cells 
into the extracellular environment, they can be protected against degradation by 
encapsulation in vesicles (see below) or via interactions with proteins, and they can be 
detected at relatively low levels by nucleic acid amplification methods [105].  
 
Several groups have provided specific examples of changes to circulating miRNAs in patients 
with EOC (table 4).  In one early study qRT-PCR was used to show that miR-21, miR-126, 
miR-29a, miR-92 and miR-93 were over-expressed in the serum of 28 EOC patients 
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compared to 15 unmatched healthy controls. Interestingly, in three of the patients with 
elevated miR-21/92/93 there were normal CA125 levels prior to surgery, suggesting that the 
use of miRNA detection could help in identifying some patients that CA125 screening does 
not pick up [106]. The levels of miR-145 were found to be reduced in the serum of patients 
with malignant EOC [107], whereas miR-221 was seen to be increased in the serum of 
patients compared to healthy age-matched controls [108]. Levels of miR-200a/b/c were found 
to be elevated in the serum of EOC patients compared to controls [109]. A miRNA signature 
in plasma was able to distinguish between benign and cancerous tumours and was correlated 
with overall survival [110]. In another study of HGSC a number of miRNAs were measured 
in the serum of patients, and the levels of let-7i-5p, miR-122, mIR-152-5p and miR-25-3p 
were found to be reduced in cancer patients compared to those with benign tumours [111]. 
The level of miR-212 in the serum of EOC patients was significantly higher than in controls 
(though curiously the levels in the tumours themselves were lower than surrounding healthy 
tissue [112]. Levels of miR-30c-1* were increased whereas miR-181* was under-represented 
in the blood patients with EOC compared to age-matched controls [113].  In a study with 
over 300 EOC patients the levels of plasma miR-205 were increased in patients compared to 
the plasma of healthy controls, whilst let-7f levels were reduced [114]. Measuring the levels 
of these miRNAs showed diagnostic potential, particularly for stage I tumours [114]. The 
presence or absence of specific miRNAs could therefore be used as a diagnostic tool.  
 
In addition it is possible that circulating miRNAs could be used as a biomarker to inform 
clinicians about the nature of the tumour. A miRNA analysis of stage I EOC tumours 
revealed distinct miRNA profiles for the different subtypes, with levels of miR-30a/miR-30a* 
and miR192/194 elevated in clear cell and mucinous ovarian cancer, respectively [115]. 
Using qRT-PCR it was shown that miR-132, miR-26a, miR-145 and let-7b were all reduced 
in EOC patients [116]. Plasma levels of several miRNA could distinguish between patients 
with endometrioid and serous cancer [117]. 
 
Some groups have taken this further and have shown that correlations can be made between 
the levels of miRNAs in circulating and the clinicopathological parameters of the patient. 
Lower levels of serum miR-145 correlate with worse survival, for example [107]. Increased 
level of miR-221 is correlated with later stages of the disease and was a negative prognostic 
factor for the disease [108]. miR-21 was upregulated in the serum of patients with EOC and 
was associated with later stage, grade and worse overall survival [118]. In another study 
lower let-7f plasma levels correlated with worse prognosis [114]. Serum levels of miR-125b 
in 70 EOC patients were significantly higher compared to healthy controls and levels 
correlated significantly with stage, lymph node involvement and metastasis [119].  
 
Whilst most efforts to find a suitable biomarker for EOC have focused on blood-borne 
markers there are other potential biofluids that could be explored. In a recent study the 
potential of using miRNAs extracted from urine was tested; the authors found that miR-92a is 
up-regulated and miR-106b down-regulated in EOC [120].  
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As with experiments which directly profile the levels of miRNAs in tumours, the results from 
studies profiling circulating miRNAs do not always show the same results. This could come 
down to similar reasons, including the type of EOCs being tested, stages of tumours, 
differences in detection method, analysis etc. One consideration with profiling circulating 
miRNAs is the need for a sensitive detection platform. The yields of miRNA from blood are 
relatively lower, and qRT-PCR methods show much better sensitivity and linearity for 
quantification of miRNAs compared to array-based methods [121]. There are also a number 
of pre-profiling factors which can affect the miRNA landscape and must be further studied to 
further understand the variability between studies [122]. Another issue is the method of 
normalisation, with some studies normalising relative to global expression [109], some using 
spike-in controls [114] and others using specific reference genes [110,111] (the latter of 
which also require further characterisation and reply on the potentially false assumption that 
they are expressed equally across all patients).Further optimisation and standardisation is 
needed to make the results of different studies more comparable and to make the use of a 
miRNA-based diagnostic more realistic. Whilst there is no FDA-approved diagnostic to date, 
there is a great deal of potential for miRNAs in this realm, particularly when used in 
combination with established markers such as CA125 [114].  
 
 
6. The potential of extracellular vesicles in EOC diagnostics 

Extracellular vesicles (EVs) are known to carry and deliver different kinds of nucleic acid, 
including miRNAs [23, 123]. Profiling the number and content of EVs is emerging as a 
realistic diagnostic tool for EOC. Levels of EVs in the blood have been seen to be increased 
in patients with EOC [124,125] and the levels correlate positively with tumour stage [125].  
The first study looking at miRNA in EVs from ovarian cancer patients showed that the 
elevated levels of miR-21, miR-141, miR-200a/b/c, miR-203, miR-205 and miR-214 
observed in EOC was also reflected in the serum exosomes of the same patients [125]. In a 
more recent study serum EVs were extracted and the levels of miR-200a/b/c and miR-373 
were measured by qRT-PCR [124]. Levels of all three were significantly higher in EOC 
patients and miR-200a/miR-373 was correlated with stage and lymph node involvement 
whilst miR-200b/c were associated with lower overall survival [124]. In another study the 
vesicular miRNA content of exosomes isolated from pleural or peritoneal effusions was 
measured [126]. The levels of 11 miRNAs could be associated with effusion site and tumour 
stage; in addition the levels of miR-21, miR-23b and miR-29a were associated with worse 
progression-free survival and miR-21 levels correlated with worse overall survival [126].  
 
An issue with using EVs from plasma or serum is that the population of vesicles is a result of 
many cell types across the body and not just the tumour. Some good correlation between 
miRNA levels and tumours can sometimes be seen, which may reflect the large increase in 
vesicle content seen in the circulation of patients [124,125]. Interestingly, in a pilot study 
using urinary exosomes there were no detectable differences in the levels of miRNAs in 
either endometrial cancer or HGSC compared to controls [120]. Whilst it is still quite early 
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for the field of EV markers in the diagnosis/prognosis of EOC there is a great deal of 
potential in this area.  
 
 
7. Conclusions and outlook 

The last 30 years has seen a large advancement in our understanding of the molecular basis of 
EOC, though this has yet to be translated into improved overall survival for patients. 
Although new drugs are being developed their testing via clinical trials is not optimal, in part 
due to the lack of enough biomarkers for stratifying patients. miRNAs have emerged as 
important regulators of gene function and potential biomarkers for informing treatment and 
prognosis. The use of circulating miRNAs is particularly exciting, as they provide a more 
bio-accessible route for monitoring presence and behaviour of any tumours in the body. 
miRNAs appear to be well protected in the circulation and numerous studies show that the 
transcriptional landscape in the blood is altered during tumour progression. However, their 
potential clinical use is tempered by the current practical realities – there is little consensus 
between studies and much work needs to be done to establish specificity and sensitivity of 
such tests in the hands of different labs. The lack of consensus most likely comes from 
differences in sampling techniques, cohort sizes, detection platform, analysis methods etc. 
This has prevented the development of a meaningful diagnostic based on circulating 
miRNAs. That being said it should be remembered that screens using approved biomarker 
tests, such as those for CA125, have not yielded any improvement in diagnosis or overall 
survival to patients. Perhaps the best hope for a miRNA-based diagnostic test in the short to 
medium term would be the combination of miRNA detection with CA125 to improve 
sensitivity and specificity [114]. In some cases patients presenting with low CA125 have 
deregulated miRNAs, suggesting that combined detection of CA125 could help clinicians to 
pick up early cases of EOC before they are detected by conventional means [106]. In the long 
term the methodology must be improved and standardised, but there is massive potential for 
the use of miRNA profiling as both biomarkers of tumour behaviour and treatment response 
as well as early detection.  
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Table 1: Characteristics of subtypes of Ovarian Cancer 1 

 Type II Type I 

 High grade serous Low grade serous Endometrioid Clear cell 

Origin Fallopian Tube Fallopian Tube Endometriosis Endometriosis 

Diagnosis Usually detected at a later 
stage after metastatic spread 

Usually detected early  Usually detected early  Usually detected early  

Proportion of all Ovarian 
Cancers [6] 

Approximately 70% most of which are HGSC 
Approximately 7% Approximately 10% 

Grade High grade Low grade Low grade High Grade 

proliferative capacity High proliferative activity Low proliferative activity Low proliferative activity Low proliferative activity 

Response to chemotherapy Good response but often 
recurs 

Metastatic tumours often 
chemo-resistant 

Metastatic tumours often 
chemo-resistant 

Poor response to 
chemotherapy 

prognosis Poor prognosis if diagnosed 
in later stages 

Better prognosis than HGSC Better prognosis than HGSC Some studies show a worse 
prognosis than HGSC 

Commonly mutated genes 

 

HR deficiency, p53 
mutations, PI3K/RAS, NOTCH 
signalling  

PIK3CA, BRAF, KRAS ARID1A, PIK3CA, PTEN, MMR 
deficiency 

ARID1A, PIK3CA 

genetic instability High Low Low Low 

Abbreviations:  HGSC – High grade serous Carcinoma, HR – Homologous recombination 2 
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 3 

Table 2: microRNAs differentially expressed in ovarian cancers to benign or normal ovarian tissue 4 

First Author Sample Size Detection Method Ovarian Carcinoma Vs Normal 

Lee[88] 171 – 109 OC, 22 normal, 
17 benign and 23 
borderline 

qRT-PCR assays ↑miR-30c, miR-30d, miR-30e-3p, ↓miR-370 in carcinomas compared to 
benign ovarian tissues 

Vilming 
Elgaaen[65] 

35 HGSC, 19 CCC affymetrix, qRT-PCR ↑miR-205-5p, miR-200 family members and miR-182-5p; ↓miR-383 in 
HGSC compared to OSE 

Nam[74] 28 samples - 20 SOC, 8 
normal  

microarray, northern blot ↑miR-200c, miR-93, and miR-141; ↓let-7b, miR-99a, and miR-125b were 
down-regulated in serous carcinoma 

Iorio[63] 84 - 69 OC  and 15 normal  microarray, northern blot 
and qRT-PCR 

39 miRNA signature including ↑miR-200a and miR-141 and ↓miR-199a, 
miR-140, miR-145, and miR-125b1 in cancer 

Cao[82] 100 - 50 OC and 50 
normal 

qRT-PCR ↑miR-200a, miR-200b and miR-200c in ovarian cancer compared to normal 
tissue 

Dahiya[75] 34 OC 
 

microarray 25 upregulated and 31 downregulated miRNAs between control and cancer 
tissues; miR-21 and let-7 most frequently downregulated; miR-221 
upregulated 

Laios[128] 28 OC TaqMan® MicroRNA Assay 
Human Panel Early Access 
kit, qRT-PCR 

↑miR-223 and ↓miR-9 associated with recurrence of ovarian cancer 

Vecchione[67] 198 SOC 
 

microarray, Taqman 
microRNA assay 

↓miR-484, miR-217 and miR-642 downregulated in chemoresistant 
tumours 

Chao[81] 176 OC  and 20 benign  TaqMan MicroRNA Assays 
Human Panel Early Access kit 

↑miR-187 and miR-200a in ovarian cancer tissues than benign tissues 

Kim[68] 74 HGSC and 10 normal 
fallopian tubes 

qRT-PCR ↓miR-145 in HGSC as compared to normal 
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Dong[69] 48 HGSC and 19 normal 
fimbriae 

qRT-pPCR ↓miR-145 in HGSC as compared to normal 

Jin [129] 100 EOC and 10 normal 
tissues 

qRT-PCR ↓miR-150 in epithelial ovarian cancer compared to normal tissue 

Chen[130] 94 OC, 44 benign or 
normal 

qRT-PCR ↓miR-106b in ovarian carcinomas as compared to normal tissues or benign 
ovarian disease 

Yang[64] 30 OC and 10 normal 
tissues 

northern blot ↑miR-200a, miR-199a and miR-214 and ↓miR-100 

Corney[131] 83 EOC qRT-PCR ↓mir-34 a/b*/c decreased in EOC with mutant p53; ↓miR-34a also in EOC 
with wild type p53 

Dai[86] 160 OC and 30 normal  qRT-PCR ↓miR-29b in ovarian cancer 
Lee[88] 171 - (109 OC) Taqman PCR assays ↑miR-30c, miR-30d, miR-30e-3p and ↓expression of miR-370 in ovarian 

carcinomas and benign tumours 
Wan[132] 109 OC with adjacent 

normal tissue 
qRT-PCR ↓miR-22 in cancer tissue as compared to normal tissues 

Kim[66] 103 – 54 OC microarray ↑miR-519a and ↓miR-153 and miR-485- 5p in ovarian carcinomas as 
compared to benign and borderline tumours 

Wei[112] 60 OC with adjacent 
normal tissue 

qRT-PCR ↓miR-212 in ovarian cancer compared to normal tissue 

Abbreviations:  CCC – Clear Cell carcinoma, EOC – Epithelial Ovarian Carcinomas, HGSC – High Grade Serous Carcinoma, OC – Ovarian Carcinoma, qRT-PCR – 5 
quantitative Real Time Polymerase Chain Reaction, SOC – Serous Ovarian Carcinoma 6 
 7 

8 
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Table 3: microRNAs associated with survival and prognosis 9 
First Author Sample Size Detection Method Survival Correlation 
Lee[88] 171 – 109 OC, 22 normal, 

17 benign and 23 
borderline 

qRT-PCR ↑miR-181d, miR-30c, miR-30d, miR-30e-3p correlated with better disease 
free or OS  

Vilming 
Elgaaen[65] 

35 HGSC, 19 CCC affymetrix, qRT-PCR ↑miR-200c associated with short PFS and OS 

Bell (TCGA) [40] 489 OC  subtype 1 longer survival 
Maarchini  [78] 144 OC microarray; qPCR ↑miR-200c correlated with OS 
Hu[79] 55 with advanced OC qRT-PCR ↑miR-200a correlated with better OS 
Nam[74] 28 samples - 20 SOC vs 8 

normal ovarian tissue 
microarray, northern blot ↑miR-200a, miR-200b, miR-200c, miR-141, miR-18a, miR-93, and miR-429, 

and ↓ambi-miR-7039, let-7b, and miR-199a were significantly correlated 
with decreased PFS and OS 

Prislei[84] 220 OC nanofluidic genetic analyzer 
and a 48.48 chip array 

↑miR-200c correlates with good or bad outcome depending on the 
subcellular localisation of RNA binding protein HuR 

Cao[82] 100 - 50 normal, 50 OC qRT-PCR ↑miR-200a, miR-200b and miR-200c correlated with shorter OS 
Leskela[80] 72 OC qRT-PCR ↓miR-429 is associated with worse PFS and OS 
Shell[72] 53 OC qRT-PCR ratio of HMGA2 over let-7d associated with worse PFS 
Yang[73] 69 OC microarray, qRT-PCR ↓let-7i expression associated with chemoresistance and reduced PFS 
Lu[76] 211 OC Taqman miRNA assay ↓let-7a expression levels indicate a better response to combination of 

platinum and paclitaxel with better PFS and OS   
Laios[128] 28 OC TaqMan® MicroRNA Assay 

Human Panel Early Access 
kit, qRT-PCR 

 ↑miR-223 and decreased miR-9 associated with recurrence of ovarian 
cancer 

Vecchione[67] 198 SOC TaqMan Array Human 
MicroRNA Set v2.0, Taqman 
microRNA assay 

↓miR-484, miR-217 and miR-642 in chemoresistant tumours 



17 

 

Chao[81] 176 OC and 20 benign  TaqMan MicroRNA Assays 
Human Panel Early Access 
kit, Taqman microaRNA 
assays 

paradoxically ↓miR-187 and miR-200a associated with poorer OS and poor 
prognosis 

Bagnoli[133] 56 - training set, 53- test 
set, 50- validation set 

microarray, TaqMan 
microRNA assays 

lower expression of a cluster of 8 mirnas at chrXq27.3 associated with 
quicker relapse 

Kim[68] 74 HGSC and 10 normal 
fallopian tubes 

qRT-PCR ↓miR-145 correlates with advanced stage, metastasis, lymph node 
involvement, earlier recurrence, worse OS 

Liu[70] 468 OC and 130 OC Bioinformatic analysis of the 
microarray data from TCGA 
data and Bagnoli dataset 

↑miR-506 correlated with better OS and longer PFS  

Sun[71] 204 OC in situ hybridisation ↑miR-506 better OS, longer PFS and improved response to treatment 
Jin[129] 100 EOC and 10 normal 

tissues 
qRT-PCR ↓miR-150 correlated with later stage, poor prognosis with shorter PFS and 

OS 
 

Chen[130] 94 OC, 44 Benign/ normal qRT-PCR ↓miR-106b negatively associated with stage of the tumour 
Corney[131] 83 EOC stem loop qRT-PCR ↓miR-34b* and miR-34c expression associated with later stage 
Dai[86] 160 OC and 30 normal 

tissues 
qRT-PCR ↓miR-29b correlated with later stage; along with MAPK10- and ATG9A- 

positivity, ↓miR-29b correlated with decreased PFS and OS 
Li[87] 330 OC ISH ↑miR-30d expression associated with lower OS 
Lee[88] 171 - (109 OC) Taqman PCR assays ↑miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with 

significantly better disease-free or OS 
Eitan[134] 57 OC miRNA microarray ↑miR-23a, miR-27a associated with poorer OS and disease free survival, 

↑miR-449b and miR-24-2*  associated with poorer OS while ↑ miR-21 
associated with poor PFS 

Wan[132] 109 OC with adjacent 
normal tissue 

RT-PCR ↓miR-22 associated with lower PFS and OS 
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Kim[68] 103 – 54 OC mirna microarray ↑ miR-485-5p and ↓ miR-153 associated with advanced stage, ↑miR-519a 
associated with poor PFS 

Wei[112] 60 OC with adjacent 
normal tissue 

qRT-PCR ↓miR-212 associated with later stage, metastasis and lymph node 
involvement 

Wurz[135] 49 OC Taqman microRNA assay lower ratio of expression of miR-222 to miR-221 associated with worse OS 
Gu[93] 317 HGSC data analysis from data in 

TCGA 
↑ miR-146a, miR-148a and miR-545 associated with better OS and PFS in 
patients with wild-type BRCA1/2 

Abbreviations: CCC – Clear Cell carcinoma, EOC – Epithelial Ovarian Carcinomas, HGSC – High Grade Serous Carcinoma, ISH – in-situ hybridisation, OC – 10 
Ovarian Carcinoma, OS – overall survival, PFS – progression free survival, qRT-PCR – quantitative Real Time Polymerase Chain Reaction, SOC – Serous 11 
Ovarian Carcinoma 12 
 13 

14 
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Table 4: MicroRNAs as biomarkers in serum/ effusions 15 

First Author Sample Sample Size Detection Method Mirna Deregulation 

Resnick[106] serum 28 EOC vs 15 
unmatched 
healthy controls 

qRT-PCR ↑ miR-21, miR-92, miR-93, miR-126 and miR-29a and ↓miR-155, miR-
127 and miR-99b in serum from ovarian cancer patients 

Liang[107] serum 270 - 84 OC, 51 
benign tissues, 135 
healthy controls 

qRT-PCR ↓miR-145 in patients with ovarian cancer as compared with healthy 
controls or benign disease; also correlated with shorter OS 

Hong[108] serum 96 OC, 35 healthy 
controls - age 
matched 

qRT-PCR ↑miR-221 in patients with EOC; correlated with OS 

Xu[118] serum  94 OC and 40 
healthy volunteers 

  qRT-PCR ↑miR-21 in EOC than in healthy controls; associated with worse OS 

Guo[136] serum 50 EOC, 50 healthy 
controls 

qRT-PCR ↑miR-92 in patients with EOC 

Kan[109] serum 28 EOC and 28 
healthy controls 

qRT-PCR ↑miR-200a, miR-200b and miR-200c in EOC patients serum 

Shapira[110] plasma 42 SEOC, 36 benign 
tumours and 23 
healthy controls 

qRT-PCR with ABI 
Taqman 
OpenArray system 

↑ miR-1274a, miR-625-3p, and miR-720 while 19 miRNAs showed 
decreased plasma levels in ovarian cancer patients; ↓miR-720, miR-20a 
and ↑miR-223, miR-126-3p and miR-1290 were associated with shorter 
OS 

Langhe[111] serum 25 OC, 25 benign 
tumour 

qRT-PCR ↓let 7i-5p, mir-122, miR-152-5p, miR-25-3p in ovarian cancer 

Wei[112] serum 60 OC and 60 
healthy volunteers 

qRT-PCR ↑miR-212 in EOC as compared to healthy controls 

Hausler[113] blood 24 OC and 15 microarray ↑miR-30c1* and ↓miR-342-3p, miR-181a* and miR-450b-5p in ovarian 
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controls cancer 
Chung[116] serum 18 OC and 12 

controls 
microarray, qRT-
PCR 

↓miR-132, miR-26a, let-7b, and miR-145 in ovarian cancer as compared 
to controls 

Zuberi[119] serum 70 OC and 70 
healthy volunteers 

qRT-PCR ↑miR-125b in ovarian cancer; however ↑miR-125b were associated 
with early stage, no lymph node involvement and no metastasis 

Suryawanshi[117] plasma 14 EAOC, 21 SOC qRT-PCR Expression signature of ↑miR-16, miR-191, and miR-4284 SOC compared 
to healthy controls, combination of miR-16, miR-21, and miR-191 can 
differentiate between healthy controls and EAOCs 

Zheng[114] plasma 360 OC and 200 
healthy controls 

taqman PCR array; 
qRT-PCR 

↑miR-205 and ↓let-7f in plasma in EOC, ↑miR-483-5p associated with 
later stage ovarian cancer; ↓let-7f correlated with shorter PFS 

Ji[137] serum  62 - 31 OC, 23 
benign, and 8 
normal 

qRT-PCR ↑ miR-93, miR-22  

Zavesky[120] urine  14 OC, 25 controls  qRT-PCR ↑ miR-92a, ↓ miR-106b downregulated 
Vaksman[126] EVs in pleural/ 

peritoneal 
effusion 

86 OC miRNA Taqman 
assays 

↑ miR-21, miR-23b and miR-29a associated with poor PFS, ↑miR-21 
associated with poor OS 

Taylor[125] EVs in blood 50 OC, 10 control microarrays ↑miR-21, miR-141, miR-200a, miR-200c, miR-200b, miR-203, miR-205, 
and miR- 214 in EOC 

Meng[124] EVs in serum 163 EOC, 20 
benign and 32 
healthy controls 

taqman microRNA 
assay and ELISA 

↑miR-373, miR-200a, miR-200b and miR-200c in EOC, ↑miR-200b and 
miR-200c levels also associated with shorter OS 

Abbreviations:  EAOC – Endometriosis associated Ovarian Cancer, OC – Ovarian Carcinoma, OS – overall survival, PFS – progression free survival, qRT-PCR – 16 
quantitative Real Time Polymerase Chain Reaction, SOC – Serous Ovarian Carcinoma 17 
 18 

19 
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