
 
 

 
 

RADAR 

w
w

w
.b

ro
ok

es
.a

c.
uk

/g
o/

ra
da

r 

 

Oxford Brookes University – Research Archive and 
Digital Asset Repository (RADAR) 

 

 

 
 
 
 
 
 
 
 

Directorate of Learning Resources  

 
 

 
 
Venables, M 

Training with low muscle glycogen enhances fat metabolism in well‐trained cyclists. 
 
Hulston, C, Venables, M, Mann, C, Martin, C, Philip, A, Barr, K and Jeukendrup, A (2010) 
Training with low muscle glycogen enhances fat metabolism in well‐trained cyclists. Medicine 
& science in sports & exercise, 42 (11). pp. 2046 ‐ 2055.  
 
Doi: 10.1249/MSS.0b013e3181dd5070 
 
 
This version is available: http://radar.brookes.ac.uk/radar/items/9b210dca‐0ba4‐8e61‐4073‐1e85b9f9aa7b/1/
 
See end of paper for tables 
 
Available in the RADAR: October 2011 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be 
downloaded for personal non‐commercial research or study, without prior permission or charge. This item cannot 
be reproduced or quoted extensively from without first obtaining permission in writing from the copyright 
holder(s). The content must not be changed in any way or sold commercially in any format or medium without the 
formal permission of the copyright holders.  
 
This document is the postprint  versionof the journal article. Some differences between the published version and 
this version may remain and you are advised to consult the published version if you wish to cite from it.  
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/220157059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://radar.brookes.ac.uk/radar/items/9b210dca-0ba4-8e61-4073-1e85b9f9aa7b/1/


1 

            

Training with low muscle glycogen enhances fat metabolism 

in well-trained cyclists   

 

Carl J. Hulston1*, Michelle C. Venables4, Chris H. Mann2, Cara Martin3, Andrew 

Philp3#, Keith Baar3# and Asker E. Jeukendrup1 

 

1School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK. 
2Department of Fetal Medicine, Division of Reproduction and Child Health, 
Birmingham Women's Hospital, Birmingham, UK. 
 3Functional Molecular Biology Laboratory, Division of Molecular Physiology, 
School of Life Sciences, University of Dundee, Dundee, UK. 
4Functional Food Centre, School of Life Sciences, Oxford Brookes University, 
Oxford, UK. 
*Current address: Copenhagen Muscle Research Centre, Rigshospitalet, Section 
7652, Copenhagen, Denmark.   
#Current address: Functional Molecular Biology laboratory, University of California, 
Davis, CA, USA. 
 
Running title:  Training with low muscle glycogen 
 
Disclosure of funding 
Supported by a research grant of GlaxoSmithKline, Nutritional Healthcare, R&D.  
Work in the Functional Molecular Biology Laboratory was supported by a grant from 
the Wellcome Trust (077426).   
 
 
Address for correspondence: 
Professor Asker E. Jeukendrup, PhD 
School of Sport and Exercise Sciences 
University of Birmingham 
Edgbaston 
Birmingham 
B15 2TT 
Tel: +44(0) 121 414 4124 
Fax: +44(0) 121 414 4121 
Mob: +44(0) 778 926 0975 
Email: a.e.jeukendrup@bham.ac.uk
 
 
 
 

mailto:a.e.jeukendrup@bham.ac.uk


2 

Abstract 

Purpose:  To determine the effects of training with low muscle glycogen on exercise 

performance, substrate metabolism, and skeletal muscle adaptation.  Methods:  

Fourteen well-trained cyclists were pair-matched and randomly assigned to HIGH or 

LOW-glycogen training groups.  Subjects performed 9 aerobic training (AT; 90 min 

at 70% VO2max) and 9 high-intensity interval-training sessions (HIT; 8 x 5 min 

efforts, 1 min recovery) during a 3-wk period.  HIGH trained once daily, alternating 

between AT on day 1 and HIT the following day, whereas LOW trained twice every 

second day, firstly performing AT and then 1 h later performing HIT.  Pre and post-

training measures were a resting muscle biopsy, metabolic measures during steady 

state cycling (SS), and a time trial (TT).  Results:  Power output during HIT was 297 

± 8 W in LOW compared with 323 ± 9 W in HIGH (P<0.05), however, TT 

performance improved by ~10% in both groups (P<0.05).  Fat oxidation during SS 

increased after training in LOW (from 26±2 to 34±2 μmol/kg/min, P<0.01).  Plasma 

FFA oxidation was similar before and after training in both groups but muscle-derived 

triacylglycerol oxidation increased after training in LOW (from 16±1 to 23±1 

μmol/kg/min, P<0.05).  Training with low muscle glycogen also increased β-

hydroxyacyl-CoA-dehydrogenase protein content (P<0.01).  Conclusion:  Training 

with low muscle glycogen reduced training intensity and, in terms of performance, 

was no more effective than training with high muscle glycogen.  However, fat 

oxidation was increased after training with low muscle glycogen, which may have 

been due to enhanced metabolic adaptations in skeletal muscle.                                

 

Key words:  Training adaptation, skeletal muscle, substrate metabolism, exercise 

performance     
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Introduction 

Paragraph 1 

Carbohydrate (CHO), mainly muscle glycogen, is the predominant substrate utilized 

during prolonged exercise at intensities above 65% of maximal oxygen uptake 

(VO2max) (36, 43, 44), and glycogen depletion is closely linked with the development 

of fatigue.  Consuming a CHO-rich diet can increase muscle glycogen content (3, 14, 

23), delay the onset of fatigue (3), and maintain performance during periods of 

intensive training (1).  Therefore, endurance athletes consume large amounts of CHO 

in the belief that training longer and/or more intensely, as a result of increased 

glycogen availability, will promote superior training adaptations (15).                      

 

Paragraph 2 

Regular endurance training induces a number of adaptations that enhance 

performance, including an increase in VO2max and a shift in substrate metabolism 

from CHO to lipid oxidation (17, 27).  Such changes are largely the result of increased 

mitochondrial volume (20), increased capillary density (27), and greater activity of 

oxidative enzymes such as citrate synthase (CS) and β-hydroxyacyl-CoA 

dehydrogenase (β-HAD) (11, 27).  These adaptations occur as a result of an 

accumulation of specific proteins and thus altered gene expression is considered to be 

an important process underlying the adaptive response to endurance exercise (12).  

Interestingly, it appears that altered substrate availability might play a role in the 

regulation of exercise-induced gene expression.  For example, commencing an acute 

bout of endurance exercise with low muscle glycogen induces a greater increase in the 

transcriptional activity of several metabolic genes when compared to exercise 

performed with normal glycogen stores (10, 24, 33).   
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Paragraph 3 

Furthermore, Hansen et al. (12) reported that untrained subjects who completed 10 wk 

of aerobic training, 50% of which commenced with low muscle glycogen, had more 

pronounced increases in resting muscle glycogen content and CS activity when 

compared with the same volume of training performed with normal glycogen 

concentrations.  Training with low muscle glycogen also resulted in a twofold greater 

increase in exercise capacity (time to fatigue at 90% peak power output) when 

compared with the same volume of training undertaken with normal glycogen.  These 

findings demonstrate that under certain circumstances training with low muscle 

glycogen can be beneficial.  However, a number of details make it difficult to 

extrapolate these findings.  First, the subjects were untrained and it is not yet known if 

training with low muscle glycogen will translate into improved adaptations in already 

well-trained athletes.  Second, the subjects performed a fixed amount of work in each 

training bout even though higher glycogen stores would allow more exercise and/or 

higher intensities.  Third, the results are from single leg kicking exercise and not a 

competitive sport.  Considering these points, further research is clearly needed before 

glycogen depleted training can be recommended as a practical strategy to enhance 

training adaptations and performance in already well-trained athletes.   

 

Paragraph 4 

One recent study (49), using a similar training model to that of the Hansen study (i.e. 

training twice every second day vs. once daily), but in well-trained cyclists, found that 

self-selected training intensity was reduced when high-intensity interval training 

(HIT) commenced with low muscle glycogen.  However, after completing the training 
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period, time trial cycling performance was improved to a similar extent in high and 

low glycogen groups.  Another interesting observation was that training with low 

muscle glycogen resulted in higher rates of whole-body fat oxidation during exercise, 

whereas training with high muscle glycogen had no effect on substrate metabolism.  

The aim of the present study was twofold.  Firstly, we aimed to confirm the recent 

findings of Yeo et al. (49).  Secondly, using stable isotope tracers, we aimed to 

examine in greater detail the reported changes in substrate metabolism after training 

with low muscle glycogen.  Specifically, by infusing [U-13C]palmitate and [6,6-

2H2]glucose we were able to quantify plasma and muscle-derived CHO and fat 

oxidation and thus gain a better understanding of adaptations in substrate metabolism 

after training with low muscle glycogen.           
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Method 

Paragraph 5 

Subjects 

Fourteen endurance-trained male cyclists who had not undertaken any high-intensity 

interval training in the 4 wk prior to the investigation were recruited to participate in 

this study.  Subject characteristics can be seen in Table 1.  Subjects were informed of 

the potential risks involved with the experimental procedures before providing their 

written consent.  The study was approved by the Local Research Ethics Committee 

(Solihull REC, UK).                 

Insert Table 1 here 

Paragraph 6 

Preliminary testing 

Prior to baseline measurements, subjects visited the laboratory on two separate 

occasions.  During the first visit, subjects performed an incremental exercise test to 

exhaustion on an electromagnetically braked cycle ergometer (Lode Excalibur Sport, 

Groningen, The Netherlands) for determination of VO2max and maximum power 

output (Wmax).  The test began at 95 W, followed by 35 W increments every 3 min 

thereafter.  Gas exchange measurements were performed during the final min of each 

stage using traditional Douglas bag techniques, with VO2 and VCO2 calculated using 

conventional equations.  Approximately 3-5 days later, subjects returned to the 

laboratory, where they were infused with [1,2-13C]acetate during 60 min rest and 60 

min cycling at 70% VO2max.  Expired breath samples were collected every 15 min 

for measures of VO2, VCO2 and 13CO2 enrichment.  The acetate infusion was 

performed in order to determine an individual acetate recovery factor for each subject 

to correct [U-13C]palmitate oxidation rates for carbon label retention within the 
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bicarbonate pools and by way of isotopic exchange reactions within the tricarboxylic 

acid cycle (acetate recovery was on average 89%).  After 2 h of infusion, and on 

completion of the cycle task, the acetate infusion was stopped and subjects began a 60 

min time trial.  Subjects were later pair-matched for VO2max, Wmax, TT 

performance and training history, and randomly assigned to either HIGH or LOW-

glycogen training groups.                         

                            

Paragraph 7 

General experimental design 

The experiment consisted of three separate phases: 1) baseline measures, 2) a 3 wk 

training intervention, and 3) post-training measures.   

 

Paragraph 8 

Baseline measures 

Muscle biopsy 

A muscle biopsy (~80 mg) was obtained from the Vastus Lateralis under local 

anesthetic (2% lidocaine), using the percutaneous needle-biopsy technique (2) 

modified for use with suction (9).  Samples were immediately frozen in liquid 

nitrogen and stored at -80°C until later analysis.  All muscle biopsies were taken in 

the morning after an overnight fast, and 48 h after the last exercise bout to avoid the 

transient effect of exercise on transcriptional activity which can last up to 24 h (47).   

 

Paragraph 9 

Experimental trial     
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This experiment was performed at least 48 h after subjects underwent the muscle 

biopsy procedure to ensure that there would be no difficulties in completing the 

exercise task.  Subjects reported to the laboratory in the morning after an overnight 

fast.  Teflon catheters (Venflon, Becton Dickinson, Plymouth, UK) were inserted into 

the antecubital veins of each arm to allow stable isotope infusion and repeated blood 

sampling.  After baseline blood and expired breath samples were obtained subjects 

received a [6,6-2H2]glucose (priming dose 26 µmol/kg; continuous rate 0.7 

µmol/kg/min) and [U-13C]palmitate infusion (no prime; continuous rate 16.5 

nmol/kg/min) by means of calibrated syringe pump (Asena GS Syringe Pump, Alaris 

Medical Systems, Basingstoke, UK).  Subjects then rested in a semi-supine position 

for 60 min, allowing sufficient time for isotopic equilibrium to be reached, before 

commencing steady-state cycling for 60 min at 70% VO2max.  Blood and expired 

breath samples were collected at the end of the resting period and at 15-min intervals 

during exercise for determination of isotopic enrichments, metabolite concentrations, 

and measures of VO2 and VCO2.   

 

Paragraph 10 

On completion of the 60 min steady-state cycle test, the ergometer was adjusted to the 

cadence dependant (linear) mode and subjects completed a set amount of work (1017 

± 73 kJ) as fast as possible.  The total amount of work to be performed was calculated 

using the formula:   

 

Total work (J) = 0.75 x Wmax x 3600 s.   

 

Paragraph 11 
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The only information available to the subjects during the time trial was elapsed work 

and percentage of work performed (i.e. 0% at the start and 100% on completion).  No 

blood or respiratory measures were taken and every effort was made to minimize any 

possible distractions.  These are standard testing procedures used in our laboratory 

(7).   

 

Paragraph 12 

Training intervention  

Training consisted of 9 aerobic training (AT) and 9 high-intensity interval training 

(HIT) sessions spread over a 3 wk period.  All training sessions took place in the 

laboratory under the careful supervision of the experimenters.  AT was performed on 

an electromagnetically braked cycle ergometer (Lode Excalibur Sport, Groningen, 

The Netherlands) and consisted of 90 min continuous cycling at ~70% VO2max.  HIT 

was performed on the subjects’ own bicycle, attached to a stationary trainer, fitted 

with power measuring SRM-cranks (Schoberer Rad Messtechnik, Julich, Germany), 

and consisted of a 20 min warm-up followed by 8 x 5 min “all-out” efforts 

interspersed with 1 min of recovery.  The metabolic demands of this type of training 

have been reported elsewhere (43).  This setup, using a stationary trainer and the 

subjects’ own bicycle, was chosen for the self-paced HIT sessions because it enabled 

the subject to instantly adjust power output through changing gear and/or pedaling 

speed.  SRM cranks were factory calibrated prior to the start of the study, and the zero 

offset was checked on a daily basis according to the manufacturer instructions.   

 

Paragraph 13 
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In order to manipulate pre-exercise muscle glycogen content, each group trained 

according to different schedules.  HIGH trained once daily, alternating between AT 

on day 1 and HIT the following day, whereas LOW trained twice every second day, 

firstly performing AT and then 1 h later performing HIT.  All training sessions were 

performed in the morning after an overnight fast, and subjects continued to fast until 

the entire training session was completed.  Water intake was allowed during training 

sessions.  We did not take muscle biopsies to confirm muscle glycogen content, 

however, it was assumed that the long (20-24 h) recovery period in HIGH would 

allow adequate time for glycogen resynthesis between each training session 

(providing sufficient CHO intake), whereas the short (1 h) recovery period in LOW 

would ensure that HIT began with reduced muscle glycogen.  This assumption is 

confirmed by a recent study using exactly the same training intervention and a 

similarly trained population of elite male cyclists (48).  In that study, subjects training 

twice every second day began HIT with 50% less muscle glycogen than subjects 

training just once daily.  Self-selected power output during HIT was used as a 

measure of training intensity.                   

 

Paragraph 14 

Post-training measures 

The nature and timing of post-training measures was identical to that of baseline 

measures.  A muscle biopsy sample was obtained 48 h after the final training session, 

using the same leg as the baseline sample but separated by 3-5 cm from the first 

incision.  A further 48 h later, subjects performed a 60 min steady-state cycle test at 

the same absolute workload as baseline measures (i.e. ~70% of pre-training VO2max).  

This was immediately followed by a time trial designed to last ~60 min.                           
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Paragraph 15 

Diet control                  

The nutritional status of subjects was controlled for 24 h before the experimental 

measures (muscle biopsy, 60 min steady-state cycle test and time trial).  Subjects were 

provided with a standard diet consisting of 67.5% CHO (8 g/kg body mass), 13.5% 

protein and 19% fat.  Throughout the 3 wk training intervention subjects were asked 

to maintain a high CHO diet and were given detailed instructions on how to achieve 

this.                           

 

Paragraph 16 

Analyses 

Blood samples (10 mL) were collected into EDTA-containing tubes (Becton 

Dickinson, Plymouth, UK) and centrifuged at 3000 rpm for 10 min at 4ºC.  Aliquots 

of the plasma were immediately frozen in liquid nitrogen and stored at -80ºC until 

further analysis.  Plasma glucose (Glucose HK, ABX Diagnostics, UK) and free fatty 

acid (FFA) (NEFA-C Kit, Alpha Laboratories, UK) concentrations were analyzed 

using a semi-automatic analyser (Cobas Mira Plus, ABX, UK).  

 

Paragraph 17 

Expired breath samples were analyzed for 13C/12C ratio by gas chromatography 

continuous-flow isotope ratio mass spectrometry (GC-IRMS) (Trace GC Ultra; IRMS 

Delta Plus XP; both Thermo Finnigan, Herts, UK).  For determination of plasma 

palmitate kinetics, FFA were extracted from plasma, isolated by solid phase 

extraction, and derivatized to their methyl esters.  Palmitate concentration was 
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determined on an analytical GC equipped with flame ionization detection (FID), using 

heptadecanoic acid as the internal standard, and the tracer-to-tracee (TTR) ratio of [U-

13C]palmitate was determined using GC-combustion IRMS.  After derivatization with 

heptafluorobutyric acid, plasma enrichment was determined by electron ionization 

GC-mass spectrometry (GC, Agilent 6890N; MS, Agilent 5973N; both Agilent 

Technologies, Stockport, UK).   

 

Paragraph 18 

Glycogen content 

A section of muscle (~20 mg) was freeze dried and dissected free of connective tissue, 

blood and other non-muscle tissue.  Samples were then homogenized using pestle and 

mortar, and 500 µL of 1 M hydrochloric acid was added to 2-3 mg portions and 

heated at 100°C for 3 h.  After cooling to room temperature, samples were neutralized 

with 250 µl of a tris/KOH mixture (1.44 g tris and 12 g KOH in 100 mL of distilled 

water saturated with KCL), centrifuged at 3000 rpm for 10 min at a temperature of 

4ºC and the resulting supernatant analyzed enzymatically for glucose concentration 

(Glucose HK, ABX Diagnostics, UK).  Muscle glycogen concentrations were 

expressed as millimoles of glucosyl units per kg dry mass (mmol/kg dm).    

 

Paragraph 19 

Protein content 

Antibodies 

The following primary antibodies were used at a 1:1000 dilution.  Rabbit polyclonal 

fatty acid translocase CD36 (FAT/CD36, AbCam: ab36977), mouse monoclonal 

cytochrome c oxidase subunit 2 (COX2, Molecular Probes: A11142), subunit 5 
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(COX5, Molecular Probes: A21351), chicken polyclonal antibody recognizing β-

hydroxyacyl-CoA-dehydrogenase (β-HAD, AbCam: ab37673), rabbit polyclonal 

antibody recognizing eukaryotic elongation factor 2 (eEF2: Cell Signalling: #2332) 

and a mouse monoclonal antibody for GLUT4 (Santa Cruz Biotechnology: sc-53566).   

 

Paragraph 20 

Tissue preparation  

Muscle samples were powdered on dry-ice, weighed and aliquoted into 1.5 mL 

eppendorf tubes for subsequent analysis.  Approximately 30 mg of powdered tissue 

was added to 250 µL of lysis buffer (50 mM Tris pH 7.5; 250 mM Sucrose; 1 mM 

EDTA; 1 mM EGTA; 1% Triton X-100; 1 mM NaVO4; 50 mM NaF; 0.10% DTT; 

0.50% PIC).  The samples were mixed at 1200 rpm and 4ºC for 30 min and then 

homogenized on ice for ~30 sec at slow speed (Polytron), the lysate centrifuged for 5 

min at 12,000 rpm and the supernatant removed for protein determination.  Protein 

concentration was determined using the DC protein assay (BioRad).       

 

Paragraph 21 

Western Blot 

Equal aliquots of muscle protein were solubilised in Laemmli sample buffer (250 mM 

Tris-HCl, pH 6.8; 2% SDS; 10% glycerol; 0.01% bromophenol blue; 5% β-

mercaptoethanol), and the samples were boiled for 5 min and separated by SDS-

polyacrylamide gel electrophoresis (PAGE) on a 7.5 or 15% acrylamide gel.  

Following electrophoresis, proteins were transferred to a nitrocellulose membrane 

(Protran, Whatman, Dassel, Germany) at 100 V for 1 h.  The membrane was blocked 

for 1 h in 3% milk in Tris-buffered saline + 0.1% Tween (TBST).  Membranes were 
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incubated overnight at 4°C with appropriate primary antibody in TBST (1:1000 

dilutions).  The membrane was then washed 3 times in TBST before incubation for 1 

h at room temperature with peroxidase-conjugated IgG secondary antibody in TBST 

(1:10,000 dilution; Pierce, Rockford, IL).  Antibody binding was detected using 

enhanced chemiluminescence HRP substrate detection kit (Millipore, Billerica, MA) 

and imaging and band quantification were carried out using a ChemiGenius 

Bioimaging Gel Doc System (Syngene, Cambridge, UK). All individual pre and post 

samples were run on the same gel to minimize gel-to-gel variation whilst protein 

content was normalized to eEF2, which served as an internal control.    

 

Paragraph 22 

Calculations 

Rates of whole body CHO and fat oxidation were calculated using stoichiometric 

equations (22), with the assumption that protein oxidation was negligible:   

 

CHO oxidation (g/min) = 4.210 x VCO2 - 2.962 x VO2

Fat oxidation (g/min) = 1.695 x VO2 - 1.701 x VCO2

 

Rates of appearance (Ra) and disappearance (Rd) of glucose and palmitate were 

calculated using the single pool non-steady-state equations of Steele (39), modified 

for use with stable isotopes (46):    
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Where F is the infusion rate (µmol/kg/min); V is the volume of distribution for 

glucose or palmitate (0.16 and 0.04 L/kg, respectively); C1 and C2 are the plasma 

glucose or palmitate concentrations (μmol/L) at time points t1 and t2, respectively; and 

E1 and E2 are plasma glucose or palmitate enrichments (TTR) at time points t1 and t2, 

respectively.  13CO2 production (Pr13CO2; mol/min) from the infused palmitate was 

calculated as:   

 

Pr13CO2 = (TTRCO2 x VCO2)/(k x Ar) 

 

Where TTRCO2 is the breath 13C/12C ratio at a given time point; VCO2 is carbon 

dioxide production (L/min); k is the volume of 1 mol of CO2 (22.4 L/mol); and Ar is 

the fractional recovery of 13C label recovery in breath CO2 after infusion of labeled 

acetate, calculated as: 

 

Ar = [(TTRCO2 x VCO2)/(k x 2F)]   

 

Where F is infusion rate of [1,2-13C]acetate (mol/min).  Plasma palmitate oxidation 

(Rox; mol/min) can then be calculated as: 

 

Rox palmitate = Rd palmitate x (Pr13CO2/F x 16) 

 

Where Rd palmitate is the rate of disappearance of palmitate (mol/min); F is the 

palmitate infusion rate (mol/min); and 16 is the number of carbon atoms in palmitate.  

Total FFA oxidation was calculated by dividing plasma oxidation by the fractional 
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contribution of plasma palmitate to total plasma FFA concentration (plasma palmitate 

concentrations were on average 24% of total plasma FFA).  Muscle-derived 

triacylglycerol (TG) use was estimated by subtracting plasma FFA oxidation from 

total fat oxidation.  However, it should be mentioned that these stable isotope methods 

do not differentiate between muscle- and lipoprotein-derived TG use.  Nonetheless, 

these methods are routinely used to study exercise metabolism as the contribution of 

lipoprotein-derived TG oxidation to energy expenditure is assumed to be minimal.  Rd 

glucose was taken to represent plasma glucose oxidation because 100% of Rd glucose 

is oxidized during exercise (21).  Therefore, muscle glycogen oxidation was 

calculated by subtracting plasma glucose oxidation from total CHO oxidation.  

Calculations of tracer kinetics and substrate metabolism were performed over the final 

30 min of exercise (30 – 60 min period).       

 

Paragraph 23 

Statistical analysis 

All data were analyzed using a two-factor ANOVA, with one between subject factor 

(group; HIGH vs. LOW) and one within subject factor (time; pre-training vs. post-

training).  The level of significance was set at P < 0.05 and significant interactions 

were followed up with Tukey’s honestly significant difference post hoc test.  All data 

are presented as means ± standard error of the mean (means ± SE) unless otherwise 

stated.         
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Results    

Paragraph 24 

Performance data 

Self-selected training intensity  

HIT power output increased throughout the training period (main effect for time, P < 

0.001, Fig. 1).  Average power output was 323 ± 9 W in HIGH compared with 297 ± 

8 W in LOW (main effect for group, P < 0.05).  This represents 87 ± 1 and 78 ± 2% 

Wmax for HIGH and LOW groups, respectively.                 

Insert Fig 1 here 

Paragraph 25 

Time trial performance before and after training   

After training, mean power output during the time trial increased from 271 ± 13 to 

298 ± 13 W in HIGH and from 278 ± 11 to 307 ± 10 W in LOW (main effect for time, 

P < 0.001, Fig. 2).  Time taken to complete the task decreased from 62.10 ± 1.49 to 

56.37 ± 1.17 min in HIGH and from 61.90 ± 1.12 to 56.12 ± 1.22 min in LOW (main 

effect for time, P < 0.001).  Performance was enhanced by a similar extent in both 

groups (10.2% in HIGH and 10.5% in LOW).                        

Insert Fig 2 here 

Paragraph 26 

Cycling at 70% VO2max before and after training 

VO2, RER and whole body substrate metabolism  

Subjects cycled at the same absolute workload before and after training (241 ± 13 W 

in HIGH and 247 ± 16 W in LOW).  VO2 was unaffected by training (P > 0.05, Table 

2).  RER was unaffected by training in HIGH but decreased after training in LOW 

(group x time interaction, P < 0.001, Table 2).  Accordingly, there was a significant 



18 

decrease in the rate of CHO oxidation (from 220 ± 8 to 194 ± 10 μmol/kg/min) and a 

significant increase in the rate of fat oxidation (from 26 ± 2 to 34 ± 2 μmol/kg/min) 

after training in LOW (P < 0.01, Table 2).   

Insert Table 2 here 

Paragraph 27 

Tracer data 

Plasma glucose and palmitate kinetics are shown in Table 3 and rates of substrate 

oxidation are shown in Table 2.  Ra and Rd glucose were unaffected by training in 

HIGH but decreased after training in LOW (group x time interaction, P < 0.05, Table 

3).  Since Rd glucose represents plasma glucose oxidation, there was a significant 

decrease in plasma glucose oxidation (from 39 ± 3 to 33 ± 2 μmol/kg/min) after 

training in LOW (P < 0.05, Table 2).  Likewise, tracer estimated rates of muscle 

glycogen oxidation decreased significantly (from 181 ±´8 to 161 ± 9 μmol/kg/min) 

after training in LOW (P < 0.05, Table 2).  Ra and Rd palmitate increased after 

training (main effect for time, P < 0.05, Table 3), however, since Rox palmitate 

remained unchanged, %Rdox decreased after training (main effect for time, P < 0.05, 

Table 3).  Estimated rates of plasma FFA oxidation were unaffected by training 

(Table 2).   Oxidation of muscle-derived TG increased (from 16 ± 1 to 23 ± 1 

μmol/kg/min) after training in LOW only (group x time interaction, P < 0.05, Table 

2).                

Insert Table 3 here 

Paragraph 28 

Relative contribution of substrates to energy expenditure 

The relative contribution of fat to energy expenditure during exercise was unaffected 

by training in HIGH but increased significantly (from 32 ± 2 to 40 ± 2%) after 
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training in LOW (group x time interaction, P < 0.05, Fig. 3).  This increase was due to 

higher rates of muscle-derived TG oxidation (Table 2), which provided 20 ± 1% of 

energy expenditure before training and 28 ± 2% of energy expenditure after training 

(P < 0.05, Fig. 3).  The relative contribution of muscle glycogen to energy 

expenditure during exercise was unaffected by training in HIGH but decreased (from 

57 ± 2 to 50 ± 2%) after training in LOW (group x time interaction, P < 0.05, Fig. 3).  

In LOW there was also a small, non-significant, decrease in the contribution of 

plasma glucose (from 12 ± 1 to 10 ± 1%).       

Insert Fig 3 here 

Paragraph 29 

Skeletal muscle adaptations   

Muscle glycogen content   

Resting muscle glycogen content increased after training by 18 and 36% in HIGH and 

LOW, respectively, with no difference between groups (main effect for time, P < 

0.001, Fig. 4).                    

Insert Fig 4 here 

Paragraph 30 

Protein content   

COX2 and COX5 protein content was unaffected by training (P > 0.05, data not 

shown).  FAT/CD36 protein content increased after training (main effect for time, P < 

0.05, Fig. 5B), and tended to be more pronounced after training in LOW than HIGH 

(41.4 vs. 11.5%) but this was not significant.  β-HAD protein content increased by 

43% after training in LOW but decreased by 20% after training in HIGH (group x 

time interaction, P < 0.01, Fig. 5C). In contrast to the beneficial effect on proteins 

involved in fatty acid uptake and oxidation, the glucose transporter GLUT4 tended not 
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to increase as much in the LOW group (LOW = 7.1 ± 8.4% vs. HIGH = 20.6 ± 9.7%, 

Fig. 5A).  

Insert Fig 5 here 
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Discussion 

Paragraph 31 

This study determined the effects of training with low muscle glycogen on exercise 

performance, substrate metabolism, and molecular adaptations in skeletal muscle.  In 

order to manipulate muscle glycogen content each group trained according to different 

schedules.  HIGH trained once daily, alternating between AT on day 1 and HIT the 

following day, whereas LOW trained twice every second day, firstly performing AT 

and then 1 h later performing HIT.  We therefore assume that HIGH began all training 

sessions with normal glycogen stores, whereas LOW commenced HIT with reduced 

muscle glycogen (see method section for further details).   

 

Paragraph 32 

One of the main findings of the present study was that whole-body fat oxidation, 

during moderate-intensity exercise, was increased after training with low muscle 

glycogen (Table 2).  Similar findings have been reported recently elsewhere (49).  In 

that study, however, measures of substrate metabolism were limited to indirect 

calorimetry, whereas we also applied stable isotope tracers for a more detailed 

investigation of changes in substrate metabolism.  By infusing [U-13C]palmitate we 

were able to determine plasma palmitate kinetics, plasma FFA oxidation and muscle-

derived TG oxidation.  We found that plasma FFA oxidation was similar before and 

after training in both groups, but that muscle-derived TG oxidation was significantly 

increased after training with low muscle glycogen (Table 2 and Fig. 3).  There has 

been considerable debate regarding the role of muscle TG as a substrate during 

exercise (for reviews see (26, 45)).  However, using three different methodologies 

(stable isotopes, biochemical extraction and immunofluorescence microscopy), 
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Stellingwerff et al. (41) clearly demonstrated significant muscle TG use during 

prolonged sub-maximal exercise.  Endurance training has also been shown to increase 

muscle TG use during exercise in previously untrained men (32).  In the present 

study, training with high muscle glycogen did not increase TG utilization during 

exercise, suggesting that several years of endurance training had already maximized 

the capacity for muscle TG use in these subjects.  Therefore, it is interesting to find 

that training for just 3 weeks with low muscle glycogen can significantly increase 

muscle TG use in a group of similarly well-trained subjects.  There are several 

possible mechanisms for increased muscle TG oxidation during exercise, including: 

elevated pre-exercise muscle TG concentrations, increased hormone sensitive lipase 

(HSL) activity, and/or increased HSL migration to lipid droplets.   

 

Paragraph 33 

A [6,6-2H2]glucose tracer was also infused in order to estimate plasma glucose and 

muscle glycogen oxidation.  In the present study we have shown that the reduction in 

whole-body CHO oxidation during exercise, after training with low muscle glycogen, 

was due to reduced rates of muscle glycogenolysis, as the decrease in plasma glucose 

oxidation was only modest when compared to the decrease in muscle glycogen 

oxidation (Table 2 and Fig. 3).  This reduction in muscle glycogenolysis occurred 

despite higher resting muscle glycogen levels (Fig. 4).  Since substrate availability 

cannot explain the changes in CHO metabolism, we suggest that training with low 

muscle glycogen evokes chronic adaptations within the skeletal muscle that causes a 

down-regulation in muscle glycogenolysis.  A likely candidate for this down-

regulation is the pyruvate dehydrogenase (PDH) complex.  PDH catalyzes the 

conversion of pyruvate to acetyl-CoA and thus regulates the entry of CHO substrates 
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into the mitochondria (34).  Acute studies have shown that commencing endurance 

exercise with low muscle glycogen increases mRNA and protein content of pyruvate 

dehydrogenase kinase 4 (28, 33), an enzyme that phosphorylates and inactivates PDH.  

Training with reduced CHO availability may cause persistent decreases in PDH 

activity that reduces muscle glycogenolysis during exercise, as has been shown 

previously following high fat feeding in humans (42).           

 

Paragraph 34 

Changes in substrate selection could be the result of an increase in the capacity to 

oxidize fat, a decreased capacity to oxidize CHO, or a combination of both.  The 

current study suggests the latter possibility.  Fat oxidation during exercise can be 

regulated at several sites, including: adipose tissue lipolysis, delivery of fatty acids to 

the muscle, transport across the plasma membrane, lipolysis of muscle TG stores, 

transport within the cytosol, and transport into the mitochondria (for reviews see (26, 

38)).   Fatty acid transport is a highly regulated process involving several specialized 

proteins (4, 19, 31).  Unfortunately, we were unable to measures most of these 

proteins.  Nonetheless, we present data for FAT/CD36, which is known to play an 

important role in fatty acid transport across both the plasma and mitochondrial 

membranes (19) and contributes to the regulation of mitochondrial fatty acid 

oxidation (18).  In the present study, FAT/CD36 increased with training (Fig. 5B) and, 

although not statistically significant, this increase tended to be more pronounced after 

training with low muscle glycogen (41.4 vs. 11.5%), which may explain higher rates 

of fat oxidation during exercise.   

 

Paragraph 35 
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Fat oxidation is also regulated by the activity of mitochondrial enzymes such as β-

HAD (25).  We observed a 43% increase in β-HAD protein content after training with 

low muscle glycogen (Fig. 5C), which is consistent with the 27.7% increase in β-

HAD activity measured by Yeo et al. (49).  Studies have shown that β-HAD is highly 

sensitive to changes in substrate availability.  For example, Helge and Kiens (16) 

reported a 25% increase in β-HAD activity after 7 wk adaptation to a high fat diet 

(62% energy from fat).  This increase occurred irrespective of training and 

demonstrates that altered substrate availability (e.g. increased dietary fat) influences 

β-HAD activity.  Although no clear molecular mechanism has been identified, it is 

possible that the flux through β-oxidation plays an important role in the regulation of 

β-HAD content and activity.  We did not alter macronutrient intake; however, 

performing exercise in a glycogen depleted state increases circulating free fatty acids 

(40), and increasing the availability of free fatty acids is known to increase their 

oxidation during high-intensity exercise (37).  Therefore, it is reasonable to assume 

that rates of fat oxidation would have been elevated to a greater extent during training 

sessions performed with low muscle glycogen, and that this may have contributed to 

the changes in β-HAD content that we observed.   

 

Paragraph 36 

This study was the first to look at the effect of training with low muscle glycogen on 

the glucose transporter GLUT4.  GLUT4 is the rate-limiting enzyme in muscle 

glucose utilization (29) and GLUT4 levels increase with training in animals (35), and 

both disease-free and type II diabetic humans (8). Furthermore, GLUT4 is 

significantly higher in endurance athletes than sedentary controls (13). Consistent 

with these results, GLUT4 levels tended to increase in the HIGH group (20.6 ± 9.7%).  
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However, the change in GLUT4 levels tended to be smaller in the LOW group (7.1 ± 

8.4%).  Together with the β-HAD and FAT/CD36 data, this suggests that the capacity 

for fatty acid oxidation increased more in the LOW group and the capacity for CHO 

oxidation increased less resulting in the changes in substrate metabolism that we 

observed during steady-state exercise.  This also suggests that training with low 

muscle glycogen may be counterproductive for athletes who compete in high intensity 

events where CHO oxidation plays a significant role in performance, and that this 

type of training may be more suited to preparation for ultra-endurance activities.     

 

Paragraph 37 

Another major finding of the present study is that despite reduced power outputs 

during HIT (Fig. 1), training with low muscle glycogen enhanced time trial cycling 

performance by a similar amount to that of training with high muscle glycogen (Fig. 

2).  To date, only two previous studies have investigated the effect of training with 

low muscle glycogen (12, 49).  Hansen et al. (12) had untrained subjects perform 

single-leg knee extensor exercise (1 h at 75% maximal power output) for 10 weeks 

using a similar twice every second day (LOW) or once daily (HIGH) design.  Time to 

fatigue at 90% maximal power output increased after training in both legs; however, 

time to fatigue was greater in the LOW leg compared with the HIGH leg (19.7 ± 2.4 

vs. 11.9 ± 1.3 min).  In that study, untrained subjects performed a fixed (submaximal) 

amount of work in each training session, even though higher glycogen stores would 

normally allow for exercise at higher intensities and/or longer durations.  In the 

present study, well-trained cyclists worked at self-selected intensities, just as they 

would in their normal training sessions.  As expected, training with low muscle 

glycogen resulted in lower power outputs in HIT sessions.  The finding that time trial 
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performance was still improved by a similar extent in both groups after the 3 wk 

training period is in direct agreement with the recent work of Yeo et al. (49), and 

suggests that the amount of work performed during training may not be critical.  In 

this regard, we suggest that the additional “stress” of training with low glycogen 

compensates for a slight reduction in physical performance during training.  

Nonetheless, under the specific test conditions of the present study, training with low 

muscle glycogen did not translate into better performance and does not appear to offer 

a worthwhile benefit for already well-trained athletes.  Whether the increased capacity 

for fat oxidation translates into better performance during a longer duration test of 

exercise performance or following a longer period of adaptation remains to be seen.         

 

Paragraph 38 

An important practical question is whether additional strategies could be employed to 

further maximize the muscle “signaling state” during exercise with low glycogen.  

Glycogen is known to affect the activity of a number of important signaling proteins 

(30) but whether the amount of glycogen or the localization of glycogen particles is 

the important factor in mediating this response is unknown.  Further, it may be that 

nutritional interventions in a low glycogen state could either enhance the adaptive 

response, or reduce the drop-off in training intensity without affecting signaling.  

With regard to the latter, one technique that may allow for greater exercise intensity 

during low glycogen training is the use of a CHO mouth rinse.  We have previously 

shown that simply rinsing the mouth with a 6% CHO solution was sufficient to 

improve performance in a 60 minute time trial by ~3% (5), approximately half of the 

difference seen between the HIGH and LOW training groups in the current study.  

Importantly, Chambers et al. (6) have recently shown that the benefit of the CHO 
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mouth rinse is due to brain receptor modulation, and as a result this intervention 

would not be expected to alter the metabolic state of skeletal muscle.  

 

Paragraph 39 

In conclusion, training with low muscle glycogen reduced self-selected training 

intensity and, in terms of performance, was no more effective than training with high 

muscle glycogen.  However, training with low muscle glycogen increased muscle TG 

oxidation during moderate intensity exercise, which may have been due to enhanced 

metabolic adaptations in skeletal muscle.  Future studies should examine the signaling 

pathways and regulatory mechanisms that govern metabolic adaptations to endurance 

training with low muscle glycogen.                                  
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Figure legends 

Figure 1.  Mean power output during each HIT session performed with either HIGH 

or LOW muscle glycogen.  Values are means ± SE (n = 7 HIGH and n = 7 LOW).  

#Significant difference between HIGH and LOW groups, P < 0.05.     

 

Figure 2.  Time trial performance before and after training with HIGH or LOW 

muscle glycogen.  Values are means ± SE (n = 7 HIGH and n = 7 LOW).  

*Significant difference between pre-training and post-training, P < 0.05.        

 

Figure 3.  Relative contribution of substrates to energy expenditure, during the 30-60 

min exercise period, before and after training with HIGH or LOW muscle glycogen. 

Values are means ± SE (n = 7 HIGH and n = 7 LOW).  *Significant difference 

between pre-training and post-training, P < 0.05.        

 

Figure 4.  Resting muscle glycogen content before and after training with HIGH or 

LOW muscle glycogen.  Values are means ± SE (n = 7 HIGH and n = 7 LOW).  

*Significant difference between pre-training and post-training, P < 0.05.         

 

Figure 5.  Effect of training with HIGH or LOW muscle glycogen on resting protein 

content for GLUT4 (A), FAT/CD36 (B) and β-HAD (C).  Values are expressed as 

percentage change relative to pre-training levels.  Data shown are expressed as means 

± SE (n = 7 HIGH and n = 7 LOW).  *Significant difference between pre-training and 

post-training, P < 0.05.  #Significant difference between HIGH and LOW groups, P < 

0.05.    
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