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Abstract

In recent years graph cuts have become a popular tool for performing inference in
Markov and Conditional Random Fields. In this context the question arises as to
whether it might be possible to compute a measure of uncertainty associated with
the graph-cut solutions. In this paper we answer this particular question by showing
how the min-marginals associated with the label assignments of a random field can
be efficiently computed using a new algorithm based on dynamic graph cuts. The
min-marginal energies obtained by our proposed algorithm are exact, as opposed
to the ones obtained from other inference algorithms like loopy belief propagation
and generalized belief propagation. The paper also shows how min-marginals can
be used for parameter learning in conditional random fields.

Key words: Parameter Learning, Inference, Min-marginals, Graph Cuts

1 Introduction

Researchers in computer vision have extensively used graph cuts to compute
the Maximum a Posteriori (map) solutions for various discrete pixel labelling
problems such as image restoration, segmentation and stereo. One of the pri-
mary reasons for the growing popularity of graph cuts is their ability to find
the globally optimal solutions for an important class of energy functions in
polynomial time [20]. Even for problems where graph cuts do not guarantee

Email addresses: pkohli@microsoft.com (Pushmeet Kohli),
philiptorr@brookes.ac.uk (Philip H. S. Torr).

Preprint submitted to Elsevier 2 July 2008



optimal solutions they can be used to find solutions which are strong local min-
ima of the energy [5]. These solutions for certain problems have been shown
to be better than the ones obtained by other methods [4,24].

Graph cuts however do suffer from a big disadvantage. Unlike other inference
algorithms, they do not provide any uncertainty measure associated with the
solution they produce. This is a serious drawback since researchers do not ob-
tain any information regarding the probability of a particular latent variable
assignment in a graph cut solution. Inference algorithms such as Loopy Belief
Propagation (lbp), Generalized Belief Propagation (gbp) and the recently in-
troduced Tree Re-weighted message passing (trw) [19,27] output approximate
marginal or min-marginal energies associated with each latent variable. Note
that for tree-structured graphs, the simple max-product belief propagation
algorithm gives the exact max-marginal probabilities/min-marginal energies 1

for different label assignments in O(nl2) time where n is the number of latent
variables, and l is the number of labels a latent variable can take.

This paper addresses the problem of efficiently computing the min-marginals
associated with the label assignments of any latent variable in a Markov Ran-
dom Field (mrf). Our method can work on all mrfs or crfs that can be
solved using graph cuts. First, we show how in the case of binary variables,
the min-marginals associated with the labellings of a latent variable are related
to the flow-potentials (defined in section 3) of the node representing that latent
variable in the graph constructed in the energy minimization procedure. The
exact min-marginal energies can be found by computing these flow-potentials.
We then show how flow potential computation is equivalent to the problem of
minimizing a projection of the original energy function 2 .

Minimizing a projection of an energy function is a computationally expen-
sive operation and requires a graph cut to be computed. In order to obtain
the min-marginals corresponding to all label assignments of all random vari-
ables, we need to solve O(nl) number of st-mincut problems. In this paper,
we present an algorithm based on dynamic graph cuts [16] which solves these
O(nl) problems extremely quickly. Our experiments show that the running
time of this algorithm i.e. the time taken for it to compute the min-marginals
corresponding to all latent variable label assignments is of the same order of
magnitude as the time taken to compute a single graph cut. The first version
of this paper appeared as [17]. This extended version shows how the min-

1 We will explain the relation between max-marginal probabilities and min-
marginal energies later in section 2. To make our notation consistent with recent
work in graph cuts, we formulate the problem in terms of min-marginal energies
(subsequently referred to as simply min-marginals).
2 A projection of the function f(x1, x2, ..., xn) can be obtained by fixing the values of
some of the variables in the function f(.). For instance f ′(x2, ..., xn) = f(0, x2, ..., xn)
is a projection of the function f(.).
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marginals obtained using our method can be used for parameter learning in
crfs.

1.1 Overview of Dynamic Graph Cuts

Dynamic computation is a paradigm that prescribes solving a problem by
dynamically updating the solution of the previous problem instance. Its hope
is to be more efficient than a computation of the solution from scratch after
every change in the problem. A considerable speedup in computation time can
be achieved using this procedure, especially, when the problem is large and
changes are few. Dynamic algorithms are not new to computer vision. They
have been extensively used in computational geometry for problems such as
range searching, intersections, point location, convex hull, proximity and many
others [6].

Boykov and Jolly [3] were the first to use a partially dynamic st-mincut al-
gorithm in a vision application. They proposed a technique with which they
could update capacities of certain graph edges, and recompute the st-mincut
dynamically. They used this method for performing interactive image segmen-
tation where the user could improve segmentation results by giving additional
segmentation cues (seeds) in an online fashion. However, their scheme was
restrictive and did not allow for general changes in the graph. In one of our
earlier papers, we proposed a new algorithm overcoming this restriction [16],
which is faster and allows for arbitrary changes to be made in the graph. The
running time of this new algorithm has been empirically shown to increase
linearly with the number of edge weights changed in the graph. In this paper,
we will use this algorithm to compute the exact min-marginals efficiently.

1.2 Our Contributions

To summarize, the key contributions of this paper include:

• The discovery of a novel relationship between min-marginal energies and
node flow-potentials in the residual graph obtained after the graph cut com-
putation.

• An efficient algorithm based on dynamic graph cuts to compute min-marginals
by minimizing energy function projections.

• The use of min-marginals for learning parameters of crfs used for modelling
labelling problems.
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1.3 Organization of the Paper

The paper starts by describing the basics of random fields and graph cuts
and proceeds to discuss the relationship between min-marginals and node-
flow potentials. We then show how max-marginal probabilities can be found
by minimizing projections of the energy function defining a mrf or crf, and
how dynamic graph cuts can be used to efficiently compute the minimum
values of these projections. Our algorithm can handle all energy functions
that can be solved using graph cuts [9,11,14,20].

We discuss random fields and min-marginal energies in section 2. In section
3, we formulate the st-mincut problem, define terms that would be used in
the paper, and describe how certain energy functions can be minimized using
graph cuts. In section 4, we show how min-marginals can be found by min-
imizing projections of the original energy function. In the same section we
describe a novel algorithm based on dynamic graph cuts to efficiently com-
pute the minima of these energy projections. In section 5, we discuss some
applications of our algorithm.

2 Notation and Preliminaries

We will now describe the notation used in the paper. We will formulate our
problem in terms of a pairwise mrf 3 . Note that the pairwise assumption does
not affect the generality of our formulation since any mrf involving higher
order interaction terms can be converted to a pairwise mrf by addition of
auxiliary variables in the mrf [28].

Consider a discrete random field X defined over a lattice V = {1, 2, . . . , n}
with a neighbourhood system N . Each random variable Xi ∈ X is associ-
ated with a lattice point i ∈ V and takes a value from the label set Xv. The
neighborhood system N of the random field is defined by the sets Ni,∀i ∈ V ,
where Ni denotes the set of all neighbours of the variable Xi. Any possible
assignment of labels to the random variables is called a labelling or configura-
tion. It is denoted by the vector x, and takes values from the set X defined
as X = X1 ×X2 × . . .× Xn. Unless noted otherwise, we use symbols u and v
to denote values in V , and i and j to denote particular values in Xu and Xv

respectively.

A random field is said to be a Markov random field (mrf) with respect to a
neighborhood system N = {Nv| v ∈ V} if and only if it satisfies the positivity

3 Pairwise mrfs have cliques of size at most two.
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property: Pr(x) > 0 ∀x ∈ X , and the Markovian property:

Pr(xv|{xu : u ∈ V − {v}}) = Pr(xv|{xu : u ∈ Nv}) ∀v ∈ V . (1)

Here we refer to Pr(X = x) as Pr(x) and Pr(Xi = xi) as Pr(xi). A conditional
random field (crf) may be viewed as an mrf globally conditioned on the
data.

The map-mrf estimation problem aims to find the configuration x which
has the highest probability. It can be formulated as an energy minimization
problem where the energy corresponding to a mrf configuration x is defined
as

E(x|θ) = − log Pr(x|D)− const. (2)

Here θ is the energy parameter vector defining the mrf [19]. The energy
functions characterizing mrfs used in computer vision can usually be written
as a sum of unary and pairwise terms:

E(x|θ) =
∑

v∈V


φ(xv) +

∑

u∈Nv

φ(xu, xv)


 + const. (3)

In the paper, ψ(θ) is used to denote the value of the energy of the map
configuration of the mrf and is defined as:

ψ(θ) = min
x∈X

E(x|θ). (4)

In what follows, the term optimal solution will be used to refer to the map
solution of the random field.

2.1 Min-marginal energies

A min-marginal is a function that provides information about the minimum
values of the energy E under different constraints. Following the notation of
[19], we define the min-marginal energies ψv;j, ψuv;ij as:

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ), (5)

ψuv;ij(θ) = min
x∈X ,xu=i,xv=j

E(x|θ). (6)

In words, given an energy function E whose value depends on the variables
(X1, X2, . . . , Xn), ψv;j(θ) represents the minimum energy value obtained if we
fix the value of variable Xv to j (xv = j) and minimize over all remaining
variables. Similarly, ψuv;ij(θ) represents the value of the minimum energy ob-
tained by assigning labels i and j to variables Xu and Xv respectively, and
minimizing over all other variables.
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2.2 Uncertainty in label assignments

Now we show how min-marginals can be used to compute a confidence measure
for a particular latent variable label assignment. Given the function Pr(x|D),
which specifies the probability of a configuration of the mrf, the max-marginal
µv;j gives us the value of the maximum probability over all possible configu-
rations of the mrf in which xv = j. Formally, it is defined as:

µv;j = max
x∈X ;xv=j

Pr(x|D) (7)

Inference algorithms like max-product belief propagation produce the max-
marginals along with the map solution. These max-marginals can be normal-
ized to obtain a confidence measure σ for any latent variable labelling as:

σv;j =
maxx∈X ,xv=j Pr(x|D)∑

k∈Xv
maxx∈X ,xv=k Pr(x|D)

=
µv;j∑

k∈Xv
µv;k

(8)

where σv;j is the confidence for the latent variable Xv taking label j. This is
the ratio of the max-marginal corresponding to the label assignment xv = j
to the sum of the max-marginals for all possible label assignments of variable
Xv.

We now show how max-marginals can be obtained from the min-marginal
energies computed by our algorithm. Substituting the value of Pr(x|D) from
equation (2) in equation (7), we get

µv;j = max
x∈X ;xv=j

(exp (−E(x|θ)− const)) =
1

Z
exp (− min

x∈X ;xv=j
E(x|θ)), (9)

where Z is the partition function. Combining this with equation (5), we get

µi;j =
1

Z
exp (−ψv;j(θ)). (10)

As an example consider a binary label object-background image segmentation
problem where there are two possible labels i.e. object (‘ob’) and background
(‘bg’). The confidence measure σv;ob associated with the pixel v being labelled
as object can be computed as:

σv;ob =
µv;ob

µv;ob + µv;bg

=
1
Z
exp (−ψv;ob(θ))

1
Z
exp (−ψv;ob(θ)) + 1

Z
exp (−ψv;bg(θ))

, (11)

=
exp (−ψv;ob(θ))

exp (−ψv;ob(θ)) + exp (−ψv;bg(θ))
(12)

Note that the Z’s cancel and thus we can compute the confidence measure from
the min-marginal energies alone without knowledge of the partition function.
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2.3 Computing the M most probable configurations

An important use of min-marginals is to find the M most probable configura-
tions (or labellings) for latent variables in a Bayesian network [29]. Dawid [7]
showed how min-marginals on junction trees can be computed, which was
later used by [22] to find the M most probable configurations of a proba-
bilistic graphical network. For tree-structured networks, the method of [7] is
guaranteed to run in polynomial time. However, its worst case complexity for
arbitrary graphs is exponential in the number of the nodes in the graphical
model. The method proposed in this paper is able to produce the exact min-
marginals for submodular energy functions of the form (3) defined over graphs
of arbitrary topology in polynomial time.

3 Energy Minimization using Graph Cuts

In this section we will give a brief overview of graph cuts and show how they
can used to minimize energy functions such as the one defined in equation (3).

3.1 The st-Minimum Cut Problem

Consider a weighted graph G(V, E) with two special nodes, namely the source
s and the sink t, collectively referred to as the terminals. A cut is a partition
of the node set V of a graph G into two parts S and S = V −S, and is defined
by the set of edges (i, j) such that i ∈ S and j ∈ S. The cost of a cut (S, S)
is equal to:

C(S, S) =
∑

(i,j)∈E;i∈S;j∈S

(cij) (13)

where cij is the cost associated with the edge (i, j). The st-mincut problem
involves finding a cut in the graph with the smallest cost satisfying the prop-
erties s ∈ S and t ∈ S.

By the Ford-Fulkerson theorem [10], the st-mincut problem is equivalent to
computing the maximum flow from the source to the sink with the capacity of
each edge equal to cij. While passing flow through the network, a number of
edges of the graph become saturated. When the maximum amount of flow is
being passed in the network, there remains no path from the source to the sink
that does not have a saturated edge. In effect, these saturated edges separate
the source from the sink and thus by the Ford-Fulkerson theorem, constitute
the minimum cost st-cut (st-mincut).

7



Fig. 1. Illustrating the flow potentials of graph nodes. (1) The figure shows a directed
graph having seven nodes, two of which are the terminal nodes, the source s and the
sink t. The number associated with each directed edge in this graph is a capacity
which tells us the maximum amount of flow that can be passed through it in the
direction of the arrow. The flow potentials for node 4 in this graph when no flow is
passing through any of the edges are fs

4 = 2 and f t
4 = 11 (see graphs (2) and (3) ).

3.1.1 Computing the Maximum Flow

The Max-flow problem for a capacitated network G(V,E) with a non-negative
capacity cij associated with each edge is that of finding the maximum flow f
from the source node s to the sink node t subject to the edge capacity and
flow balance constraints:

0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (14)

∑

i∈N(v)

(fvi − fiv) = 0 ∀v ∈ V − {s, t} (15)

where fij is the flow from node i to node j, and N(v) is the neighbourhood of
node v.

3.1.2 Augmenting Paths, Residual Graphs and Flow Potentials

Given any flow fij, the residual capacity rij of an edge (i, j) ∈ E is the
maximum additional flow that can be sent from node i to node j using the
edges (i, j) and (j, i). A residual graph G(f) of the graph G consists of the
node set V and the edges with positive residual capacity (with respect to
the flow f). An augmenting path is a path from the source to the sink along
unsaturated edges of the residual graph.

We define the source/sink flow potential of a graph node v ∈ V as the maxi-
mum amount of net flow that can be pumped into/from it without invalidating
any edge capacity (14) or mass balance (15) constraints with the exception of
the mass balance constraint of the node v itself. Formally, we can define the

8



source flow potential of node v as:

f s
v = max

f

∑

i∈N(v)

fiv − fvi

subject to:
0 ≤ fij ≤ cij ∀(i, j) ∈ E, and (16)∑

i∈ N(j)\{s,t}
(fji − fij) = fsj − fjt ∀j ∈ V \{s, t, v} (17)

where maxf represents the maximization over the set of all edge flows

f = {fij, ∀(i, j) ∈ E}. (18)

Similarly, the sink flow potential f t
v of a graph node v is defined as:

f s
v = max

f

∑

i∈N(v)

fvi − fiv (19)

subject to constraints (16) and (17).

The computation of a flow potential of a node is not a trivial process and
in essence requires a graph cut to be computed as explained in figure 3. The
flow potentials of a particular graph node are shown in figure 1. Note that
in a residual graph G(fmax) where fmax is the maximum flow, all nodes on
the sink side of the st-mincut are disconnected from the source and thus have
the source flow potential equal to zero. Similarly, all nodes belonging to the
source have the sink flow potential equal to zero. We will later show that the
flow-potentials we have just defined are intimately linked to the min-marginal
energies of latent variable label assignments.

3.2 Submodular functions and Energy Minimization

Submodular set functions play an important role in energy minimization [2].
The key property that makes them special is the fact that they can be min-
imized in polynomial time [15]. In fact some submodular functions can be
minimized by solving an st-mincut problem. Functions of binary random vari-
ables can be seen as set functions. A function f(x1, x2) of two binary random
variables {x1, x2} is submodular if and only if:

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) (20)

A function f : Bn → R is submodular if and only if all its projections on 2
variables are submodular [2,20].

The basic procedure for energy minimization using graph cuts comprises of
building a graph in which each cut defines a configuration x, and the cost

9



Fig. 2. Energy minimization using graph cuts. The figure shows how individual unary
and pairwise terms of an energy function taking two binary variables are represented
and combined in the graph. The cost of a st-cut in the final graph is equal to the
energy E(x) of the configuration x the cut induces. The minimum cost st-cut induces
the least energy configuration x for the energy function.

of the cut is equal to the energy value associated with x i.e. E(x|θ). The
minimum cost configuration can be computed by finding the st-mincut in this
graph. The st-mincut can be computed in polynomial time if the costs of all
edges in the graph are non-negative. This condition restricts the class of energy
functions which can be minimized using polynomial time algorithms for the
st-mincut problem.

Kolmogorov and Zabih [4] showed that submodular functions of binary vari-
ables which are defined over cliques of size 3 or less can be minimized in this
manner. They also described how to construct the graph for this particular
class of energy functions. Freedman and Drineas [11] added to this result by
characterizing a class of functions involving higher order cliques whose mini-
mization can be translated to a st-mincut problem. Some classes of multi label
functions which can be minimized exactly by solving a st-mincut problem have
also been characterized independently by [9,14,23].

We will now briefly discuss the method for minimizing binary submodular

10



functions. The minimization procedure works by decomposing the mrf energy
function (3) into unary and pairwise energy terms. The energy in this form
can be written as:

E(x|θ) = θconst +
∑

v∈V,i∈Xv

θv;iδi(xv)+
∑

(s,t)∈E,(j,k)∈(Xs,Xt)

θst;jkδj(xs)δk(xt), (21)

where θv;i is the penalty for assigning label i to latent variable Xv, θst;ij is the
penalty for assigning labels i and j to the latent variables Xs and Xt, and
each δj(xs) is an indicator function which is defined as:

δj(xs) =





1 if xs = j, wherej ∈ Xs

0 otherwise
,

These energy terms are represented by weighted edges in the graph. Multi-
ple edges between the same nodes are merged into a single edge by adding
their weights. Finally, the st-mincut is found in this graph, which provides us
with the map solution. The cost of this cut corresponds to the energy of the
map solution. The labelling of a latent variable depends on the terminal it is
disconnected from by the minimum cut. If the node is disconnected from the
source, we assign it the value zero and one otherwise. The graph construction
for a two node mrf is shown in figure 2.

4 Computing Min-marginals using Graph Cuts

We now explain the procedure for the computation of min-marginal energies
using graph cuts. The total flow ftotal flowing from the source s to the sink t
in a graph can be found by computing the difference between the total amount
of flow coming in to a terminal node and that going out, or more formally:

ftotal =
∑

i∈N(s)

(fsi − fis) =
∑

i∈N(t)

(fit − fti). (22)

The cost of the st-mincut in an energy representing graph is equal to the
energy of the optimal configuration. From the Ford-Fulkerson theorem, this is
also equal to the maximum amount of flow fmax that can be transferred from
the source to the sink. Hence, from the minimum energy (4) and total flow
(22) equations for a graph in which maxflow has been achieved i.e. ftotal =
fmax, we obtain:

ψ(θ) = min
x∈X

E(x|θ) = fmax =
∑

i∈N(s)

(fsi − fis). (23)

11



Note that flow cannot be pushed into the source i.e. fis = 0,∀i ∈ V , thus
ψ(θ) =

∑
i∈N(s) fsi. The map configuration x∗ of a mrf is the one having the

least energy and is defined as x∗ = arg minx∈X E(x|θ).

Let a be the label for random variable Xv under the map solution and b be
any label other than a. Then in the case of the assignment xv = a, the min-
marginal energy ψv;x∗v(θ) is equal to the minimum energy i.e. E(x|θ) = ψ(θ).
Thus it can be seen that the maximum flow equals the min-marginals for the
case when the latent variables take their respective map labels.

The min-marginal energy ψv;b(θ) corresponding to the non-optimal label b can
be computed by finding the minimum value of the energy function projection
E
′
obtained by enforcing the constraint xv = b as:

ψv;b(θ) = min
x∈X ,xv=b

E(x|θ) (24)

or, ψv;b(θ) = min
(x−xv)∈(X−Xv)

E(x1, .., b, xv+1..xn|θ). (25)

In the next subsection, we will show that this constraint can be enforced in the
original graph construction used for minimizing E(x|θ) by modifying certain
edge weights. These changes to the graph ensure that the latent variable Xv

takes the label b. The exact modifications needed in the graph for the case
of binary labels are given first while those required in the case of multi-label
functions are discussed later.

4.1 Min-marginals and Flow potentials

We now show how in the case of binary variables, flow-potentials in the residual
graph G(fmax) are related to the min-marginal energy values. Again, a and b
are used to represent the map and non-map labels respectively.

Theorem 1 The min-marginal energies of a binary latent variable Xv are
equal to the sum of the maximum flow and the source/sink flow potentials
of the node representing it in the residual graph G(fmax) resulting from the
max-flow solution i.e.

ψv;j(θ) = min
x∈X ,xv=j

E(x|θ) = ψ(θ) + fT (j)
v = fmax + fT (j)

v (26)

where T (j) is the terminal node representing label j, and fmax is the value of
the maximum flow in the graph G representing the energy function E(x|θ).

Proof The proof is trivial for the case when the latent variable takes the
optimal label. We already know that the value of the min-marginal ψv;a(θ) is
equal to the lowest energy ψ(θ). Further, the flow potential of the node for

12



Fig. 3. Computing min-marginals using graph cuts. In (a) we see the graph repre-
senting the original energy function. This is used to compute the minimum value
of the energy ψ(θ) which is equal to the max-flow fmax = 8. The residual graph
obtained after the computation of max-flow is shown in (b). In (c) we show how the
flow-potential fs

5 can be computed in the residual graph by adding an infinite capac-
ity edge between it and the sink and computing the max-flow again. The addition
of this new edge constrains node 5 to belong to sink side of the st-cut. A max-flow
computation in the graph (c) yields f s

5 = 4. From theorem 1, we obtain the min–
marginal ψ5;z = 8 + 4 = 12 for variable 5 taking label z. Label z is represented by
the source in this construction, i.e. T(z) = source(s). The dotted arrows in (b) and
(c) correspond to edges in the residual graph whose residual capacities are due to
flow passing through the edges in their opposite direction.

the terminal corresponding to the label assignment xv = a is zero since the
node is disconnected from the terminal T (a) by the minimum cost st-cut 4 .

We now address the case of the label assignment xv = b. We already know from
(25) that the min-marginal ψv;b(θ) corresponding to the non-optimal label b
can be computed by finding the minimum value of the function E under the
constraint xv = b. This constraint can be enforced in our original graph (used
for minimizing E(x|θ)) by adding an edge with infinite weight between node
v and the terminal corresponding to the label a, and then computing the
st-mincut in this updated graph 5 .

Adding an infinite weight edge between the node and the terminal T (a) is
equivalent to putting a hard constraint on the variable Xv to have the label

4 The amount of flow that can be transferred from the node to the terminal T (a) in
the residual graph is zero since otherwise it would contradict our assumption that
the max-flow solution has been achieved.
5 In section 4.3 we shall explain how to solve the new st-mincut problem efficiently
using the dynamic graph cut algorithm proposed in [16].
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b 6 . It can be easily seen that the additional amount of flow that would now
flow from the source to the sink is equal to the flow potential fT (b)

v of the
node. Thus the value of the max-flow now becomes equal to ψ(θ) + fT (b)

v

where T (b) is the terminal corresponding to the label b. The whole process is
shown graphically in figure 3.

We have shown how minimizing an energy function with constraints on the
value of a latent variable, is equivalent to computing the flow potentials of a
node in the residual graph G(fmax). Note that a similar procedure can be used
to compute the min-marginal ψuv;ij(θ) by taking the projection and enforcing
hard constraints on pairs of latent variables.

4.2 Extension to Multiple labels

As discussed earlier, graph cuts can also be used to minimize some energy
functions where the size of the label set is more than 2 [14,23]. We refer to
these functions as multi-label functions. Graphs representing the projections
of such energy functions can be obtained by incorporating hard constraints in
a fashion analogous to the one used for binary variables.

Ishikawa [14] proposed a graph construction to minimize multi-label functions
with convex pairwise terms. In this construction, the map label of a variable
is found by observing which data edge is cut. The value of a variable can be
constrained or ‘fixed’ in this framework by making sure that the data edge
corresponding to a particular label is cut. This can be enforced by adding edges
of infinite capacity from the source and the sink to the tail and head node of
the edge respectively as shown in figure 4. The cost of the st-mincut in this
modified graph will give the exact value of the min-marginal energy associated
with that particular labelling. It should be noted here that the method of
Ishikawa [14] applies to a restricted class of energy functions. These do not
include energies with non-convex priors (such at the Potts model) which are
used in many computer vision applications. Measuring uncertainty in solutions
of such energies is thus still an open problem.

4.3 Minimizing Energy Function Projections using Dynamic Graph Cuts

Having shown how min-marginals can be computed using graph cuts, we now
explain how this can be done efficiently. As explained in the proof of Theo-

6 The addition of an infinite weight edge can be realized by using an edge whose
weight is more than the sum of all other edges incident on the node. This condition
would make sure that the edge is not saturated during the max-flow computation.
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Fig. 4. Graph construction for projections of energy functions involving multiple
labels. The first graph G shows the graph construction proposed by Ishikawa [14] for
minimizing energy functions representing mrfs involving latent variables which can
take more than 2 labels. All the label sets Xv, v ∈ V consist of 4 labels namely l1,
l2, l3 and l4. The map configuration of the mrf induced by the st-mincut is found
by observing which data edges are cut (data edges are depicted as black arrows).
Four of them are in the cut here (as seen in graph G), representing the assignments
x1 = l2, x2 = l3, x3 = l3, and x4 = l4. The graph G′ representing the projection
E′ = E(x1, x2, x3, l2) can be obtained by inserting infinite capacity edges from the
source and the sink to the tail and head node respectively of the edge representing
the label l2 for latent variable X4.

rem 1, we can compute min-marginals by minimizing projections of the energy
function. It might be thought that such a process is extremely computationally
expensive as a graph cut has to be computed for every min-marginal compu-
tation. We observed that when modifying the graph in order to minimize the
projection E

′
of the energy function, the weights of only a few edges have to

be changed 7 . This is illustrated in figure 3, where only one infinite capacity
edge had to inserted in the graph. We have shown in [16] how the st-mincut
can be recomputed rapidly for such minimal changes in the problem using the
dynamic graph cut algorithm. Our proposed algorithm is given in Table 1. It
should be noted that in the case of binary variables, the partially dynamic
algorithm proposed in [3] can be used for efficient min-marginal computation
since only the weights of t-edges in the graph have changed. However, this
is not advisable since the method of [3] does not reuse search trees. In prob-
lems where only a few changes have been made to the graph, as in the case
of min-marginal computation, the reuse of search trees results in much faster
computation. This speed-up increases with an increase in the size of the graph.

7 The exact number of edge weights that have to be changed is of the order of the
number of variables whose value is being fixed for obtaining the projection.
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Initialization

(1) Construct graph G for minimizing the mrf energy E.

(2) Compute the maximum s-t flow in the graph. This induces
the residual graph Gr consisting of unsaturated edges.

Computing Min-marginal energies

(3) For computing each min-marginal, perform the following op-
erations:

(a) Obtain the energy projection E′ corresponding to the la-
tent variable assignment. Let G′ denote the graph used
for minimizing E′.

(b) Use dynamic graph cut updates as given in [16] to make
Gr consistent with G′, thus obtaining the new graph G

′
r.

(c) Compute the min-marginal by minimizing E′ using the
optimized dynamic st-mincut algorithm (which reuses
search trees) on G

′
r.

Table 1
Algorithm for computing min-marginal energies using dynamic graph cuts.

Please refer to [18] for a detailed discussion on the relative effect of reusing
flow and reusing search trees on the max-flow re-computation time.

4.4 Limitations

The method proposed in this paper has the limitation that it can only be
used to compute min-marginals for mrfs which are characterized by a graph
representable energy function 8 . In their recent work on computing optical
flow, Glocker et al.[13] proposed a method which can be used to compute min-
marginals in non-submodular mrfs. However, their method was only able to
produce approximate min-marginals unlike the exact min-marginals generated
by our method.

4.5 Algorithmic Complexity and Experimental Evaluation

We now discuss the computational complexity of our algorithm, and report
the time taken by it to compute min-marginals in random fields of different
sizes.

8 All quadratic submodular pseudo-boolean functions are graph representable i.e.
they can be minimized by solving a st-mincut problem.
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Variables 105 2× 105 4× 105 8× 105

4-neighbour 1.8×104, 0.70 0.9×105, 1.34 3.7×105, 3.15 1.7×106, 8.21

8-neighbour 4.0×104, 1.53 2.8×105, 3.59 9.7×105, 8.50 4.1×106, 15.61
Table 2
Time taken for min-marginal computation. For a sequence of randomly generated
MRFs of a particular size and neighbourhood system, a pair of times (in seconds)
is given in each cell of the table. On the left is the total time taken to compute
the min-marginals corresponding to all latent variable label assignments using the
naive method of minimizing each energy function projection from scratch. The cor-
responding time taken by our dynamic graph cuts based method is on the right. The
dynamic algorithm with tree-recycling was used for this experiment [16].

LetQ denote the set of all label assignments whose corresponding min-marginals
have to be computed. Let us assume that the weights of all edges in the graph
are integers 9 . In step 3(c) of the algorithm given in Table 1, the amount of flow
computed is equal to the difference in the min-marginal ψv;j(θ) of the particu-
lar label assignment and the minimum energy ψ(θ). As each augmenting path
increases the amount of flow by atleast one unit, the number of augmenting
paths that can be found in the graph during the whole algorithm is bounded
from above by:

U = ψ(θ) +
∑

q∈Q
(ψq(θ)− ψ(θ)). (27)

If we want to compute all min-marginals of a mrf involving binary random
variables i.e.

Q = {(u; i) : u ∈ V, i ∈ Xv}, and (28)

qmax = max
q∈Q

(ψq(θ)− ψ(θ)), (29)

the complexity of the above algorithm becomes O((ψ(θ) + nqmax)T (n,m)),
where T (n,m) is the complexity of finding an augmenting path in the graph
with n nodes and m edges and pushing flow through it. Although the worst
case complexity T (n,m) of the augmentation operation is O(m), we observe
experimentally that using the dual search tree algorithm of [4], we can get a
much better amortized time performance. The average running times of our
algorithm for computing the min-marginals in some randomly generated mrfs
of different sizes are given in Table 2. From the results, it can be seen that
the time taken by our dynamic graph cuts based algorithm for computing
all the min-marginals is substantially less than taken by the naive method of
minimizing each energy function projection from scratch.

9 If this is not the case, we can scale the weights of edges to make them integers.
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(a) (b) (c)

Fig. 5. Image Denoising. (a) Original noise free image. (b) Noisy image. (c) Result
of solving the crf used for modelling the image denoising problem [21].

5 Applications of Min-marginals

Prior to our work, min-marginals have been rarely used in computer vision.
This was primarily due to the fact that it is computationally expensive to
compute min-marginals in mrfs having a large number of latent variables.
Our new algorithm is able to handle large mrfs which opens up possibilities
for many new applications. For instance, the mrf for the image segmentation
experiment (see figure 7) had 2× 105 binary latent variables. The time taken
by our algorithm for computing all min-marginals in this mrf was 1.2 seconds.
This is roughly four times the time taken for computing the map solution in
the same mrf by solving a single st-mincut problem.

One of the motivations of our work was to obtain an uncertainty measure
associated with the solutions of an energy minimization problem. Such uncer-
tainty measures have been shown to be useful for solving a number of computer
vision [12,13,25,26] and machine learning [8] problems. Min-marginals natu-
rally encode the uncertainty of a labeling and their use has been successfully
demonstrated in a number of problems[8,12,13]. In the next subsection, we
provide another promising application of min-marginals.

5.1 Parameter Learning using Min-Marginals

Learning the parameters of a mrf (or crf) from labelled training data is an
important and challenging problem. The maximum likelihood (ml) estimation
of parameters requires computing the partition function of the mrf. This
operation is computationally intractable for general mrfs 10 .

10 A feasible alternative is to use the pseudolikelihood method [1] which has been
shown to produce decent results.
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Fig. 6. Comparing exact normalized max-marginals computed using our method with
pseudo marginals obtained from lbp. The figure shows the pseudo marginal and nor-
malized max-marginals for the binary image denoising problem under gaussian (row
1) and bimodal (row 2) noise models. The images in the first column show the
pseudo marginals for all pixels to be assigned label ‘foreground’. Brighter pixels are
more likely to be labelled foreground. The images in column 2 show the normalized
max-marginal for pixels being assigned label ‘foreground’. The images in column 3
show the magnitude of the differences between the values of pseudo-marginals and
normalized max-marginals. From the difference images, it can be seen that normal-
ized max-marginals computed by our method are quite close to the pseudo-marginals
obtained from LBP.

Recently Kumar et al. [21] proposed an efficient method to learn the maxi-
mum likelihood parameter values of random fields. Their method comprised of
approximating the gradients of the log likelihood function using an estimate
of the marginals. They used their algorithm for learning the parameters of
the mrf used for modelling the binary image denoising problem (see figure 5)
In this section, we investigate the use of normalized max-marginals (σ) com-
puted using our algorithm, in the parameter learning framework of [21]. First,
we will briefly review the approximations used in [21] and then provide the
results of using normalized max-marginals for learning the parameters of the
crf used for modelling the binary image denoising problem.

Let ym and xm, m = 1...M denote the observed data and labellings constitut-
ing the training set. The maximum likelihood estimates of the crf parame-
ters θ can be found by maximizing the joint distribution P (x,y; θ). Assuming
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Inference Method MAP MPM Learning Time (Sec)

PMA 2.73 2.51 1183

SPA 2.49 7.64 82

MMA 34.34 2.96 636

PMA-MM 2.80 2.48 1054
Table 3
Pixelwise classification errors (%) of parameters learned using various approxima-
tions to the gradient of the partition function.

P (y; θ) to be constant this can be done by maximizing the log likelihood

l(θ) =
M∑

m=1

log P (xm|ym, θ). (30)

using gradient ascent. The derivatives of the log likelihood are a function of
the expectations 〈xi〉θ;ym . If we have the true marginal distributions P (xi|y, θ)
we can compute the exact expectations. For instance, if we know the marginal
Pi(xi|yi, θ) of the random variable Xi, the expectation 〈xi〉θ;ym under y and θ
can be computed as

〈xi〉θ;ym =
∑
xi

xiPi(xi|yi, θ). (31)

Since computing the exact marginals in a general mrf is infeasible, the exact
values of the expectations cannot be computed. Kumar et al. [21] proposed a
number of approximations for the expectation which we explain below.

(1) Pseudo Marginal Approximation (pma): Pseudo-marginals obtained
from loopy belief propagation are used instead of the true marginals for
computing the expectations.

(2) Saddle Point Approximation (spa): The label of the random variable
in the map solution is taken as the expected value. This is equivalent to
assuming that all the mass of the distribution Pi(xi|yi, θ) is on the map
label.

(3) Maximum Marginal Approximation (mma): In this approximation
the label having the maximum value under the marginal distribution is
assumed to be the expected value.

We replace the pseudo-marginals in the pma approximation with the normal-
ized max-marginals obtained from our method. We will refer to this approx-
imation as pma-mm. The exact normalized max-marginals computed using
our method and the pseudo marginals obtained from lbp in the crf used for
modelling the image denoising problem are compared in figure 6. Quantitative
results comparing the performance of pma-mm with that of other approxima-
tions are shown in table 3.

The purpose of these experiments was to demonstrate the use of min-marginals

20



Fig. 7. Image segmentation with max-marginal probabilities. The first image is a
frame of the movie Run Lola Run. The second shows the binary foreground-back-
ground segmentation where the aim was to segment out the human. The third and
fourth images shows the confidence values obtained by our algorithm for assigning
pixels to be foreground and background respectively. In the image, the max-marginal
probability is represented in terms of decreasing intensity of the pixel. Our algorithm
took 1.2 seconds for computing the max-marginal probabilities for each latent vari-
able label assignment. The time taken to compute the map solution was 0.3 seconds.

in parameter learning by comparing their performance with that obtained us-
ing pseudo-marginals obtained by loopy belief propagation. We can see that
for maximum posterior marginal (mpm) inference, the pma-mm approxima-
tion yields the parameter estimates with the lowest error. That said, the dif-
ference between the accuracy of pma-mm and pma is small and there is no
clear winner. However, the results do confirm that pma-mm is a competitive
approximation and should be investigated further.

5.2 Min-marginals as a confidence measure

We had shown in section 2 how min-marginals can be used to compute a
confidence measure for any latent variable assignment in a mrf. Figure 7
shows the confidence values obtained for the mrf used for modeling the two
label (foreground and background) image-segmentation problem as defined
in [3]. Such confidence maps can be used for many vision applications. For
instance, they could be used in interactive image segmentation to direct user
interaction.
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The result shown in figure 7 contains segmentation errors with both low and
high uncertainty. The pixel labelling errors with low uncertainty (or high con-
fidence) generally occur because the colour of the pixel was present in the
appearance model of the incorrect segment label. On the other hand errors
with higher uncertainty (or low confidence) appear because either the colour
of the pixel was not modeled in the appearance model of any of the segments,
or it was modeled in the appearance models of both segments. The confidence
maps generated by our algorithm can help users isolate colours which lead to
uncertain labellings. This knowledge can be exploited by users to build more
accurate colour models for the different segments.

The confidence maps can also be used for many other applications. For in-
stance, they can be used in coarse-to-fine techniques for efficient computation
of low level vision problems. Here confidence maps could be used to isolate
variables which have low confidence in the optimal label assignment. These
variables can be solved at higher resolution to get a better solution. Another
interesting application for min-marginals has been recently proposed in [13].

6 Discussion and Conclusions

In this paper we addressed the problem of computing the exact min-marginals
for graphs of arbitrary topology in polynomial time. We proposed a novel
algorithm based on dynamic graph cuts [16] that computes the min-marginals
extremely efficiently. Our algorithm makes it feasible to compute exact min-
marginals for mrfs with large number of latent variables. This opens up many
new applications for min-marginals which were not feasible earlier. We have
presented one such application in the form of parameter learning in mrfs used
for modelling labelling problems such as image denoising.
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