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Figure 1: Online spatio-temporal action localisation in a test ‘fencing’ video from UCF-101-24 [43]. (a) to (c): A 3D volu-

metric view of the video showing detection boxes and selected frames. At any given time, a certain portion (%) of the entire

video is observed by the system, and the detection boxes are linked up to incrementally build space-time action tubes. Note

that the proposed method is able to detect multiple co-occurring action instances (3 tubes shown here).

Abstract

We present a deep-learning framework for real-time mul-

tiple spatio-temporal (S/T) action localisation and classi-

fication. Current state-of-the-art approaches work offline,

and are too slow to be useful in real-world settings. To

overcome their limitations we introduce two major develop-

ments. Firstly, we adopt real-time SSD (Single Shot Multi-

Box Detector) CNNs to regress and classify detection boxes

in each video frame potentially containing an action of in-

terest. Secondly, we design an original and efficient on-

line algorithm to incrementally construct and label ‘action

tubes’ from the SSD frame level detections. As a result, our

system is not only capable of performing S/T detection in

real time, but can also perform early action prediction in

an online fashion. We achieve new state-of-the-art results in

both S/T action localisation and early action prediction on

the challenging UCF101-24 and J-HMDB-21 benchmarks,

even when compared to the top offline competitors. To the

best of our knowledge, ours is the first real-time (up to

40fps) system able to perform online S/T action localisation

on the untrimmed videos of UCF101-24.

∗M. Sapienza performed this research at the University of Oxford, and

is currently with the Think Tank Team, Samsung Research America, CA.

1. Introduction

Spatio-temporal human action localisation [53, 33, 28] in

videos is a challenging problem that is made even harder if

detection is to be performed in an online setting and at real-

time speed. Despite the performance of state-of-the-art S/T

action detection systems [33, 28] being far from real time,

current systems also assume that the entire video (taken as

a 3D block of pixels) is available ahead of time in order to

detect action instances. Here, an action instance is made up

of a sequence of detection boxes linked in time to form an

‘action tube’ [7, 53]. For such a detector to be applicable to

real-world scenarios such as video surveillance and human-

robot interaction, video frames need to be processed in real

time. Moreover, the action detection system needs to con-

struct action tubes in an incremental and online fashion, as

each new frame is captured.

With the rise of Convolutional Neural Networks (CNNs),

impressive progress has been made in image classification

[15] and object detection [6], motivating researchers to ap-

ply CNNs to action classification and localisation. Al-

though the resulting CNN-based state-of-the-art S/T action

detectors [33, 7, 53, 28] have achieved remarkable results,

these methods are computationally expensive and their de-

tection accuracy is still below what is needed for real-world

deployment. Most of these approaches [7, 53] are based
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on unsupervised region proposal algorithms [48, 61] and on

an expensive multi-stage training strategy mutuated from

object detection [6]. For example, Gkioxari et al. [7] and

Weinzaepfel et al. [53] both separately train a pair of (mo-

tion and appearance) CNNs and a battery of one-vs-rest

Support Vector Machines (SVMs). This limits detection ac-

curacy as each module is trained independently, leading to

sub-optimal solutions.

The most recent efforts by Saha et al. [33] and Peng

et al. [28] use a supervised region proposal generation ap-

proach [30], and eliminate the need for multi-stage train-

ing [6] by using a single end-to-end trainable CNN for ac-

tion classification and bounding box regression. Although

[33, 28] exhibit the best spatio-temporal action localisa-

tion accuracies to date, test time detection involves the

use of computationally expensive optical flow [1], and re-

mains a two-step region proposal network (RPN) [30] and

RCNN [30] process, limiting real-time deployment. Also,

[33, 28] both employ offline tube generation methods which

process the entire video in two passes: one to link detec-

tion boxes into tubes which stretch from start to end of the

video, and one to temporally trim and label the video-long

constructed tubes.

In this work, we propose an online framework, outlined

in Figure 2, which overcomes all the above limitations. The

pipeline takes advantage of the more recent SSD (Single

Shot MultiBox Detector) object detector [22] to address is-

sues with accuracy and speed at frame level. This is possible

as SSD eliminates the region proposal generation step and

is single-stage, end-to-end trainable.

To leverage the performance of SSD, we design a novel

single pass online tube building method which leads to both

superior accuracy (compared to [53, 33, 28]), especially at

realistic detection precision, and real-time detection speed.

Unlike previous tube-generation approaches [7, 33, 28, 53],

our algorithm works in an online fashion as tubes are up-

dated frame by frame, together with their overall action-

specific scores and labels. As soon as non-real-time optical

flow [1] is replaced by the less accurate (but real-time) op-

tical flow algorithm [16], the resulting system performs in

real time (28fps), with just a little performance degradation,

an essential feature for real-world applications.

The incremental nature of our system makes it possible

to accurately foresee the class label of an entire test video

and localise action instances within it by just observing a

small fraction of frames (early action prediction and lo-

calisation). Such a system has been recently proposed by

Soomro et al. [42], who showed that both action prediction

and online localisation performance improve over time as

more and more video frames become available. Using [42]

as a baseline, we report here new state-of-the-art results on

the temporally trimmed J-HMDB-21 videos. Furthermore,

compared to [42], we are able to demonstrate action pre-

diction and localisation capabilities from partially observed

untrimmed streaming videos on the challenging UCF101-

24 dataset, while retaining real-time detection speeds.

Contributions. In summary, we present a holistic

framework for the real-time, online spatial and temporal lo-

calisation of multiple action instances in videos which:

1. incorporates the newest SSD [22] neural architecture to

predict frame-level detection boxes and the associated

action class-specific confidence scores, in a single-stage

regression and classification approach (§ 3.2);

2. devises an original, greedy algorithm capable of gener-

ating multiple action tubes incrementally (§ 3.4);

3. provides early action class label predictions and online

spatio-temporal localisation results (Fig. 1) from par-

tially observed action instances in untrimmed videos;

4. functions in real-time, while outperforming the previ-

ous (offline) state of the art on the untrimmed videos of

UCF101-24 dataset.

To the best of our knowledge, our framework is the first with

a demonstrated ability to perform online spatial and tempo-

ral action localisation. An extensive empirical evaluation

demonstrates that our approach:

• significantly outperforms current offline methods, espe-

cially on realistic detection thresholds of 0.5 or greater;

• is capable of superior early action prediction perfor-

mance compared to the state of the art [42];

• achieves a real-time detection speed (upto 40fps), that is

5 to 6 times faster than previous works (§ 4.4).

Our code is available online at https://github.com/

gurkirt/realtime-action-detection.

2. Related work

Deep learning architectures have been increasingly ap-

plied of late to action classification [13, 14, 37, 47], spatial

[7], temporal [36] and spatio-temporal [53] action localisa-

tion, and event detection [55].

Spatial action localisation is typically addressed using

segmentation [23, 41, 11] or region proposal and action-

ness [7, 52] -based approaches. Gkioxari and Malik [7], in

particular, have built on [6] and [37] to tackle spatial ac-

tion localisation in temporally trimmed videos only, using

Selective-Search region proposals, fine-tuned CNN features

and a set of one-vs-rest SVMs. These approaches are re-

stricted to trimmed videos.

Temporal action detection is mostly tackled using expen-

sive sliding window [20, 5, 46, 27, 51] approaches. Re-

cently, deep learning-based methods have led to signifi-

cant advances. For instance, Shou et al. [36] have em-

ployed 3D CNNs [13, 47] to address temporal action de-

tection in long videos. LSTMs are also increasingly be-

ing used [56, 3, 38, 57] to address the problem. Dynamic

programming has been employed to solve the problem effi-

ciently [18, 4, 40]. Some of the above works [56, 3, 4, 56]
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Figure 2. At test time, the input to the framework is a sequence of RGB video frames (a). A real-time optical flow (OF) algorithm (b) [16]

takes the consecutive RGB frames as input to produce flow images (d). As an option, (c) a more accurate optical flow algorithm [1] can be

used (although not in real time). (e) RGB and OF images are fed to two separate SSD detection [22] networks (§ 3.2). (f) Each network

outputs a set of detection boxes along with their class-specific confidence scores (§ 3.2). (g) Appearance and flow detections are fused

(§ 3.3). Finally (h), multiple action tubes are built up in an online fashion by associating current detections with partial tubes (§ 3.4).

can perform action detection in an online fashion. However,

unlike our framework, all these methods only address tem-

poral, as opposed to spatial and temporal, action detection.

Spatio-temporal action localisation can be approached

in a supervised [28, 33], semi-supervised [49, 53], or

weakly supervised [34, 45] manner. Inspired by Oneata et

al. [27] and Jain et al. [10], Gemert et al. [49] use unsu-

pervised clustering to generate a small set of bounding box-

like spatio-temporal action proposals. As their method is

based on dense-trajectory features [50], it fails to detect ac-

tions characterised by small motions [49]. Weinzaepfel et

al.’s work [53] performs both temporal and spatial detec-

tions by coupling frame-level EdgeBoxes [61] region pro-

posals with a tracking-by-detection framework. However,

temporal trimming is still achieved via a multi-scale slid-

ing window over each track, making the approach ineffi-

cient for longer video sequences. More recently, Saha et

al. [33] and Peng et al. [28] have made use of supervised

region proposal networks (RPNs) [30] to generate region

proposal for actions on frame level, and solved the S/T as-

sociation problem via 2 recursive passes over frame level

detections for the entire video by dynamic programming.

Using a non real-time and 2-pass tube generation approach,

however, makes their methods offline and inefficient. In op-

position, our framework employs a real-time OF algorithm

[16] and a single shot SSD detector [22] to build multiple

action tubes in a fully incremental way, and in real time.

Real-time methods. Relatively few efforts have been di-

rected at simultaneous real time action detection and classi-

fication. Zhang et al. [60], for example, accelerate the two-

stream CNN architecture of [37], performing action clas-

sification at 400 frames per second. Unlike our method,

however, theirs cannot perform spatial localisation. Yu et

al. [59] evaluate their real-time continuous action classi-

fication approach on the relatively simpler KTH [35] and

UT-interaction [32] datasets. To the best of our knowledge,

this is the first work to address real-time action localisation.

Online action prediction. Early, online action prediction

has been studied using dynamic bag of words [31], struc-

tured SVMs [9], hierarchical representations [19], LSTMs

and Fisher vectors [3]. Once again, unlike our framework,

these approaches [31, 9, 19] do not perform online action

localisation. Soomro et al. [42] recently proposed an online

method which can predict an action’s label and location by

observing a relatively smaller portion of the entire video se-

quence. However, [42] only works on temporally trimmed

videos and not in real-time, due to expensive segmentation.

3. Methodology

As outlined in Fig. 2, our approach exploits an integrated

detection network [22] (§ 3.2-Fig. 2e) to predict detection

boxes and class-specific confidence scores for appearance

and flow (§ 3.1) video frames independently. One of two

alternative fusion strategies (§ 3.3-Fig. 2g) is then applied.

Finally, action tubes are built incrementally in an online

fashion and in real time, using a new efficient action tube

generation algorithm (§ 3.4-Fig. 2h), which can be applied

to early action prediction (§ 3.5).

3.1. Optical flow computation

The input to our framework is a sequence of RGB im-

ages. As in prior work in action localisation [33, 7, 53],

we use a two-stream CNN approach [37] in which optical

flow and appearance are processed in two parallel, distinct

streams. As our aim is to perform action localisation in

real-time, we employ real-time optical flow (Fig. 2b) [16]

to generate the flow images (Fig. 2d). As an option, one can

compute optical flow more accurately (Fig. 2c), using Brox

et al.’s [1] method. We thus train two different networks for

the two OF algorithms, while at test time only one network

is used depending on whether the focus is on speed rather

than accuracy. Following the transfer learning approach on
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motion vectors of [60], we first train the SSD network on

accurate flow results, to later transfer the learned weights to

initialise those of the real time OF network. Performance

would degrade whenever transfer learning was not used.

3.2. Integrated detection network

We use a single-stage convolutional neural network

(Fig. 2e) for bounding box prediction and classification,

which follows an end-to-end trainable architecture pro-

posed in [22]. The architecture unifies a number of func-

tionalities in single CNN which are, in other action and ob-

ject detectors, performed by separate components [7, 53,

30, 33], namely: (i) region proposal generation, (ii) bound-

ing box prediction and (iii) estimation of class-specific con-

fidence scores for the predicted boxes. This allows for rela-

tively faster training and higher test time detection speeds.

Detection network design and training. For our

integrated detection network we adopt the network de-

sign and architecture of the SSD [22] object detector,

with an input image size of 300 × 300. We do not

use the 512 × 512 SSD architecture [22], as detec-

tion speed is much slower [22]. As in [22], we also

use an ImageNet pretrained VGG16 network provided

by [22] (https://gist.github.com/weiliu89/

2ed6e13bfd5b57cf81d6). We adopt the training

procedure described by [22] along with their publicly

available code for network training (https://github.

com/weiliu89/caffe/tree/ssd). We use a learn-

ing rate of 0.0005 for the appearance stream and of 0.0001
for the flow stream on UCF101-24, whereas that for JH-

MDB is set to 0.0001 for both appearance and flow. All

implementation details are in the supplementary material.

3.3. Fusion of appearance and flow cues

The detection boxes generated by the appearance and

flow detection networks (Fig. 2f) need to be merged to im-

prove robustness and accuracy (Fig. 2g). We conducted ex-

periments using two distinct fusion strategies.

Boost-fusion. Here we follow the approach in [33], with

a minor modification. Firstly, we perform L-1 normalisa-

tion on the detection boxes’ scores after fusion. Secondly,

we retain any flow detection boxes for which an associated

appearance based box was not found, as we found that dis-

carding the boxes lowers the overall recall.

Fusion by taking the union-set. A different, effective fu-

sion strategy consists in retaining the union {bai } ∪ {bfj } of

the two sets of appearance {bai } and flow {bfj } detection

boxes, respectively. The rationale is that in UCF-101, for

instance, several action classes (such as ‘Biking’, ‘IceDanc-

ing’, or ‘SalsaSpin’) have concurrent action instances in the

majority of video clips: an increased number of detection

boxes may so help to localise concurrent action instances.

3.4. Online action tube generation

Given a set of detections at time t = 1..T , for each given

action class c, we seek the sets of consecutive detections

(or action tubes) Tc = {bts , , bte} which, among all pos-

sible such collections, are more likely to constitute an ac-

tion instance. This is done separately for each class, so that

results for class c do not influence those for other classes.

We allow the number of tubes nc(t) to vary in time, within

the constraint given by the number of available input detec-

tions. We allow action tubes to start or end at any given

time. Finally, we require: (i) consecutive detections part of

an action tube to have spatial overlap above a threshold λ;

(ii) each class-specific detection to belong to a single action

tube; (iii) the online update of the tubes’ temporal labels.

Previous approaches to the problem [7, 33] constrain tubes

to span the entire video duration. In both [33] and [28],

in addition, action paths are temporally trimmed to proper

action tubes using a second pass of dynamic programming.

In opposition, we propose a simple but efficient on-

line action tube generation algorithm which incrementally

(frame by frame) builds multiple action tubes for each ac-

tion class in parallel. Action tubes are treated as ‘tracklets’,

as in multi-target tracking approaches [26]. We propose a

greedy algorithm (3.4.1) similar to [25, 39] for associating

detection boxes in the upcoming frame with the current set

of (partial) action tubes. Concurrently, each tube is tempo-

rally trimmed in an online temporal labelling (3.4.2) setting.

3.4.1 A novel greedy algorithm

The input to the algorithm is the fused frame-level detection

boxes with their class specific scores (Sec. 3.3). At each

time step t, the top n class-specific detection boxes {bc} are

selected by applying non-maximum suppression on a per-

class basis. At the first frame of the video, nc(1) = n action

tubes per class c are initialised using the n detection boxes

at t = 1. The algorithm incrementally grows the tubes over

time by adding one box at a time. The number of tubes

nc(t) varies with time, as new tubes are added and/or old

tubes are terminated.

At each time step, we sort the existing partial tubes so

that the best tube can potentially match the best box from

the set of detection boxes in the next frame t. Also, for

each partial tube T i
c at time t − 1, we restrict the potential

matches to detection boxes at time t whose IoU (Intersec-

tion over Union) with the last box of T i
c is above a thresh-

old λ. In this way tubes cannot simply drift off, and they

can be terminated if no matches are found for k consecu-

tive frames. Finally, each newly updated tube is temporally

trimmed by performing a binary labelling using an online

Viterbi algorithm. This is described in detail in Sec. 3.4.2.

Summarising, action tubes are constructed by applying

the following 7 steps to every new frame at time t:
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1. Execute steps 2 to 7 for each class c.

2. Sort the action tubes generated up to time t − 1 in de-

creasing order, based on the mean of the class scores

of the tube’s member detection boxes.

3. LOOP START: i = 1 to nc(t − 1) - traverse the sorted

tube list.

4. Pick tube T i
c from the list and find a matching box for

it among the n class-specific detection boxes {bjc, j =
1, ..., n} at frame t based on the following conditions:

(a) for all j = 1, ..., n, if the IoU between the last

box of tube T i
c and the detection box bjc is greater

than λ, then add it to a potential match list Bi;

(b) if the list of potential matches is not empty, Bi 6=
∅, select the box bmax

c from Bi with the highest

score for class c as the match, and remove it from

the set of available detection boxes at time t;

(c) if Bi = ∅, retain the tube anyway, without

adding any new detection box, unless more than

k frames have passed with no match found for it.

5. Update the temporal labelling for tube T i
c using the

score s(bmax
c ) of the selected box bmax

c (see § 3.4.2).

6. LOOP END

7. If any detection box is left unassigned, start a new tube

at time t using this box.

In all our experiments, we set λ = 0.1, n = 10, and k = 5.

3.4.2 Temporal labelling

Although n action tubes per class are initialised at frame

t = 1, we want all action specific tubes to be allowed to

start and end at any arbitrary time points ts and te. The

online temporal relabelling step 5. in the above algorithm is

designed to take care of this.

Similar to [33, 4], each detection box br, r = 1, ..., T in

a tube Tc, where T is the current duration of the tube and r

is its temporal position within it, is assigned a binary label

lr ∈ {c, 0}, where c is the tube’s class label and 0 denotes

the background class. The temporal trimming of an action

tube thus reduces to finding an optimal binary labelling l =
{l1, ..., lT } for all the constituting bounding boxes. This can

be achieved by maximising for each tube Tc the energy:

E(l) =
T
∑

r=1

slr (br)− αl

T
∑

r=2

ψl (lr, lr−1) , (1)

where slr (br) = sc(br) if lr = c, 1−sc(br) if lr = 0, αl is a

scalar parameter, and the pairwise potential ψl is defined as:

ψl(lr, lr−1) = 0 if lr = lr−1, ψl(lr, lr−1) = αc otherwise.

Online Viterbi. The maximisation problem (1) can be

solved by Viterbi dynamic programming [33]. An optimal

labelling l̂ for a tube Tc can be generated by a Viterbi back-

ward pass at any arbitrary time instant t in linear time. We

keep track of past box-to-tube associations from the start of

the tube up to t− 1, which eliminates the requirement of an

entire backward pass at each time step. This makes tempo-

ral labelling very efficient, and suitable to be used in an on-

line fashion. This can be further optimised for much longer

videos by finding the coalescence point [44]. As stated in

step 5. above, the temporal labelling of each tube is updated

at each time step whenever a new box is added. In the sup-

plementary material, we present a pseudocode of our online

action tube generation algorithm.

3.5. Early action prediction

As for each test video multiple tubes are built incremen-

tally at each time step t (§3.4), we can predict at any time in-

stant the label of the whole video as the label of the current

highest-scoring tube, where the score of a tube is defined

as the mean of the tube boxes’ individual detection scores:

ĉ(t) = argmaxc

(

maxTc

1

T

∑T

r=1
s(br)

)

.

4. Experiments

We test our online framework (§ 3) on two separate chal-

lenging problems: i) early action prediction (§ 4.1), ii) on-

line spatio-temporal action localisation (§ 4.2), including a

comparison to offline action detection methods. Evidence

of real time capability is provided in (§ 4.4).

In all settings we generate results by running our frame-

work in five different ‘modes’: 1) Appearance (A) – only

RGB video frames are processed by a single SSD; 2) Real-

time flow (RTF) – optical flow images are computed in real-

time [16] and fed to a single SSD; 3) A+RTF: both RGB

and real-time optical flow images are processed by a SSD

in two separate streams; 4) Accurate flow (AF) optical flow

images are computed as in [1], and 5) A+AF: both RGB

and non real-time optical flow frames [1] are used.

Modes 1), 2) and 3) run in real-time whereas modes 4) and

5)’s performances are non real-time (while still working in-

crementally), due to the relatively higher computation time

needed to generate accurate optical flow.

Datasets. We evaluate our model on the UCF-101-

24 [43] and J-HMDB-21 [12] benchmarks. UCF101-24 is

a subset of UCF101 [43], one of the largest and most diver-

sified and challenging action datasets. Although each video

only contains a single action category, it may contain mul-

tiple action instances (upto 12 in a video) of the same ac-

tion class, with different spatial and temporal boundaries. A

subset of 24 classes out of 101 comes with spatio-temporal

localisation annotation, released as bounding box annota-

tions of humans with THUMOS-2013 challenge1. On av-

erage there are 1.5 action instances per video, each action

instance covering 70% of the duration of the video. For

some classes, instances avergae duration can be as low as

30%. As in previous spatio-temporal action detection works

1http://crcv.ucf.edu/ICCV13-Action-Workshop/download.html
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Figure 3. Early action label prediction results (accuracy %) on

the UCF101-24 and J-HMDB-21 datasets.

[33, 58, 28, 53], we test our method on split 1. J-HMDB-

21 [12] is a subset of the HMDB-51 dataset [17] with 21

action categories and 928 videos, each containing a single

action instance and trimmed to the action’s duration.

Note that the THUMOS [8] and ActivityNet [2] datasets

are not suitable for spatiotemporal localisation, as they lack

bounding box annotation.

Evaluation metrics. For the early action label predic-

tion (§ 4.1) and the online action localisation (§ 4.2) tasks

we follow the experimental setup of [42], and use the tradi-

tional localisation metrics AUC (area under the curve) and

mAP (mean average precision). We report performance as

a function of Video Observation Percentage, i.e., with re-

spect to the portion (%) of the entire video observed before

predicting action label and location. We also report a perfor-

mance comparison to offline methods [33, 58, 28, 53] using

the protocol by Weinzaepfel et al. [53].

4.1. Early action label prediction

Although action tubes are computed by our framework

frame by frame, we sample them at 10 different time

‘check-points’ along each video, starting at 10% of the to-

tal number of video frames and with a step size of 10%.

We use the union-set and boost fusion strategies (§ 3.3)

for UCF101-24 and J-HMDB-21, respectively. Fig. 3 com-

pares the early action prediction accuracy of our approach

with that of [42], as a function of the portion (%) of video

observed. Our method clearly demonstrates superior per-

formance, as it is able to predict the actual video label by

observing a very small portion of the entire video at a very

initial stage. For instance, by observing only the initial 10%
of the videos in J-HMDB-21, we are able to achieve a pre-

diction accuracy of 48% as compared to 5% by Soomro et

al. [42], which is in fact higher than the 43% accuracy

achieved by [42] after observing the entire video. We do not

run comparisons with the early action prediction work by

Ma et al. [24] for they only show results on ActivityNet [2],
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Figure 4. Online action localisation results using the AUC (%)

metric on J-HMDB-21, at IoU thresholds of δ = 0.2, 0.5.

as dataset which has only temporal annotations. The early

prediction capability of our approach is a subproduct of its

being online, as in [42]: thus, we only compare ourselves

with Soomro et al. [42] re early action prediction results.

Compared to [42] we take one step further, and perform

early label prediction on the untrimmed videos of UCF101-

24 as well (see Fig. 3). It can be noted that our method

performs much better on UCF101-24 than on J-HMBD-21

at the prediction task. This relatively higher performance

may be attributed to the larger number of training examples,

subject to more modes of variations, present in UCF101-24,

which improves the generalisation ability of the model and

prevents it from overfitting. Interestingly, we can observe

that the performances of the real-time (A + RTF) and non

real-time (A + AF) modalities are quite similar, which sug-

gests that accurate optical flow might be not so crucial for

action classification on UCF101-24 dataset.

4.2. Online spatiotemporal action localisation

4.2.1 Performance over time

Our action tubes are built incrementally and carry associ-

ated labels and scores at each time step. At any arbitrary

time t, we can thus compute the spatio-temporal IoU be-

tween the tubes generated by our online algorithm and the

ground truth tubes, up to time t.

Fig. 4 plots the AUC curves against the observed por-

tion of the video at different IoU thresholds (δ = 0.2 and

0.5) for the proposed approach versus our competitor [42].

Our method outperforms [42] on online action localisation

by a large margin at all the IoU thresholds and video ob-

servation percentage. Notice that our online localisation

performance (Fig. 4) is a stable function of the video ob-

servation percentage, whereas, Soomro et al. [42]’s method

needs some ‘warm-up’ time to reach stability, and its ac-

curacy slightly decreases at the end. In addition, [42] only

reports online spatial localisation results on the temporally

trimmed J-HMDB-21 test videos, and their approach lacks
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Figure 5. Action localisation results using the mAP (%) metric on

UCF101-24 and JHMDB-21, at IoU thresholds of δ = 0.2, 0.5.

temporal detection capabilities.

Our framework, instead, can perform online spatio-

temporal localisation: to demonstrate this, we present re-

sults on the temporally untrimmed UCF101-24 test videos

as well. In Fig. 5 we report online spatial-temporal local-

isation results on UCF101-24 and JHMBD-21 using the

standard mAP metric (not reported in [42]). Interestingly,

for UCF101-24, at a relatively smaller IoU threshold (δ =
0.2) the performance gradually increases over time as more

video frames are observed, whereas at a higher IoU thresh-

old (δ = 0.5) it slightly degrades over time. A reason

for this could be that UCF101-24 videos are temporally

untrimmed and contain multiple action instances, so that

accurate detection may be challenging at higher detection

thresholds (e.g. δ = 0.5). If temporal labelling is not very

accurate, as required at high thresholds (δ = 0.5), this might

result in more false positives as the video progress, hence

the observed drop in performance over time.

4.2.2 Global performance

To demonstrate the strength of our online framework, we

compare as well its absolute detection performances to

those of the top offline competitors [33, 53, 28, 58]. To

ensure a fair comparison with [33], we evaluate their offline

tube generation method using the detection bounding boxes

produced by the SSD net. As in [21], we report the mAP

averaged over thresholds from 0.5 to 0.95 in steps of 0.05.

Improvement over the top performers. Results on

UCF101-24 are reported in Table 1. In an online real-time

setting we achieve an mAP of 70.2% compared to 66.6% re-

ported by [33] at the standard IoU threshold of δ = 0.2. In

non-real time mode, we observe a further performance im-

provement of around 3.3%, leading to a 73.5% mAP, com-

parable to the 73.5 reported by the current top performer

[28]. The similar performance of our method (A+AF) to

[28] at δ = 0.2 suggests that SSD and the multi-region

Table 1. S/T action localisation results (mAP) on untrimmed

videos of UCF101-24 dataset in split1.

IoU threshold δ 0.2 0.5 0.75 0.5:0.95

Yu et al. [58]‡ 26.5 – – –

Weinzaepfel et al. [53]‡ 46.8 – – –

Peng and Schmid [28]† 73.5 32.1 02.7 07.3

Saha et al. [33]† 66.6 36.4 07.9 14.4

Ours-Appearance (A)∗ 69.8 40.9 15.5 18.7

Ours-Real-time-flow (RTF)∗ 42.5 13.9 00.5 03.3

Ours-A + RTF (boost-fusion)∗ 69.7 41.9 14.1 18.4

Ours-A + RTF (union-set)∗ 70.2 43.0 14.5 19.2

Ours-Accurate - flow (AF)∗∗ 63.7 30.8 02.8 11.0

Ours-A + AF (boost-fusion)∗∗ 73.0 44.0 14.1 19.2

Ours-A + AF (union-set)∗∗ 73.5 46.3 15.0 20.4

SSD+ [33] A + AF (union-set)† 71.7 43.3 13.2 18.6

‡ These methods were using different annotations to [28, 33] and ours.
∗ Incremental & real-time ∗∗ Incremental, non real-time † Offline

adaptation of Faster-RCNN by [28] produce similar quality

frame level detection boxes.

Performance under more realistic requirements. Our

method significantly outperforms [33, 28] at more mean-

ingful higher detection thresholds δ = 0.5 or higher. For

instance, we achieve a 46.2% mAP at δ = 0.5 as opposed to

the 32.1% by [28] and the 36.4% by [33], an improvement

of 14% and 9.8%, respectively. This attests the superiority

of our tube building algorithm when compared to those of

[28, 33]. In fact, even in real time mode our pipeline (A +
RTF) still performs better than both [33, 28] at δ = 0.5 or

higher.

It is important to note that, our proposed fusion method

(union-set-fusion) significantly outperforms boost-fusion

proposed by [33] on UCF101-24 dataset (see Table 1).

UCF-101 includes many co-occurring action instances, we

can infer that the union-set fusion strategy improves the

performance by providing a larger number of high confi-

dence boxes from either the appearance or the flow network.

When a single action is present in each video, as in JHMDB,

boost-fusion perform better (Table 2). In the supplemen-

tary material we present a complete class-wise performance

comparison of the two fusion strategies on both datasets.

Evaluation on J-HMDB-21. Table 2 reports action de-

tection results averaged over the three splits of J-HMDB-

21, and compares them with those to our closest (offline)

competitors. Our framework outperforms the multi-stage

approaches of [7, 52, 53] in non real-time mode at the stan-

dard IoU threshold of 0.5, while it attains figures very close

to those of [33, 28] (73.8 versus 74.1 and 72.6, respectively)

approaches, which make use of a two-stage Faster-RCNN.

Once again it is very important to point out that [28]

employs a battery of frame-level detectors, among which

one based on strong priors on human body parts. Our

approach does not make any prior assumption on the ob-

ject(s)/actors(s) performing the action of interest, and is

thus arguably more general-purpose.
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Table 2. S/T Action localisation results (mAP) on J-HMDB-21.

IoU threshold δ 0.2 0.5 0.75 0.5:0.95

Gkioxari and Malik [7]† – 53.3 – –

Wang et al. [52]† – 56.4 – –

Weinzaepfel et al. [53]† 63.1 60.7 – –

Saha et al. [33]† 72.6 71.5 43.3 40.0

Peng and Schmid [28]† 74.1 73.1 – –

Ours-Appearance (A)∗ 60.8 59.7 37.5 33.9

Ours-Real-time-flow (RTF)∗ 56.9 47.4 20.2 19.3

Ours-A + RTF (union-set)∗ 66.0 63.9 35.1 34.4

Ours-A + RTF (boost-fusion)∗ 67.5 65.0 36.7 38.8

Ours-Accurate - flow (AF)∗∗ 68.5 67.0 38.7 36.1

Ours-A + AF (union-set)∗∗ 70.8 70.1 43.7 39.7

Ours-A + AF (boost-fusion)∗∗ 73.8 72.0 44.5 41.6

SSD+ [33] A + AF (boost-fusion)† 73.2 71.1 40.5 38.0

∗ Incremental & real-time ∗∗ Incremental, non real-time † Offline

4.3. Discussion

Contribution of the flow stream. The optical flow

stream is an essential part of the framework. Fusing the

real-time flow stream with the appearance stream (A+RTF

mode) on UCF101-24 leads to a 2.1% improvement at

δ = 0.5. Accurate flow adds a further 3.3%. A similar

trend can be observed on JHMDB-21, where A+RTF gives

a 5% boost at δ = 0.5, and the A+RTF mode takes it fur-

ther to 72%. It is clear from Table 1 and Table 2 that optical

flow plays a much bigger role on the JHMDB dataset as

compared to UCF101-24. Real-time OF does not provide

as big a boost as accurate flow, but still pushes the overall

performance towards that of the top competitors, with the

invaluable addition of real-time speed.

Relative contribution of tube generation and SSD. As

anticipated we evaluated the offline tube generation method

of [33] using the detection bounding boxes produced by the

SSD network, to both provide a fair comparison and to un-

derstand each component’s influence on performance. The

related results appear in the last row of Table 1 and Table 2.

From comparing the figures in the last two rows of both

tables it is apparent that our online tube generation per-

forms better than the offline tube generation of [33], espe-

cially providing significant improvements at higher detec-

tion thresholds for both datasets. We can infer that the in-

crease in performance comes from both the higher-quality

detections generated by SSD, as well as our new online tube

generation method. The fact that our tube genration is on-

line, gready and outperforms offline methods, so it suggests

that offline approaches has big room for improvements.

The reason for not observing a big boost due to the use

of SSD on JHMDB may be its relatively smaller size, which

does not allow us to leverage on the expressive power of

SSD models. Nevertheless, cross validating the CNNs’

hyper-parameters (e.g. learning rate), might lead to further

improvements there as well.

4.4. Test time detection speed

To support our claim to real time capability, we report

the test time detection speed of our pipeline under all three

types of input A (RGB), A+RTF (real-time flow), A + AF

(accurate flow) in Table 3. These figures were generated us-

ing a desktop computer with an Intel Xeon CPU@2.80GHz

(8 cores) and two NVIDIA Titan X GPUs. Real-time ca-

pabilities can be achieved by either not using optical flow

(using only appearance (A) stream on one GPU) or by com-

puting real-time optical flow [16] on a CPU in parallel with

two CNN forward passes on two GPUs. For action tube

generation (§ 3.4) we ran 8 CPU threads in parallel for each

class. We used the real-time optical flow algorithm [16]

in a customised setting, with minimum number of pyramid

levels set to 2 instead of 3, and patch overlap 0.6 rather than

0.4. OF computation averages ∼ 7 ms per image.

Table 3 also compares our detection speed to that re-

ported by Saha et al. [33]. With an overall detection speed

of 40 fps (when using RGB only) and 28 fps (when using

also real time OF), our framework is able to detect multiple

co-occurring action instances in real-time, while retaining

very competitive performance.

Table 3. Test time detection speed.

Framework modules A A+RTF A+AF [33]

Flow computation (ms∗) – 7.0 110 110

Detection network time (ms∗) 21.8 21.8 21.8 145

Tube generation time (ms∗) 2.5 3.0 3.0 10.0

Overall speed (fps∗∗ ) 40 28 7 4
∗ ms - milliseconds ∗∗ fps - frame per second.

5. Conclusions and future plans

We presented a novel online framework for action lo-

calisation and prediction able to address the challenges in-

volved in concurrent multiple human action recognition,

spatial localisation and temporal detection, in real time.

Thanks to an efficient deep learning strategy for the si-

multaneous detection and classification of region proposals

and a new incremental action tube generation approach, our

method achieves superior performances compared to the

previous state-of-the-art on early action prediction and on-

line localisation, while outperforming the top offline com-

petitors, in particular at high detection overlap. Its combi-

nation of high accuracy and fast detection speed at test time

paves the way for its application to real-time applications

such as autonomous driving, human robot interaction and

surgical robotics, among others.

A number of future extensions can be envisaged. Mo-

tion vectors [60], for instance, could be used in place of

optical flow to achieve faster detection speeds. An even

faster frame level detector, such as YOLO [29], could be

easily incorporated. More sophisticated online tracking al-

gorithms [54] for tube generation could be explored.
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