
 1

Performance Comparison of a SDN Network
between Cloud-Based and Locally Hosted SDN

Controllers
Kashinath Basu1, Muhammad Younas1, Andy Wan Wac Tow1 and Frank Ball2

1School of Engineering, Computing and Maths

Oxford Brookes University, Oxford, UK
{kbasu, m.younas@brookes.ac.uk}

 2Frank Ball Consulting,
Oxford, UK

Abstract-- In a SDN network model, the robustness,
scalability and reliability requirement of the control
plane makes it an ideal candidate for being hosted on
a cloud infrastructure. In addition, the control plane
performs large volume of data processing from
packet headers to network monitoring data in order
to provide adequate level of QoS to the traffic. The
realization of a cloud based SDN networking
approach is predominantly dependent on the
performance of the SDN controllers on the cloud
environment. This paper presents a comparative
study of the performance of a SDN network between
a locally hosted SDN controller within the enterprise
with a cloud based remote controller. Since a wide
range of SDN controllers are available in the market
with different levels of functionalities, performance
and complexities, the analysis is validated by
comparing the results across three different types of
controllers. Furthermore, the impact of the network
topology on the performance of the controllers is
further validated by comparing the performance
across two different topologies. In addition, a
comparative performance analysis of the throughput
and a theoretical evaluation of the controllers are also
presented.

Keywords — Bigdata, Cloud, FloodLight, Mininet, NOX,
Open vSwitch, Performance analysis, POX, SDN controller.

I. INTRODUCTION

Traditional networking has a number of features which
provided the robustness in the early days, but also acted
as a hindrance to the progress. For example, in data
forwarding, the path selection process is typically
distributed and made by the forwarding devices of a
network comprising of switches and routers which
mainly had local or regional knowledge of the topology
without the complete understanding of the overall
network. Although this made the network more fault
tolerant as even after a failure on one segment still
allowed the network to operate in the remaining
segments, it however prevented a centralized
understanding of the overall network condition and

thereby restricted network wide end-to-end intelligent
monitoring or policy level decision making. For
traditional data requiring best effort forwarding this was
adequate. However, present day networks carry a wide
variety of application data comprising of audio, video,
text, etc. with realtime, streaming, non-realtime and
interactive delay requirements. Providing end-to-end
Quality of Service (QoS) to these complex range of
traffic can be simplified by centralized QoS provisioning
and orchestration which is difficult with the traditional
network setup. In addition, the hardware of the current
networking devices are limited in terms of the volume
and scale of data they can handle. This has not been an
issue where the scope of processing has been restricted to
only local data, but this is inadequate for handling the
entire network level processing.

Historically, the evolution in the field of networking
has also suffered due to the closed nature of vendor
devices which has restricted flexibility and management
of complex networks as well as hindered research and
progress in the field. In this context, the Software
Defined Network (SDN) [1] approach has unleashed the
opportunities of accelerated innovation and development
in the field by decoupling the data forwarding ASIC
(Application-Specific Integrated Circuit) from the
control and logic to divide the network into three overlay
planes. The topmost northbound application plane is
responsible for policy level decisions which are compiled
into flow rules by the mid-level controller plane. In some
modest controller such as POX for example, these
application level policies can be written as libraries of
the controllers itself, whereas in more complex controller
framework such as Ryu [2] they run as separate
processes and communicate with the controller using
JSON and REST APIs. The role of the controller is that
of a network operating system. The flow rules generated
by the controllers are pushed to the forwarding devices in
the southbound infrastructure plane (Fig. 1).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220157108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Fig. 1: The SDN architecture

An enterprise scale SDN controller typically has
several components. Some of these components are north
and south bound drivers, a range of flow rule tables,
forwarding flow tables, performance monitors,
tracers/logs, etc. In a multi-controller environment for a
large scalable network there are additional modules to
manage synchronization between the controllers, load
balancing, virtualization aspects, etc. All these
components work in synch to provide the overall
performance and functionalities of the controller [3].
This requires storage and processing of large volume of
big data.

With the data forwarding delegated to the
infrastructure layer, the controller and the northbound
APIs are solely responsible for network wide software
logic and the data processing activity. This makes the
controller an ideal candidate to be hosted on a cloud
environment to leverage on the scalability, reliability,
security, compute and storage facilities offered in a cloud.
Additional value added services such as specialized
firewalls, QoS broker, etc. can be further implemented
since the constraints on resources are removed on a cloud
implementation. This architecture facilitates a cloud
based SDN network with the infrastructure layer hosted
in the physical network and controller and associated
APIs hosted on a cloud.

In an enterprise environment, however the
performance especially in terms of access delay and
throughput of the remotely cloud based controller should
be at least identical to that of a locally hosted controller
operating in a lightly loaded condition. By default, it can
be assumed by the very nature of cloud computing that a
SDN network with a cloud based controller will exceed
the performance benchmark of that of a locally hosted
controller in a heavily loaded network condition due to
the constraints of local resources; however the real test
lies in providing at least an identical level of service in
lightly loaded traffic condition.

There can be other factors such as load, topology and
the characteristic of the controller which may impact the
performance of the network. For example, there are a
wide range of SDN controllers with different
functionalities and features suitable for different

scenarios. In order to address these variabilities, the
analysis here considers the performance with different
traffic load, network topologies and categories of SDN
controllers. The objective here is to identify the general
trend in overall performance of a cloud based SDN
control plane to that of a locally hosted one. In the
context of the controller, the paper analyses the
performance using three different well-known SDN
controllers of three different varieties viz. NOX popular
for its suitability for rapid prototyping, POX for speed
and performance and Floodlight for its scalability and the
extensive set of features. The performances of the
controllers are compared in terms of throughput and
delay. While evaluating the performance, the components
of the controllers are also individually investigated and
as a byproduct of this work a comparative study of the
controllers has also been presented.

The paper is organized as follows: Section II presents
some of the key features and advantages of cloud
computing; Section III gives a background to the
softwarization of network leading to SDN and discusses
some of SDN’s key features relevant for remote cloud
based hosting. This includes flow table compilation for
the switches and the signaling between the controller and
the switches. Section IV presents the configuration and
setup of the two sets of experiments; The results and
analysis are presented in section V; Finally, section VI
evaluates the contribution and identifies future work.

II. CLOUD COMPUTING

Cloud computing provides a platform in order to
deliver computing services and resources over the
Internet such as compute power, storage, servers,
databases, networking, and software applications [4].
The use of cloud computing has significantly increased
over the recent years. The main driving forces is that
cloud computing provides flexible, scalable and on-
demand IT services to small, medium and large scale
businesses organizations. With the popularity of cloud
computing, a large number of companies such as
Amazon, Google, Salesforce, Microsoft, IBM, and many
others are offering cloud services to cloud service
consumers.

For the service consumers, cloud provides various
benefits [5, 6]. First, it is more economical for service
consumers (businesses and organizations) to host their IT
services in the cloud than hosting them locally. Cloud
eliminates costs such as buying and maintaining local IT
infrastructure of hardware and software. Second, cloud
provides scalability and elasticity where resources are
provided on-demand when needed. Third, cloud
computing provide better reliability as data is mirrored
(replicated) across multiple sites of cloud vendors
network. In addition, cloud provides better security,
performance and flexibility.

Cloud services are provided using different service
provisioning models. These include, for example [7]:

Software-as-a-Service (SaaS): In SaaS, software
applications are hosted in cloud computing. Users can

 3

use them using Web and Internet. For example, web
browsers (or dedicated APIs) are used to use SaaS
services. There are various companies that provide SaaS
services. Common examples are Google Apps and
Salesforce.

Platform-as-a-Service (PaaS): In this model, service
consumers can use cloud services in order to create and
run applications. The underlying infrastructure is not
managed by service consumers. Instead they use that in
order to build, create and run their applications.
Examples of PaaS are Google App Engine. Heroku,
Windows Azure.

Infrastructure-as-a-Service (IaaS): IaaS provides
service consumers with hardware resources such as
memory, CPU, and storage space in order to deploy and
run their software applications. In this model, service
consumers can have control over the underlying cloud
resources such as operating systems, storage, and their
applications. IaaS examples include, Google Compute
Engine, Rackspace, and Amazon EC2.

Cloud based SDN control plane lies in the category
overlapping the PaaS and IaaS model. Here the controller
acts as a SDN platform in the cloud. Either the compute
resources such as CPU, memory, etc. can be allocated
explicitly like the IaaS or can be provisioned
dynamically by the cloud based on the processing load
on the controller in the control plane like the PaaS model.

III. BACKGROUND AND KEY FEATURES OF CLOUD BASED
SDN

The concepts of centralization, programmability and
virtualization in networks are not recent. For instance, at
the beginning of the 80s AT&T introduced the concept of
“Network Control Point” (NCP). Historically the same
channel was used to carry data and call control signaling
information. With NCP, all the mandatory signaling
process for call management was centralized inside the
NCP resulting in more secure and clear separation and
management of control and data. Later in the 90s the
concept of programmable networks called “Active
Networks” was proposed. It allowed implementation of
different types of services in network devices such as
firewall or DNS service on a router or switch (Feamster,
2014). In principle, this is similar to the services hosted
as Northbound APIs on a controller in an SDN network,
but centralization was not part of Active Network’s
strategy and therefore these services were not scalable
and restricted to limitations of the hardware of the
forwarding devices.

However, with SDN the control plane is centralized,
decoupled from the bare metal hardware centric data
plane and designed as a software centric layer. In
principle, this makes the SDN controller ideal for
Platform as a Service (PaaS) or Infrastructure as a
Service (IaaS) over a cloud. However, in order to provide
the seamless service remotely, there are few architectural
issues that need to be carefully considered since there is
network communication involved between the switches
located in the infrastructure layer and the controller in a

remotely hosted cloud.
In an SDN network the notion of flows is crucial.

Packets from the same source-destination application
pair are grouped as a flow. The communication between
the controller and switch to resolve the route of these
flows can be broadly based on two approaches: in the
“reactive” mode, when the first packet from a flow
arrives at a SDN switch, the packet is pushed to the
controller since the forwarding table will initially not
have any stored route entry for the packet. The
controller based on its forwarding policy will process the
route for the packet and push a route entry in the flow
table of the switch. Subsequent packets from the flow
can be forwarded directly from the switch without
consulting the controller thereby reducing the additional
processing delay at the controller level. The flow entries
are also timestamped and hence if no new packet arrives
before this timeout (soft timeout), the entries are purged
and the entire process has to be repeated. In contrast,
setting longer timeout period may reduce switch-
controller communication and processing but introduce
outdated stale entries in the flow table. Switches are also
configured with hard timeout after which an entry is
deleted irrespective of the last refresh interval.

Alternatively, the switch-controller communication
can be in “proactive” mode where static flow rules are
pushed in advance based on forwarding policies before
the arrival of the flow thereby reducing controller-flow
communication and flow level latency. This however
requires more complex in-advance management of the
flow policies.

These optimizations can reduce the realtime on
demand switch-controller communication which could
be a bottleneck for a cloud based remotely hosted
controller. This communication is signaling intensive and
dependent on the signaling protocol used. There are a
number of alternative signaling protocols that could be
used viz. OpenFlow, ForCES, I2RS, GMPLS, NetConf,
PCE etc. [8, 9, 10]. However, OpenFlow [8] is the most
common among them and it has a rich set of signaling
primitives and is widely supported by vendor hardware
devices and controllers. This work is based on the
OpenFlow protocol for communication between the
switches and the SDN controllers.

IV. EXPERIMENT CONFIGURATION AND SETUP

From the large number of SDN controllers in the
market, three different controllers were selected each of
which is dominant in its own category. For research and
rapid prototyping purpose, POX is widely used and the
“dart” branch of POX [11] was shortlisted here for this
category. It is written in Python and has large community
of researchers and freelancer and wide range of open
source libraries. The second controller shortlisted was
NOX [12]. It is C++ based and has a high-level
programmatic interface for C++ and Python. It is known
to be relatively fast in terms of performance. The final
controller for the analysis was FloodLight [13]. It is Java
based industrial scale controller with a large volume of

 4

libraries to support various types of enterprise level
functionalities. All these three controllers use OpenFlow
as the signaling protocol for the southbound interface
between the controller-switch. Using a single type of
signaling interface provides a uniform experiment base
and eliminates any relative performance advantage of
one controller over another.

At the top level, two sets of experiments were
planned: experiment set (A) to measure the relative
latencies between the three topologies using the different
controllers and experiment set (B) to measure the relative
throughput of the controllers. The former set of
experiments assists us to understand the impact of a
cloud based controller compared to a locally hosted one.
The later experiment provides us with a holistic
comparative overview of these three categories of
controllers. The performance of an individual controller
can vary significantly based on several external and
internal conditions such as hosting hardware
specification, network topology, volume and nature of
traffic, etc. Therefore, here in each of the experiments,
we compared the performance under identical conditions.
The network topology consisted of hosts connected to
Open vSwitches [14] and was hosted on a Mininet [15]
emulator running on VMware hypervisor. The virtual
machine (VM) was configured with 8GB memory and 4
virtual cores, each running 2.3 GHz. The remote
controller was hosted on an external VM with 16GB
memory and 8 2.3 GHz cores.

A. Experiment Set(A): Setup for the Delay Monitoring
Experiments

The experiments were run separately with three
different network topologies and three different
controllers to identify the general overall trend and
negate the effect of topology and controller specific
performance issues.

 Fig. 2: Architecture of the cloud based SDN network

In topology 1, 32 OpenFlow switches were arranged

linearly, each connected to the next one and also to a

locally hosted controller. Also, one host is connected per
switch. Topology 2 consisted of a hierarchical tree-based
architecture with five layers and a fan-out factor of “2”
per node using 31 OpenFlow switches and 32 hosts. The
switches are connected to a local controller. Topology 3
has a similar network setup but with a remotely cloud
based controller (Fig. 2). All local links were configured
with a bandwidth of 1 Gbps and 0.1msec delay. The link
level loss was set to 0% to avoid any extra latency due to
packet loss. In topology 3, the remote controller was
connected to the network with a 20 mbps link with
background traffic.

The delay characteristics of the controllers were
compared by monitoring the round trip time of the end-
to-end ping delay across the network topologies with
different controllers. The pingFull method of the Mininet
class (net.py file) was used to generate the ping messages
and to capture the performance statistics directly from
the virtual hosts. 15 iterations of the ping messages were
sent from each host to get a holistic overall performance
estimation.

Each ping message creates two flow states in the
switch for a ping-request and a ping-reply flow. In
addition, the first ping message from a host also creates
two additional states for an ARP-request and an ARP-
reply message. This also has an additional round rip
latency impact for the first ping message. In our
experiments, the results from the first iteration of the
ping messages from the hosts were discarded to avoid
this initial ARP exchanges. It is also important to note,
that once a flow entry is created for a particular source
destination pair, it will stay in the switch till either a hard
or soft timeout occurs as mentioned in section III. Any
new ping messages in-between will not trigger any new
packet-in or corresponding flow-mod message to or from
the controller respectively. Hence, all controllers’ hard
timeout period were recompiled to two seconds in order
to flush every flow after a short delay and the
retransmission time of the ping messages were
configured accordingly with a sleep interval of 5 seconds
to avoid retransmission within that period. This will
ensure that all pings trigger a packet-in message so that
we can distinctly compare the impact of the switch-
controller communication in the performance between
the topologies.

B. Experiment Set(B): Setup for the Throughput
Monitoring Experiments

The suitability of the topologies to handle enterprise
scale load was tested by a comparative analysis of their
throughputs. The Cbench [16] tool from the OFlops
testing platform was used for this purpose. The role of
Cbench was to send multiple “packet-in” events towards
the controller, in order to simulate the need for a flow.
Then, by monitoring the “flow-mod” messages replied
by the controller, the raw throughput of a controller to
compute flows can be estimated. The configuration of
Cbench was set to simulate 32 switches and 100K MAC
addresses per switch. 20 iterations of the test were run
each lasting 10 seconds. Cbench was also set to operate

 5

in “throughput mode” which means that the simulated
switches were allowed to send as many requests as their
buffer and virtual resource permits.

In addition, certain changes were made to POX and
FloodLight controllers to facilitate Cbench to operate
smoothly. In POX’s default switch module, it appeared
that the controller was systematically ordering to flood
traffic through packet-out messages when using Cbench.
Therefore, no “flow-mod” were pushed. To avoid this
issue, the flooding algorithm was rewritten to push flows
for more accurate results. In FloodLight a throttling
mechanism is implemented to restrain any heavy
suspicious request flows. This feature would have
conflicted with Cbench’s intended operation. To avoid
this issue, the throttling mechanism was deactivated and
the controller was recompiled.

V. RESULTS AND ANALYSIS

Figure 3. Round trip end to end delay.

Fig. 3 shows the mean round-trip end-to-end delay of
the three controllers using the three different topologies
discussed in section IV(A) and running the pingFull
method. For all of the controllers, it can be seen that the
topology has a direct effect on the performance of the
controllers. As expected, the performance of a structured
hierarchical tree based topology has been better than a
linear flat based one. Within the two hierarchical
topologies, the cloud based controller’s performance has
been better than the locally hosted controller in the case
of NOX and FloodLight. This demonstrates that any
extra latency in the switch-controller communication
path in the cloud based controller case is compensated by
faster processing time of the packet-in messages due to
the additional computing resources in the cloud.

Among the controllers, the values show that in general
the delay for POX is significantly higher than NOX and
Floodlight across the three topologies. It is also seen that
the percentage difference in delay for POX between the
linear and the local tree topology is comparatively less
compared to the other two controllers. On investigating
the architecture of POX and Open vSwitch, it was found
that POX generates one instance per virtual switch [17].
This therefore to certain extent keeps the POX overhead
scalable and transparent to the topology of the network.
The third experiment in this set using the cloud based
controller however shows that POX is less robust in

dealing with link condition as the delay in this case is
significantly higher.

The delay figures represented in Fig. 3 includes along
with the switch-controller interaction related delays
additional factors such as transmission, propagation and
queueing delay. In order to eliminate the impact of those
additional delay components, the experiments in set (A)
were rerun with static flow tables and plugging off the
controllers. This then captured the delays only associated
with the transmission, propagation and queueing.
Following this, these values were subtracted from the
corresponding all-inclusive delay values to derive the
effective switch-controller associated processing delay
(Fig. 4). The delays represented in figure 4 is comprised
of the following four factors: 1) The time taken for the
Open vSwitch to compute a “packet-in” message for the
controller; b) the controller’s processing time to parse the
“packet-in” message and compute a proper flow from
this message; c) the time for the controller to push this
flow through a “flow-mod” message to the switch; d) the
time taken for the switch to parse the “flow-mod”, install
the according flow, “un-buffer” the awaiting packet and
send it through the right output port specified by the
“flow-mod” message; e) in addition, for the cloud based
controller, it also includes switch-controller round trip
transmission delay.

Figure 4. Controller-switch communication and processing related
delay.

Although the delay values are much smaller here

across the three topologies as expected since only the
controller-switch associated delays are presented, but the
same trend in the comparative performance of the three
controllers are visible in all the three scenarios. In the
first two topologies, the delay of any particular controller
is different in the two cases mainly due to the difference
in the number of times a controller is solicited (due to the
difference in topology) and congestion in the controller-
switch path. However, comparing the cloud based with
the local tree topology it can be again seen that the
performance of the cloud based controller is better than
the local tree based setup for NOX and FloodLight.
Based on the trend, it can be foreseen that the difference
in performance would be more distinct in a larger
simulation setup with more hosts, switches and higher
volume of traffic where the performance of the local
controller will continue to deteriorate after a certain
threshold load whereas the cloud based controller will
continue to maintain optimal level of service by

 6

transparently scaling computing resources in the
background.

Here again, POX’s performance is worst among the
three controllers but the percentage change in delay is
smaller. . This however does not mean that POX is more
scalable in an enterprise environment because running a
separate instance of the controller per virtual switch will
create resource and performance bottleneck in other
areas.

These set of experiments showed the advantages of
running a cloud based SDN controller leveraging on the
elasticity of the compute power of the cloud. It also
demonstrated the general trend of the comparative
performance between the controllers in terms of delay,
the impact of the topology on the performance and in the
case of POX the additional advantage of running a
separate instance of the controller per open vSwitch.

In the above experiments, the objective has been to
demonstrate the advantages of a cloud based SDN
topology with the controller hosted on the cloud
compared to a locally hosted controller. As an extension
of this work, we further investigate the performance of
these three categories of controllers solitarily decoupled
from other non-controller related delay factors such as
packet-in processing delay at the switch, topology related
additional load and delay, etc. In the case of this
experiment set B, Cbench was connected directly to the
controller eliminating any external interference.

Figure 5. Throughput of the controllers.

 Fig. 5 shows the mean throughput of the three
controllers in terms of rate at which it can process the
packet-in messages and generate the flow-mod replies.
The y axis represents the throughput in log10 scale. It can
be seen that POX’s performance is minimal compared to
the other controllers which makes POX implementation
unsuitable for any enterprise scale large deployment.
With only an average of 3087 flows/second, this low
throughput is totally correlated with the high latency
experienced in the previous test (Set A). It was however
surprising to see that NOX’s performance superseded
FloodLight by a large margin. On further investigation of
the architectures of NOX and FloodLight it was found
that NOX’s agility and performance superiority is
because of its C++ core and sleek architecture with
limited add-on modules. On the other hand, FloodLight
has advanced mechanisms to handle a large scale

network functionalities such as a throttling mechanism,
an internal representation of a lambda OpenFlow switch
to foresee its capacity, firewall and other advanced
security modules, etc. These features impacted
FloodLight performance.

For the purpose of demonstration only, all the non-
mandatory modules of Floodlight were deactivated and
the experiment was rerun. As seen in the 4th bar in Fig. 5,
the performance is significantly higher now compared to
its prior performance as well as to NOX. This shows the
impact of the additional modules on the performance.
However, as seen in the results for experiment Set (A)
the FloodLight controller is robust in handling complex
network topologies and on leveraging on the cloud based
resources to provide an enterprise scale reliable and
scalable performance.

The above comparison results and the analysis of the
architecture is summarized in Table1.

 POX NOX FloodLight
Language Python C++ Java
Speed Slow Fast Fast
Complexity Simple Moderate High
Usage Rapid

prototyping
Small
enterprise,
R&D

Medium to large
enterprise

Architecture Simple
forwarding
functionalities

Can be
integrated with
C++/Python
modules

Complex with
several libraries
for enterprise
scale
performance

Table 1. Comparison of the three controllers.

VI. CONCLUSION

The paper investigated the suitability of running a
remote cloud based SDN controller. The results were
validated by comparing three different topologies and
with three different controllers. Although the specific
performance is dependent on several other factors too
outside the scope of this work, but the high level trend
have been evaluated. In all the experiments it was found
that the cloud based controller showed a general trend of
consistent performance compared to the other topologies.
It is evident from the results that with a more complex
enterprise scale load and topology the cloud based SDN
network model will scale up and provide a reliable
performance compared to any locally hosted controller.
Based on this trend, in the future further control
functionalities from the switches can also be virtualized
and ported to the cloud seamlessly. Some discussions on
rebalancing the load between the two planes are
presented in [18, 19].

The work also highlights some of the key features and
analysis of the performance between the different SDN
controllers. In all the experiments, it was found that the
delay for FloodLight was the minimal of the three
controllers. However, in the throughput test with
Cbench NOX presented better throughput than the
default version of FloodLight. This was because the
default version was much better optimised for production
network. Its global performance in an enterprise scenario
is more robust and reliable. Regarding POX’s results, the

 7

controller seemed generally unsuitable for production
environment, but best suited for experimentation.

REFERENCES
[1] F. Hu, Q. Hao and K. Bao, “A Survey on Software-Defined

Network and OpenFlow: From Concept to Implementation,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp.
2181-2206, 2014.

[2] Welcome to RYU the Network Operating System(NOS).
https://ryu.readthedocs.io/en/latest/, (2015) (accessed
04.11.2017).

[3] S. Scott-Hayward, "Design and deployment of secure, robust,
and resilient SDN controllers," in Proc. IEEE Conference on
Network Softwarization (NetSoft), London, 2015, pp. 1-5.

[4] P. Mell and T. Grance, "The NIST definition of cloud
computing", 2011.

[5] K. Pande Joshi and C. Pearce (2015) "Automating Cloud
Service Level Agreements using Semantic Technologies", Proc.
of the 2015 IEEE International Conference on Cloud
Engineering (IC2E), 9-13 March 2015, Tempe, AZ, USA,
pp.416-421

[6] A.T. Velte, T.J. Velte and R.C. Elsenpeter (2009), Cloud
computing: A practical approach, New York: McGraw-Hill
Professional Publishing.

[7] [16] M. Eisa, M. Younas, K. Basu, H. Zhu, (2016). “Trends and
Directions in Cloud Service Selection”, IEEE Symposium on
Service-Oriented System Engineering, Oxford, UK, 29 March-
2 April 2016, pp. 1-25.

[8] Open Networking Foundation: OpenFlow switch specification.
https://www.opennetworking.org/images/stories/downloads/sdn
-resources/onf-specifications/openflow/openflow-spec-
v1.4.0.pdf, (2013) (accessed: 07.02.2017).

[9] J. Zhao, Q. Yao, D. Ren, W. Li and W. Zhao (2015) “A multi-
domain control scheme for diffserv QoS and energy saving
consideration in software-defined flexible optical networks,”
Optics Communications journal, 341, pp. 178-187.

[10] R. Casellas, R. Martínez, R. Muñoz, R. Vilalta, L. Liu, T.
Tsuritani, and I. Morita (2013) “Control and management of
flexi-grid optical networks with an integrated stateful path
computation element and OpenFlow controller [Invited],”
Journal of Optical Communications and Networking, 5(10), pp.
A57-A65.

[11] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R.
Smeliansky, “Advanced study of SDN/OpenFlow controllers,”
in Proc. 9th Central & Eastern European Software Engineering
Conference (CEE-SECR '13), Moscow, 2013, pp. 1-6.

[12] N. Gude , T. Koponen , J. Pettit , B. Pfaff , M. Casado , N.
McKeown , S. Shenker, “NOX: towards an operating system
for networks,” ACM SIGCOMM Computer Communication
Review, vol.38 no.3, July 2008.

[13] R. Wallner and R. Cannistra, "An SDN approach: quality of
service using big switch’s floodlight open-source controller",
Manoa, Hawaii, in Proc. Asia-Pacific Advanced Network 3,
2013, pp. 14-19.

[14] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J.
Rajahalme, J. Gross et al. "The Design and Implementation of
Open vSwitch." in Proc. USENIX Symposium on Networked
Systems Design and Implementation (NSDI '15), Santa Clara,
CA, 2015, pp. 117-130.

[15] R. L. S. De Oliveira , A. A. Shinoda, C. M. Schweitzer, and L.
R. Prete, “Using mininet for emulation and prototyping
software-defined networks,” in Proc. IEEE Colombian
Conference on Communications and Computing (COLCOM),
Bogota, 2014, June, pp. 1-6.

[16] M. Jarschel, F. Lehrieder, Z. Magyari and R. Pries, “ A flexible
OpenFlow-controller benchmark,” in Proc. European Workshop
on Software Defined Networking (EWSDN), Darmstadt, 2012,
pp. 48-53.

[17] R. Khondoker, A. Zaalouk, R. Marx and K. Bayarou, "Feature-
based comparison and selection of Software Defined
Networking (SDN) controllers," in Proc. 2014 World Congress
on Computer Applications and Information Systems

(WCCAIS), Hammamet, 2014, pp. 1-7.
[18] N. Feamster, J. Rexford, and E. Zegura, “ The road to SDN: an

intellectual history of programmable networks”, SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 87-98, Apr. 2014.D.
Y. Huang, K. Yocum, and A. C. Snoeren, “High-fidelity switch
models for software-defined network emulation,” in Proc. ACM
SIGCOMM workshop on Hot topics in software defined
networking (HotSDN '13), New York, 2013, pp. 43-48.

[19] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey and G. Wang,
"Meridian: an SDN platform for cloud network services," in
IEEE Communications Magazine, vol. 51, no. 2, pp. 120-127,
Feb 2013.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

