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ABSTRACT 

Predicting the amount of combustion generated nano-scale particulate matter (PM) emitted by gasoline direct injection 

(GDI) is a challenging task, but immensely useful for engine calibration engineers in order to meet the stringent emission 

legislation norms. The present work aimed to link the in-cylinder combustion with engine-out nano-scale PM for the size 

range of 23.7 to 1000 nm diameter. Neural network with a single hidden layer using first 8 principal components of cylinder 

pressure was employed for training and predicting the number of nano-scale PM number count. Using a systematic 

computational approach and comparing its results with experimental data this work demonstrates that machine-learning 

approach based on neural network is sufficient for predicting engine out nano-scale PM count as a function of engine load 

and speed.  
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1. INTRODUCTION 
Ever since the relationship between the combustion generated pollutants and adverse health impact was 

established [1], identifying the source of pollution and limiting the levels of pollutants have become a major task. The 

internal combustion engines mainly used in automotive applications are the main contributors to the increased 

levels of air pollution in major cities.  The definition of types of pollutants, their levels and their link with human health 

has also been changing over the time. Several factors have contributed to these changes. Firstly, the understanding 

of the formation mechanism of these pollutants has improved over time. Secondly, more evidence has emerged 

over time linking the toxicity of these pollutants with adverse human health. Thirdly, technological advances in 

measurement technology in the field of aerosol measurement have enabled researchers to measure ultrafine 

particles in-situ, which was not possible in the past. Finally, it has become possible to model and calibrate the 

engine system to meet stringent emission targets. 

 

For example, European commission introduced test protocol and target values for permissible levels of exhaust 

Carbon Monoxide (CO) and Hydrocarbon (HC) [2]. Since then new pollutants have been added  to the list [3]. One 

of the pollutants recently added to the list is the number count of the nano-scale PM from gasoline-powered 

engines. Legislation since 1972 [4] specially included the link between diesel engine and smoke generated by 
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combustion process in engine. Amendments to the EU legislation for vehicle emission 70/EEC/220 was introduced 

in 1980s to include the PM emitted from diesel engine [5]. It has been measured in term of mg/m3 using the sample 

taken from tailpipe. This measurement aimed to capture the lower end size of PM down to 10μm (PM10) and then  

later 2.5μm (PM2.5) [6]. Until 2014, these were applicable only for PM from diesel engines. However, the 

improvement in nano-technology, especially real-time in-site measurement of nano-scale PM from the internal 

combustion engines down to 5 nm diameter have enabled the legislators to introduce the legislation aimed at 

reducing the number count of  smaller PM of size range 1nm-1000nm diameter. It was identified by many 

researchers that most of the submicron particles produced during combustion process, especially, originate from 

gasoline combustion are less than 100 nm diameter [7, 8] and are more harmful to human beings and animals than 

the larger submicron particles [9]. Many studies have demonstrated the adverse health impact of nano-scale 

particles that originate from combustion on human health [10]. Current legislation for gasoline engine [11] requires 

the vehicle manufacturer to calibrate the engine for the target PM count of 6x106 particles per km at the tailpipe-out 

location. Even though modern gasoline engines with direct fuel injection systems offer excellent fuel economy 

benefits over their indirect injection counterparts, it still need to overcome major challenges in order to meet the 

target set for amount of nano-scale PM. The main challenges are the knowledge gaps that exist in the detailed 

formation mechanisms of nano-scale PM.   

 

Various researchers have been investigating the correlation among the engine operating variables [12-15] such as 

injection timing, spark timing, air-fuel ratio and engine operating temperature to the formation mechanism of 

nano-scale PM, especially at the tailpipe-out location. The major factors influencing the formation of PM were 

injection timing and engine operating temperature especially in a wall-guided GDI engine. They observed a strong 

relationship between fuel impingement determined by the timing of start of injection and increased levels of 

nano-scale PM. 

 

The next stage in the investigation of nano-scale PM is to identify the correlation between in-cylinder combustion 

characteristics and formation mechanism of nano-scale PM [16-20]. Experimental studies were able to correlate the 

stages of combustion such as 5, 10, 50 and 90% mass fraction burned with total number of PM in different size 

range. Correlation of temporal oscillations of engine-out particle number count and cycle-by-cycle variations of 

cylinder pressure in GDI engines was  also observed [7]. In addition, numerous studies focusing on the effect of 

exhaust gas re-circulation (EGR) on PM [21-24], injector characteristics and the effect of mixture qualities [25, 26] 

on PM can be found in the literature. However, a proper and detailed method to model the mechanism of the 

nano-scale PM formation from gasoline engine based on the experimental or numerical observations is not 

available in the published domain. 

 

It is also known that three-way catalysts (TWC) influence the distribution of nano-scale PM and change the 

distribution pattern depending upon the engine operating conditions and the catalytic converter conditions at the 

time of operation. Preliminary studies based on experimental observations available in the published literature 

indicate that the catalytic converter influences different particle size ranges differently during steady state as well as 

during cold start engine operating conditions [27, 28]. However, very limited number of studies are available in the 

public domain from a variety of engines and types of catalytic converter. Therefore, it is not possible to draw any 

generalized conclusion about the influence of TWC on engine out nano-scale PM from GDI engine other than 
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highlighting the non-linearity introduced by the catalytic converters. Similarly, very little is known on the role of 

turbocharger on changing the characteristic of nano-scale particulate matter to date [29]. Further work from Cucchi 

et al. [30] also showed that the influence of turbocharger on engine out nano-scale PM could be modelled using 

Lambert W function. The literature highlights that unless the effect of catalytic converter and turbochargers are 

included, the chances for developing correlations between the in-cylinder combustion characteristics with the 

tailpipe-out PM levels are very limited. Hence, the current work uses the engine-out particulate characteristics 

measured upstream of the turbocharger for the analysis.   

 

Developing calibration schemes based on measured combustion characteristics for the control of nano-scale PM is 

one of the viable options for GDI engines [31]. Measurement methodology and choosing the conditions for sampling 

and measuring engine - or tailpipe-out nano-scale PM is another key factor in quantifying nano-scale PM count. 

Unlike the high repeatability of gaseous emission levels measured at the tailpipe, nano-scale particulate count 

measured at the tailpipe is found to vary significantly from vehicle to vehicle, and even the same vehicle at different 

laboratories can have diverse results due to various measurement set-up and other unknown conditions [32, 33]. 

This statistical variability is not consistent even across the entire size ranges [31, 34]; for example, the particle size 

range less than 23 nm seems to be less repeatable and prone to have more variations based on the dilution 

parameters chosen for the measurement. Counting efficiency of the weight given for the particles less than 23 nm is 

only 50%, since, the particles size range below 23 nm diameter may not come from the combustion but instead may 

be caused by nucleation during the dilution process. In addition, the regulations also allow the manufacturers to 

choose wide dilution ratio for the type approval of their vehicle for particulate certification [35]. 

 

Therefore, optimizing the engine combustion performance in order to meet the tailpipe-out particulate number count 

requires the particulate count only due to combustion. Choosing the sampling point upstream of the catalytic 

converter will enable us to remove the effect of turbocharger as well as the catalytic converter. However, it is hard to 

remove the effect of measurement system itself. By choosing appropriate dilution ratio, the repeatable 

measurement is achievable, and can be used for developing combustion strategy to control the engine-out PM 

number count. 

 

Developing the prediction model for tailpipe-out nano-scale particulate count is essential for estimating the 

tailpipe-out PM levels against legislative drive cycles. In addition, if the prediction models are based on variables 

that govern combustion characteristics, it is possible to develop suitable combustion control strategy for optimizing 

the engine out PM levels. It is already known from the limited amount of literature that it is not possible to predict the 

total count of PM at tailpipe-out without including the effect of turbocharger and TWC. Since, the behaviour of the 

catalytic converters and the turbochargers are not fully known, the only viable option at this stage is to develop a 

prediction model for nano-scale particulate count at engine-out (upstream of the turbocharger) position. 

Real time prediction of particle distribution based on the engine operating conditions for diesel engine have been 

demonstrated by Scafati et al. [36]. Scafati et al employed neural network to predict the particle distribution for the 

size range of 8 to 381 nm diameter as a function of engine speed, load and EGR for a diesel engine. Their model was 

capable of predicting particle distribution with the absolute square mean error of 3-7%. Ample evidence could be 

found in the literature in relation to application of neural network for predicting the behaviours of diesel particulate 
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filter [37], NOx and soot emissions in diesel engine[38], prediction of emission levels using cylinder pressure [39-41] 

from diesel engines, cylinder pressure, NOx and CO2 from gasoline engine [42] and neural network for CI and SI 

engines for predicting mainly emissions [36-50]. This is not an exhaustive list but a few very studies relevant to 

current work. Therefore, it is a proven case that neural network and machine learning algorithms are an excellent 

choice for predicting real-time engine out or tailpipe-out emission levels. However, up to date very limited literature 

could be found in the published domain regarding a suitable model that uses in-cylinder combustion characteristics to 

predict combustion generated nano-scale PM, especially, the distribution of different particle size range from 

gasoline engine. Hence, it is the scope of the current work. 

2. Experiments 

Experiments were carried out at a fully warmed up engine with steady state operating conditions. Each measurement 

lasted 20 minutes after oil and coolant temperatures reached steady state condition. Engine out PM concentrations 

were measured using DMS500 particle spectrometer with the measurement range of 5 to 1000 nm. Three 

independent measurements were carried out on separate days in order to assess the repeatability of the 

experiments. Cylinder pressure was logged with 1° crank angle interval simultaneously while particulate 

measurements are being carried out. The authors' previous work has demonstrated  that a fixed dilution ratio of 125 

was the optimum dilution ratio [51] and thus the fixed dilution ratio of 125 was selected for this experiment [7]. Table 

1 shows the specification of the experimental engine and Table 2 shows the experimental conditions and the number 

of cycles of in-cylinder pressure collected simultaneously with the particulate measurement.  

Table 1 Experimental engine technical specifications 

 

 

 

 

 

3. Principal Component Analysis for Cylinder Pressure 

There were 37 tests in total, which included 4 different loads and 3 different speeds as listed in Table 2. This work 

employed principal component analysis to identify the feature vectors of cylinder pressure [52]. These feature 

vectors were used to predict the number count of engine-out, combustion generated, nano-scale PM from a GDI 

engine. Principal Component Analysis (PCA) is a widely used technique when it comes to pattern recognition or 

machine learning in the research area of computer vision. The following equation describes principal component 

analysis mathematically; 

Bore 77 mm 

Stroke 85.8 mm 

Displacement 1598 cc 

Compression ratio 10.5 

Rated Power 129 kW @6000 rev/min 

Rated Torque 240 Nm @ 1600  to 5000 rev/min 
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where      is the original data set and M is the dimension of the original data,   [           ] is the basis 

vector space consists of N principal components    to   , C is the vector consists of N coefficients where each one 

of them corresponds to each principal component and e is the error. If the error is minimized, the original dataset 

can be represented by these N coefficients. This is extremely useful for reducing the dimensionality of the large data 

set when N<<M, for instance, a 4-stroke cycle comprises 720 points can be easily transformed to under 10 

coefficients without compromising the fidelity. To specifically make this investigation combustion-oriented, instead 

of using the full cycle to do the principal component analysis, the crank angle range from -30° to 49° ATDC was 

chosen, for 1° sampling interval, this would yield 80 points per cycle. 

PCA can either be done via the Python package module which is based on the Nonlinear Iterative Partial Least 

Squares (NIPALS) algorithm to find the eigenvectors, or in MATLAB, where the built-in PCA function works with 

Singular Value Decomposition (SVD). Figure 1 shows the first 8 principal components obtained by MATLAB, it 

should be noted that these components are orthonormal vectors. The first 4 components on the upper side are the 

main components and represents the overall shapes of in-cylinder pressure curves. The last 4 components on the 

lower side have generally less influence to the shapes of the curves and are more related to the fluctuation of the 

cylinder pressure in higher frequency. Figure 2 shows the Root Mean Square error between the reconstructed 

pressure data using the 8 principal components with their correspondent coefficients and the original data. The 

deviation is very small, which implies that the coefficients represent well the in-cylinder pressure data. 

Table 2 The speed and load conditions of all the in-cylinder pressure data 

Speed 

(RPM) 

Load 

(Nm) 

Number of 

tests 

Number of total 

cycles 

Number of averaged cycles 

for each minute 

1500 20 4 56600 76 

1500 50 3 31495 44 

1500 80 4 36812 52 

1500 110 3 22816 33 

2500 20 3 39339 34 

2500 50 3 39351 34 

2500 80 3 42450 36 

2500 110 3 37716 33 

3500 20 3 42450 27 

3500 50 3 42450 27 

3500 80 4 56600 36 

3500 110 1 7736 5 

total 37 455815 437 
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Figure 1 The first 8 principal component calculated by MATLAB 
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Figure 2 The root mean square error between measured pressures and the calculated pressures reconstructed by the 

coefficients and principal components shown in Figure 1. 

4. Neural Network - Experimental data for Neural Network 

Predicting tailpipe-out PM count during transient operating conditions is immensely useful for developing a calibration 

procedure for meeting legislative emission targets. This work aims to establish a correlation between the combustion 

characteristics and combustion generated nano-scale particles based on engine-out particle count. 

The response time of the particulate spectrometer currently used is about 200 ms. However, the cylinder pressure is 

measured every 1° of crank angle, which imply that the spectrometer is too slow to capture the transient process occurring 

in the engine. Therefore, instead of estimating the transient output, the cycle-resolved pressure data within one minute was 

averaged to represent the steady state situation. Hence, the output data, the number count of PM per minute, was directly 

applicable for developing prediction method based on steady state operating condition. The engine speed and loading 

conditions used for developing the model are shown in Table 3. 

The discrepancy between the number of averaged cycles in Table 2 and number of output in Table 3 was due to the fact that 

pressure data and emission data are recorded with different logging interval, therefore, the principal component analysis 

would be based on averaged cycles and only the 419 of them were used to train the neural network model. Figure 3 depicts 

these 419 cycles of in-cylinder pressure data. 

The output data from the model is the PM number count per minute for different size range. These size ranges were chosen 

based on the information available in the public domain in relation to size range closely linked to in-cylinder combustion [18], 

size range mostly affected by sampling condition [31, 34] and particle size range of interest for the Euro 6. The particle size 

range considered in this study is categorized into five groups, the first one is 15 to 23.7 nm, and the second one is 23.7 to 
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56.2 nm, and the third one is 56.2 to 100 nm, and the fourth one is 100 to 300 nm, and the fifth one is 23.7 to 1000 nm 

diameter. 

Table 3 The speed and load conditions of all the measured PM data 

Speed (RPM) Load (Nm) Number of tests Number of output  

1500 20 4 76 

1500 50 3 39 

1500 80 4 49 

1500 110 3 30 

2500 20 3 32 

2500 50 3 32 

2500 80 3 36 

2500 110 3 30 

3500 20 3 27 

3500 50 3 27 

3500 80 4 36 

3500 110 1 5 

total 37 419 

 

Figure 3 sample sets of cylinder pressure data used for training the neural network model  

Neural network, as a widely used machine learning tool that employs the statistical method to realize the non-linear 

mapping. This approach will enable us to establish the correlation between two datasets and is highly suitable for modelling 

the process where the mathematical or physical relationship between the input and output is ambiguous and difficult to be 

clearly defined, such as in the case of cylinder pressure and PM emission. 
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The neural network model used here is the simplest feed forward network with one hidden layer which consists of 7 nodes. 

Feed forward network means that the connections between these nodes form no loop. The Bayesian Regularization back 

propagation algorithm ‘trainbr’ function in MATLAB was chosen for training the network because it gave the best overall 

performance.  

5. Results and Validation 

Neural network model was trained to develop a correlation between the in-cylinder pressure and the number count of 

engine-out nano-scale PM of different size range. The overall method used for developing neural network for the prediction 

of engine out nano-scale PM is shown in Figure 4. 

 

Figure 4 Overall scheme of work 

The current experimental data for developing neural network for predicting engine out nano-scale PM count has 419 data 

sets in total. In order to find the balance between maximizing the number of datasets for training and leave representative 

amount of datasets for testing, 85% of the total 419 datasets, i.e. 356 datasets, were randomly chosen by the MATLAB 

programme for training the neural network and the remaining 15%, i.e. 63 datasets, were used for testing the neural 

network.  

Figure 5 shows the output of neural network for 15-23.7 nm particle size range against various engine speed and load 

operating conditions. The neural network model with 8 principal components from cylinder pressure with 1 hidden layer is 

able to predict the engine-out particle number count for this size range well with the R2 value for testing reaches about 0.88 

as shown in Figure 6. Similarly Figures 7 and 8 show the measured and predicted particle count for the size range 23.7 to 56 

nm diameter. The R2 value for testing is about 0.89. Figures 9 and 10 show the predicted particle count for the size range 56 

to 100 nm. The R2 value for testing is 0.93. Figures 11 and 12 show the predicted particle count for the size range 100-300 

nm. The R2 value for testing is 0.96. It could be observed that as the size range increases the accuracy of prediction of also 

increases for the size range 15 to 300nm. In most cases the particle of interest in GDI engine is mainly in this size range. The 

number count of PM with diameters between 15 and 300 nm seems to be in direct correlation with the in-cylinder pressure; 

in other words, it could be stated that these PM are mainly combustion generated particles. 

Speed and 
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Cylinder pressure 
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5-1000 nm, 200 ms 
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The European legislative testing gives only 50% counting efficiency for the particle size range below 23.7 since this size 

range is most likely to be affected by the sampling procedure and conditions and also the higher signal to noise ratio from the 

measurement instrument. Therefore, the particle size range of interest for the vehicle calibration engineers is 23 to 1000 nm 

diameter. Figures 13-14 show results for the size 23.7-1000 nm which are very relevant to legislative testing and conformity 

of production testing. These results show very good agreement between the measured and predicted particle count for 

particle size range of 23.7 to 1000 nm diameter with the R2 value of 0.92. This size range seems to have very good 

correlation with the cylinder pressure and therefore, it could be inferred that they are combustion generated nano-scale PM. 

In addition, it also gives us the confidence that the models such as mean value engine models (MVEM) used for developing 

vehicle calibration procedures can employ this approach for developing vehicle calibration for meeting engine-out 

nano-scale particle count. 
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Figure 5 The comparisons of the neural network and the measured output from PM size 15nm to 23.7nm 

 

Figure 6 The regression trend for the PM size 15 nm to 23.7 nm.  
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Figure 7 The comparisons of the Neural Network output and the measured output of PM size 23.7nm to 56.2nm 

 

Figure 8 The regression trend for the PM size 23.7nm to 56.2nm  
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Figure 9 The comparisons of the Neural Network output and the measured output of PM size 56.2nm to 100nm

 

Figure 10 The regression trend for the PM size 56.2nm to 100nm 
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Figure 11 The comparisons of the Neural Network output and the measured output of PM size 100nm to 300nm 

 

Figure 12 The regression trend for the PM size 100nm to 300nm 
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Figure 13 The comparisons of the Neural Network output and the measured output of PM size 23.7 nm to 1000nm 

 

Figure 14 The regression analysis for the PM size 23.7 nm to 1000nm 
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6. Conclusions 

This work employed PCA for extracting feature vectors of cylinder pressure from a Euro-IV, spark-ignited, turbocharged and 

intercooled GDI engines. It identified that the first 8 principal components are sufficient for representing in-cylinder 

combustion characteristics for the purpose of this work. 

It also demonstrated that a simple neural network model with only one hidden layer is sufficient for training and predicting the 

number of engine-out nano-scale particle size in the range of 15 to 1000 nm diameter. The agreement between the number 

count of predicted PM and measured PM was found to improve for the larger particles in the examined range.   

The predicted and measured particle count for the particle size range of interest, 23.7 to 1000 nm, has reasonable level of 

agreement with R2 value of about 0.93. Therefore, the approach to represent the engine loading conditions with cylinder 

pressure can be utilised in mean value engine models (MVEM) which are commonly used for vehicle calibration. 
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