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Abstract-- In a SDN network model, the robustness, 
scalability and reliability requirement of the control 
plane makes it an ideal candidate for being hosted on 
a cloud infrastructure. In addition, the control plane 
performs large volume of data processing from 
packet headers to network monitoring data in order 
to provide adequate level of QoS to the traffic. The 
realization of a cloud based SDN networking 
approach is predominantly dependent on the 
performance of the SDN controllers on the cloud 
environment. This paper presents a comparative 
study of the performance of a SDN network between 
a locally hosted SDN controller within the enterprise 
with a cloud based remote controller. Since a wide 
range of SDN controllers are available in the market 
with different levels of functionalities, performance 
and complexities, the analysis is validated by 
comparing the results across three different types of 
controllers. Furthermore, the impact of the network 
topology on the performance of the controllers is 
further validated by comparing the performance 
across two different topologies. In addition, a 
comparative performance analysis of the throughput 
and a theoretical evaluation of the controllers are also 
presented. 

Keywords — Bigdata, Cloud, FloodLight, Mininet, NOX, 
Open vSwitch, Performance analysis, POX, SDN controller. 

 
I. INTRODUCTION 

Traditional networking has a number of features which 
provided the robustness in the early days, but also acted 
as a hindrance to the progress. For example, in data 
forwarding, the path selection process is typically 
distributed and made by the forwarding devices of a 
network comprising of switches and routers which 
mainly had local or regional knowledge of the topology 
without the complete understanding of the overall 
network. Although this made the network more fault 
tolerant as even after a failure on one segment still 
allowed the network to operate in the remaining 
segments, it however prevented a centralized 
understanding of the overall network condition and 

thereby restricted network wide end-to-end intelligent 
monitoring or policy level decision making. For 
traditional data requiring best effort forwarding this was 
adequate. However, present day networks carry a wide 
variety of application data comprising of audio, video, 
text, etc. with realtime, streaming, non-realtime and 
interactive delay requirements. Providing end-to-end 
Quality of Service (QoS) to these complex range of 
traffic can be simplified by centralized QoS provisioning 
and orchestration which is difficult with the traditional 
network setup. In addition, the hardware of the current 
networking devices are limited in terms of the volume 
and scale of data they can handle. This has not been an 
issue where the scope of processing has been restricted to 
only local data, but this is inadequate for handling the 
entire network level processing.  

Historically, the evolution in the field of networking 
has also suffered due to the closed nature of vendor 
devices which has restricted flexibility and management 
of complex networks as well as hindered research and 
progress in the field. In this context, the Software 
Defined Network (SDN) [1] approach has unleashed the 
opportunities of accelerated innovation and development 
in the field by decoupling the data forwarding ASIC 
(Application-Specific Integrated Circuit) from the 
control and logic to divide the network into three overlay 
planes. The topmost northbound application plane is 
responsible for policy level decisions which are compiled 
into flow rules by the mid-level controller plane. In some 
modest controller such as POX for example, these 
application level policies can be written as libraries of 
the controllers itself, whereas in more complex controller 
framework such as Ryu [2] they run as separate 
processes and communicate with the controller using 
JSON and REST APIs. The role of the controller is that 
of a network operating system. The flow rules generated 
by the controllers are pushed to the forwarding devices in 
the southbound infrastructure plane (Fig. 1).    
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Fig. 1: The SDN architecture 
 

An enterprise scale SDN controller typically has 
several components. Some of these components are north 
and south bound drivers, a range of flow rule tables, 
forwarding flow tables, performance monitors, 
tracers/logs, etc. In a multi-controller environment for a 
large scalable network there are additional modules to 
manage synchronization between the controllers, load 
balancing, virtualization aspects, etc. All these 
components work in synch to provide the overall 
performance and functionalities of the controller [3]. 
This requires storage and processing of large volume of 
big data.   

With the data forwarding delegated to the 
infrastructure layer, the controller and the northbound 
APIs are solely responsible for network wide software 
logic and the data processing activity. This makes the 
controller an ideal candidate to be hosted on a cloud 
environment to leverage on the scalability, reliability, 
security, compute and storage facilities offered in a cloud. 
Additional value added services such as specialized 
firewalls, QoS broker, etc. can be further implemented 
since the constraints on resources are removed on a cloud 
implementation. This architecture facilitates a cloud 
based SDN network with the infrastructure layer hosted 
in the physical network and controller and associated 
APIs hosted on a cloud.  

In an enterprise environment, however the 
performance especially in terms of access delay and 
throughput of the remotely cloud based controller should 
be at least identical to that of a locally hosted controller 
operating in a lightly loaded condition. By default, it can 
be assumed by the very nature of cloud computing that a 
SDN network with a cloud based controller will exceed 
the performance benchmark of that of a locally hosted 
controller in a heavily loaded network condition due to 
the constraints of local resources; however the real test 
lies in providing at least an identical level of service in 
lightly loaded traffic condition.  

There can be other factors such as load, topology and 
the characteristic of the controller which may impact the 
performance of the network. For example, there are a 
wide range of SDN controllers with different 
functionalities and features suitable for different 

scenarios. In order to address these variabilities, the 
analysis here considers the performance with different 
traffic load, network topologies and categories of SDN 
controllers. The objective here is to identify the general 
trend in overall performance of a cloud based SDN 
control plane to that of a locally hosted one.   In the 
context of the controller, the paper analyses the 
performance using three different well-known SDN 
controllers of three different varieties viz. NOX popular 
for its suitability for rapid prototyping, POX for speed 
and performance and Floodlight for its scalability and the 
extensive set of features. The performances of the 
controllers are compared in terms of throughput and 
delay. While evaluating the performance, the components 
of the controllers are also individually investigated and 
as a byproduct of this work a comparative study of the 
controllers has also been presented.  

The paper is organized as follows: Section II presents 
some of the key features and advantages of cloud 
computing; Section III gives a background to the 
softwarization of network leading to SDN and discusses 
some of SDN’s key features relevant for remote cloud 
based hosting. This includes flow table compilation for 
the switches and the signaling between the controller and 
the switches. Section IV presents the configuration and 
setup of the two sets of experiments; The results and 
analysis are presented in section V; Finally, section VI 
evaluates the contribution and identifies future work. 

II. CLOUD COMPUTING 

Cloud computing provides a platform in order to 
deliver computing services and resources over the 
Internet such as compute power, storage, servers, 
databases, networking, and software applications [4]. 
The use of cloud computing has significantly increased 
over the recent years. The main driving forces is that 
cloud computing provides flexible, scalable and on-
demand IT services to small, medium and large scale 
businesses organizations. With the popularity of cloud 
computing, a large number of companies such as 
Amazon, Google, Salesforce, Microsoft, IBM, and many 
others are offering cloud services to cloud service 
consumers.  

For the service consumers, cloud provides various 
benefits [5, 6]. First, it is more economical for service 
consumers (businesses and organizations) to host their IT 
services in the cloud than hosting them locally. Cloud 
eliminates costs such as buying and maintaining local IT 
infrastructure of hardware and software. Second, cloud 
provides scalability and elasticity where resources are 
provided on-demand when needed. Third, cloud 
computing provide better reliability as data is mirrored 
(replicated) across multiple sites of cloud vendors 
network. In addition, cloud provides better security, 
performance and flexibility.  

Cloud services are provided using different service 
provisioning models. These include, for example [7]: 

Software-as-a-Service (SaaS): In SaaS, software 
applications are hosted in cloud computing. Users can 
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use them using Web and Internet. For example, web 
browsers (or dedicated APIs) are used to use SaaS 
services. There are various companies that provide SaaS 
services. Common examples are Google Apps and 
Salesforce. 

Platform-as-a-Service (PaaS): In this model, service 
consumers can use cloud services in order to create and 
run applications. The underlying infrastructure is not 
managed by service consumers. Instead they use that in 
order to build, create and run their applications. 
Examples of PaaS are Google App Engine. Heroku, 
Windows Azure. 

Infrastructure-as-a-Service (IaaS): IaaS provides 
service consumers with hardware resources such as 
memory, CPU, and storage space in order to deploy and 
run their software applications. In this model, service 
consumers can have control over the underlying cloud 
resources such as operating systems, storage, and their 
applications. IaaS examples include, Google Compute 
Engine, Rackspace, and Amazon EC2. 

Cloud based SDN control plane lies in the category 
overlapping the PaaS and IaaS model. Here the controller 
acts as a SDN platform in the cloud. Either the compute 
resources such as CPU, memory, etc. can be allocated 
explicitly like the IaaS or can be provisioned 
dynamically by the cloud based on the processing load 
on the controller in the control plane like the PaaS model.  

III. BACKGROUND AND KEY FEATURES OF CLOUD BASED 
SDN  

The concepts of centralization, programmability and 
virtualization in networks are not recent. For instance, at 
the beginning of the 80s AT&T introduced the concept of 
“Network Control Point” (NCP). Historically the same 
channel was used to carry data and call control signaling 
information. With NCP, all the mandatory signaling 
process for call management was centralized inside the 
NCP resulting in more secure and clear separation and 
management of control and data. Later in the 90s the 
concept of programmable networks called “Active 
Networks” was proposed.  It allowed implementation of 
different types of services in network devices such as 
firewall or DNS service on a router or switch (Feamster, 
2014). In principle, this is similar to the services hosted 
as Northbound APIs on a controller in an SDN network, 
but centralization was not part of Active Network’s 
strategy and therefore these services were not scalable 
and restricted to limitations of the hardware of the 
forwarding devices. 

However, with SDN the control plane is centralized, 
decoupled from the bare metal hardware centric data 
plane and designed as a software centric layer. In 
principle, this makes the SDN controller ideal for 
Platform as a Service (PaaS) or Infrastructure as a 
Service (IaaS) over a cloud. However, in order to provide 
the seamless service remotely, there are few architectural 
issues that need to be carefully considered since there is 
network communication involved between the switches 
located in the infrastructure layer and the controller in a 

remotely hosted cloud.  
In an SDN network the notion of flows is crucial. 

Packets from the same source-destination application 
pair are grouped as a flow. The communication between 
the controller and switch to resolve the route of these 
flows can be broadly based on two approaches: in the 
“reactive” mode,    when the first packet from a flow 
arrives at a SDN switch, the packet is pushed to the 
controller since the forwarding table will initially not 
have any stored route entry for the packet.  The 
controller based on its forwarding policy will process the 
route for the packet and push a route entry in the flow 
table of the switch.  Subsequent packets from the flow 
can be forwarded directly from the switch without 
consulting the controller thereby reducing the additional 
processing delay at the controller level. The flow entries 
are also timestamped and hence if no new packet arrives 
before this timeout (soft timeout), the entries are purged 
and the entire process has to be repeated. In contrast, 
setting longer timeout period may reduce switch-
controller communication and processing but introduce 
outdated stale entries in the flow table. Switches are also 
configured with hard timeout after which an entry is 
deleted irrespective of the last refresh interval.   

Alternatively, the switch-controller communication 
can be in “proactive” mode where static flow rules are 
pushed in advance based on forwarding policies before 
the arrival of the flow thereby reducing controller-flow 
communication and flow level latency. This however 
requires more complex in-advance management of the 
flow policies. 

These optimizations can reduce the realtime on 
demand switch-controller communication which could 
be a bottleneck for a cloud based remotely hosted 
controller. This communication is signaling intensive and 
dependent on the signaling protocol used. There are a 
number of alternative signaling protocols that could be 
used viz. OpenFlow, ForCES, I2RS, GMPLS, NetConf, 
PCE etc. [8, 9, 10].  However, OpenFlow [8] is the most 
common among them and it has a rich set of signaling 
primitives and is widely supported by vendor hardware 
devices and controllers. This work is based on the 
OpenFlow protocol for communication between the 
switches and the SDN controllers. 

IV. EXPERIMENT CONFIGURATION AND SETUP  

From the large number of SDN controllers in the 
market, three different controllers were selected each of 
which is dominant in its own category. For research and 
rapid prototyping purpose, POX is widely used and the 
“dart” branch of POX [11] was shortlisted here for this 
category. It is written in Python and has large community 
of researchers and freelancer and wide range of open 
source libraries. The second controller shortlisted was 
NOX [12]. It is C++ based and has a high-level 
programmatic interface for C++ and Python. It is known 
to be relatively fast in terms of performance. The final 
controller for the analysis was FloodLight [13]. It is Java 
based industrial scale controller with a large volume of 
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libraries to support various types of enterprise level 
functionalities. All these three controllers use OpenFlow 
as the signaling protocol for the southbound interface 
between the controller-switch. Using a single type of 
signaling interface provides a uniform experiment base 
and eliminates any relative performance advantage of 
one controller over another. 

At the top level, two sets of experiments were 
planned: experiment set (A) to measure the relative 
latencies between the three topologies using the different 
controllers and experiment set (B) to measure the relative 
throughput of the controllers. The former set of 
experiments assists us to understand the impact of a 
cloud based controller compared to a locally hosted one. 
The later experiment provides us with a holistic 
comparative overview of these three categories of 
controllers. The performance of an individual controller 
can vary significantly based on several external and 
internal conditions such as hosting hardware 
specification, network topology, volume and nature of 
traffic, etc. Therefore, here in each of the experiments, 
we compared the performance under identical conditions. 
The network topology consisted of hosts connected to 
Open vSwitches [14] and was hosted on a Mininet [15] 
emulator running on VMware hypervisor. The virtual 
machine (VM) was configured with 8GB memory and 4 
virtual cores, each running 2.3 GHz. The remote 
controller was hosted on an  external VM with 16GB 
memory and 8 2.3 GHz cores. 

A. Experiment Set(A): Setup for the Delay Monitoring 
Experiments 

The experiments were run separately with three 
different network topologies and three different 
controllers to identify the general overall trend and 
negate the effect of topology and controller specific 
performance issues. 

 

 
 Fig. 2: Architecture of the cloud based SDN network  
 
In topology 1, 32 OpenFlow switches were arranged 

linearly, each connected to the next one and also to a 

locally hosted controller. Also, one host is connected per 
switch. Topology 2 consisted of a hierarchical tree-based 
architecture with five layers and a fan-out factor of “2” 
per node using 31 OpenFlow switches and 32 hosts. The 
switches are connected to a local controller. Topology 3 
has a similar network setup but with a remotely cloud 
based controller (Fig. 2). All local links were configured 
with a bandwidth of 1 Gbps and 0.1msec delay. The link 
level loss was set to 0% to avoid any extra latency due to 
packet loss. In topology 3, the remote controller was 
connected to the network with a 20 mbps link with 
background traffic. 

The delay characteristics of the controllers were 
compared by monitoring the round trip time of the end-
to-end ping delay across the network topologies with 
different controllers. The pingFull method of the Mininet 
class (net.py file) was used to generate the ping messages 
and to capture the performance statistics directly from 
the virtual hosts. 15 iterations of the ping messages were 
sent from each host to get a holistic overall performance 
estimation.  

Each ping message creates two flow states in the 
switch for a ping-request and a ping-reply flow. In 
addition, the first ping message from a host also creates 
two additional states for an ARP-request and an ARP-
reply message. This also has an additional round rip 
latency impact for the first ping message. In our 
experiments, the results from the first iteration of the 
ping messages from the hosts were discarded to avoid 
this initial ARP exchanges. It is also important to note, 
that once a flow entry is created for a particular source 
destination pair, it will stay in the switch till either a hard 
or soft timeout occurs as mentioned in section III. Any 
new ping messages in-between will not trigger any new 
packet-in or corresponding flow-mod message to or from 
the controller respectively. Hence, all controllers’ hard 
timeout period were recompiled to two seconds in order 
to flush every flow after a short delay and the 
retransmission time of the ping messages were 
configured accordingly with a sleep interval of 5 seconds 
to avoid retransmission within that period. This will 
ensure that all pings trigger a packet-in message so that 
we can distinctly compare the impact of the switch-
controller communication in the performance between 
the topologies. 

B. Experiment Set(B): Setup for the Throughput 
Monitoring Experiments 

The suitability of the topologies to handle enterprise 
scale load was tested by a comparative analysis of their 
throughputs. The Cbench [16] tool from the OFlops 
testing platform was used for this purpose. The role of 
Cbench was to send multiple “packet-in” events towards 
the controller, in order to simulate the need for a flow. 
Then, by monitoring the “flow-mod” messages replied 
by the controller, the raw throughput of a controller to 
compute flows can be estimated. The configuration of 
Cbench was set to simulate 32 switches and 100K MAC 
addresses per switch. 20 iterations of the test were run 
each lasting 10 seconds. Cbench was also set to operate 
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in “throughput mode” which means that the simulated 
switches were allowed to send as many requests as their 
buffer and virtual resource permits.  

In addition, certain changes were made to POX and 
FloodLight controllers to facilitate Cbench to operate 
smoothly. In POX’s default switch module, it appeared 
that the controller was systematically ordering to flood 
traffic through packet-out messages when using Cbench. 
Therefore, no “flow-mod” were pushed. To avoid this 
issue, the flooding algorithm was rewritten to push flows 
for more accurate results. In FloodLight a throttling 
mechanism is implemented to restrain any heavy 
suspicious request flows. This feature would have 
conflicted with Cbench’s intended operation. To avoid 
this issue, the throttling mechanism was deactivated and 
the controller was recompiled. 

V. RESULTS AND ANALYSIS  

 
Figure 3. Round trip end to end delay. 
 

Fig. 3 shows the mean round-trip end-to-end delay of 
the three controllers using the three different topologies 
discussed in section IV(A) and running the pingFull 
method. For all of the controllers, it can be seen that the 
topology has a direct effect on the performance of the 
controllers. As expected, the performance of a structured 
hierarchical tree based topology has been better than a 
linear flat based one. Within the two hierarchical 
topologies, the cloud based controller’s performance has 
been better than the locally hosted controller in the case 
of NOX and FloodLight. This demonstrates that any 
extra latency in the switch-controller communication 
path in the cloud based controller case is compensated by 
faster processing time of the packet-in messages due to 
the additional computing resources in the cloud. 

Among the controllers, the values show that in general 
the delay for POX is significantly higher than NOX and 
Floodlight across the three topologies. It is also seen that 
the percentage difference in delay for POX between the 
linear and the local tree topology is comparatively less 
compared to the other two controllers. On investigating 
the architecture of POX and Open vSwitch, it was found 
that POX generates one instance per virtual switch [17]. 
This therefore to certain extent keeps the POX overhead 
scalable and transparent to the topology of the network. 
The third experiment in this set using the cloud based 
controller however shows that POX is less robust in 

dealing with link condition as the delay in this case is 
significantly higher.  

The delay figures represented in Fig. 3 includes along 
with the switch-controller interaction related delays 
additional factors such as transmission, propagation and 
queueing delay. In order to eliminate the impact of those 
additional delay components, the experiments in set (A) 
were rerun with static flow tables and plugging off the 
controllers. This then captured the delays only associated 
with the transmission, propagation and queueing. 
Following this, these values were subtracted from the 
corresponding all-inclusive delay values to derive the 
effective switch-controller associated processing delay 
(Fig. 4). The delays represented in figure 4 is comprised 
of the following four factors: 1) The time taken for the 
Open vSwitch to compute a “packet-in” message for the 
controller; b) the controller’s processing time to parse the 
“packet-in” message and compute a proper flow from 
this message; c) the time for the controller to push this 
flow through a “flow-mod” message to the switch; d) the 
time taken for the switch to parse the “flow-mod”, install 
the according flow, “un-buffer” the awaiting packet and 
send it through the right output port specified by the 
“flow-mod” message; e) in addition, for the cloud based 
controller, it also includes switch-controller round trip 
transmission delay. 

 
Figure 4. Controller-switch communication and processing related 
delay. 

 
Although the delay values are much smaller here 

across the three topologies as expected since only the 
controller-switch associated delays are presented, but the 
same trend in the comparative performance of the three 
controllers are visible in all the three scenarios. In the 
first two topologies, the delay of any particular controller 
is different in the two cases mainly due to the difference 
in the number of times a controller is solicited (due to the 
difference in topology) and congestion in the controller-
switch path. However, comparing the cloud based with 
the local tree topology it can be again seen that the 
performance of the cloud based controller is better than 
the local tree based setup for NOX and FloodLight. 
Based on the trend, it can be foreseen that the difference 
in performance would be more distinct in a larger 
simulation setup with more hosts, switches and higher 
volume of traffic where the performance of the local 
controller will continue to deteriorate after a certain 
threshold load whereas the cloud based controller will 
continue to maintain optimal level of service by 
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transparently scaling computing resources in the 
background. 

Here again, POX’s performance is worst among the 
three controllers but the percentage change in delay is 
smaller. . This however does not mean that POX is more 
scalable in an enterprise environment because running a 
separate instance of the controller per virtual switch will 
create resource and performance bottleneck in other 
areas. 

These set of experiments showed the advantages of 
running a cloud based SDN controller leveraging on the 
elasticity of the compute power of the cloud. It also 
demonstrated the general trend of the comparative 
performance between the controllers in terms of delay, 
the impact of the topology on the performance and in the 
case of POX the additional advantage of running a 
separate instance of the controller per open vSwitch.  

In the above experiments, the objective has been to 
demonstrate the advantages of a cloud based SDN 
topology with the controller hosted on the cloud 
compared to a locally hosted controller. As an extension 
of this work, we further investigate the performance of 
these three categories of controllers solitarily decoupled 
from other non-controller related delay factors such as 
packet-in processing delay at the switch, topology related 
additional load and delay, etc.  In the case of this 
experiment set B, Cbench was connected directly to the 
controller eliminating any external interference.  

 

 
Figure 5. Throughput of the controllers. 
 
 

 Fig. 5 shows the mean throughput of the three 
controllers in terms of rate at which it can process the 
packet-in messages and generate the flow-mod replies. 
The y axis represents the throughput in log10 scale. It can 
be seen that POX’s performance is minimal compared to 
the other controllers which makes POX implementation 
unsuitable for any enterprise scale large deployment. 
With only an average of 3087 flows/second, this low 
throughput is totally correlated with the high latency 
experienced in the previous test (Set A). It was however 
surprising to see that NOX’s performance superseded 
FloodLight by a large margin. On further investigation of 
the architectures of NOX and FloodLight it was found 
that NOX’s agility and performance superiority is 
because of its C++ core and sleek architecture with 
limited add-on modules. On the other hand, FloodLight 
has advanced mechanisms to handle a large scale 

network functionalities such as a throttling mechanism, 
an internal representation of a lambda OpenFlow switch 
to foresee its capacity, firewall and other advanced 
security modules, etc. These features impacted 
FloodLight performance.  

For the purpose of demonstration only, all the non-
mandatory modules of Floodlight were deactivated and 
the experiment was rerun. As seen in the 4th bar in Fig. 5, 
the performance is significantly higher now compared to 
its prior performance as well as to NOX. This shows the 
impact of the additional modules on the performance. 
However, as seen in the results for experiment Set (A) 
the FloodLight controller is robust in handling complex 
network topologies and on leveraging on the cloud based 
resources to provide an enterprise scale reliable and 
scalable performance. 

The above comparison results and the analysis of the 
architecture is summarized in Table1. 

 
 POX NOX FloodLight 
Language Python C++ Java 
Speed Slow Fast Fast 
Complexity Simple Moderate High 
Usage Rapid 

prototyping 
Small 
enterprise, 
R&D 

Medium to large 
enterprise 

Architecture Simple 
forwarding 
functionalities 

Can be 
integrated with 
C++/Python 
modules  

Complex with 
several libraries 
for enterprise 
scale 
performance 

Table 1. Comparison of the three controllers. 

VI. CONCLUSION  

The paper investigated the suitability of running a 
remote cloud based SDN controller.  The results were 
validated by comparing three different topologies and 
with three different controllers. Although the specific 
performance is dependent on several other factors too 
outside the scope of this work, but the high level trend 
have been evaluated. In all the experiments it was found 
that the cloud based controller showed a general trend of 
consistent performance compared to the other topologies. 
It is evident from the results that with a more complex 
enterprise scale load and topology the cloud based SDN 
network model will scale up and provide a reliable 
performance compared to any locally hosted controller. 
Based on this trend, in the future further control 
functionalities from the switches can also be virtualized 
and ported to the cloud seamlessly. Some discussions on 
rebalancing the load between the two planes are 
presented in [18, 19].  

The work also highlights some of the key features and 
analysis of the performance between the different SDN 
controllers. In all the experiments, it was found that the 
delay for FloodLight was the minimal of the three 
controllers. However,  in the throughput test with 
Cbench NOX presented better throughput than the 
default version of FloodLight. This was because the 
default version was much better optimised for production 
network. Its global performance in an enterprise scenario 
is more robust and reliable. Regarding POX’s results, the 
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controller seemed generally unsuitable for production 
environment, but best suited for experimentation.  
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