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Abstract—Fault localisation is an expensive and time-
consuming stage of software maintenance. Research is continuing
to develop new techniques to automate the process of reducing
the effort needed for fault localisation without losing quality. For
instance, spectrum-based techniques use execution information
from testing to formulate measures for ranking a list of suspicious
code locations at which the program may be defective: the
suspiciousness formulae mainly combine variables related to
code coverage and test results (pass or fail). Moreover previous
research has evaluated mutation analysis data (mutation spectra)
instead of coverage traces, to yield promising results. This paper
reports on a Genetic Programming (GP) solution for the fault
localisation problem together with a set of experiments to eval-
uate the GP solution with respect to baselines and benchmarks.
The innovative aspects are is the joint investigation of: (i)
specialisation of suspiciousness formulae for certain contexts; (ii)
the application of mutation spectra to GP-evolved formulae, i.e.
signals other than program coverage; (iii) a comparison of the
effectiveness of coverage spectra and mutation spectra in the
context of evolutionary approaches; and (iv) an analysis of the
mutation spectra quality. The results show the competitiveness of
GP-evolved mutation spectra heuristics over coverage traces as
well as over a number of baselines, and suggest that the quality
of mutation-related variables increases the effectiveness of fault
localisation heuristics.

I. INTRODUCTION

Fault localisation (FL) is the process of identifying the
location of software faults that caused failure during testing
activities. Hence, FL activities directly impact software cost
and quality as they are onerous and time-consuming activities
that grow with a project’s complexity [1].

Spectra-based (or coverage-based) fault localisation tech-
niques use program spectrum, i.e. the information from a pro-
gram elements’ coverage during execution of test cases. The
spectra data commonly used for traditional fault localisation
are how many test cases cover (or not) each software element
and whether in those tests a failure has occurred.

For each element e in a program, the Spectrum-based Fault
Localisation (SBFL for short) heuristic calculates a suspi-
ciousness score S(e), that represent the strength of association
between e executions and failure occurrences. A rank of all
S(e) is calculated so that the developer can analyse all e from
top (greater S(e)) to bottom until all faults are located.

All heuristics in SBFL are based on the same variables: cep
(number of successful executions of the program that cover
a certain element); cef (number of failed executions of the
the program that cover a certain element); cnp (number of

successful executions of the program that don’t cover a certain 
element) and cnf (number of failed executions of the program 
that don’t cover a certain element).

In addition to the coverage variables, some works have 
applied mutation analysis data (mutation-related variables) to 
improve the performance of the FL heuristics, called Mutation-
based Fault Localisation (MBFL for short) [2], [3], [4].

Mutation Analysis is a is a quality assessment tool for test 
case sets that applies punctual modifications ( mutations) t o a 
program [5], [6]. Each modification renders a modified version 
of the original program (the mutants). If the output of a mutant 
is different from the original program, it is said that the mutant 
was “killed”. A mutation score is the proportion of killed 
mutants in relation to the non equivalent mutants. A mutant 
is said to be equivalent if there is no test case which can 
distinguish the outputs of the mutant and the original program.

MBFL was proposed by Papadakis et al. as a combination 
of mutation analysis and SBFL [2]. Mutation operators are 
applied to every statement covered by some failed test, then 
each generated mutant is executed by the test set and the 
information about which test case was killed by which mutant 
is stored. Finally a suspiciousness score S(n) is calculated for 
each mutant in the same statement and the maximum score is 
the suspiciousness score of the statement. As in SBFL, after 
S(n) is calculated, a list is organised in descending order to 
guide the investigation for fault localisation.

Evolved formulae based on Genetic Programming (GP) was 
introduced and empirically evaluated by Yoo [7] and next 
theoretically analysed by Xie et al. [8] who stated that GP 
can be an adequate tool for designing the risk evaluation of 
program elements. Yoo’s approach has trained formulae for a 
set of programs as a whole (not for a particular program) and 
applied just coverage variables to compose new FL heuristics.

The latest study on theoretical and empirical analysis of 
GP-based solutions pointed out as further work [9]: (i) the 
designing of formulae that are effective in certain contexts: 
the generated metrics consider isolated projects instead of 
sets of projects, i.e. the suspiciousness formula is created to 
a particular program (program-oriented heuristic) as a result 
of a training process that learns from the known faults of 
such program; and (ii) the use of signals other than program 
spectra: the use of other source of fault data distinct from the 
coverage spectra such as the mutation spectra.

In the light of the competitive results of using human-
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designed MBFL (e.g. [2] inter alia) and the promising conclu-
sions of using GP to generate SBFL metrics ([7] inter alia), 
this paper reports the designing and analysis of an evolution-
ary approach to compose program-oriented MBFL heuristics 
automatically. Our work deals with both gaps addressed in 
[9] and also analyses the effectiveness of heuristics grounded 
on mutation versus coverage variables on a evolutionary 
approach, specifically the Genetic Programming algorithm.

Concerning research questions this study seeks evidence of:
(RQ1) how effective are the GP-evolved solutions based on 
mutation variables from a relative perspective? and (RQ2) 
how effective are the GP-evolved solutions based on mutation 
variables from an absolute perspective?. In other words, the 
overall ability of localising faults and the number of program 
elements investigated to find t he defective ones, respectively.

Recently Pearson et al. have found MBFL heuristics per-
form poorly on real faults [10] but they did not consider the 
quality of mutation data in their study. Thus we also investigate 
(RQ3) how does mutation spectra quality impact FL ability?; 
i.e. whether the number of available mutants is a relevant factor 
for the performance of GP-evolved MBFL.

This paper is structured as follows. Section II presents 
related work; Section III describes the proposed approach for 
evolutionary construction of suspiciousness formulae; Section 
IV presents the evaluation methods employed; Section V 
presents the results of the proposed method and classic heuris-
tics; and Section VI concludes and presents future works.

II. RELATED WORK

As the complexity and size of software projects grew, 
the use of manual techniques for fault localisation became 
impractical. This motivated the development of techniques to 
allow automating the fault localisation process so that human 
intervention was not necessary. Wong et al. [11] present a 
recent survey of fault localisation techniques.

In general automation initiatives proposed formulae to cal-
culate the odds of faulty program elements. Jones et al. [12] 
presented a tool for visualisation of suspicious code called 
Tarantula. The tool displays each element of code in a colour 
in the spectrum between the green and red. The colours of the 
code were calculated by the measure S(e) in Formula (1).

S(e)tarantula =

cef
cef+cnf

cef
cef+cnf

+
cep

cep+cnp

(1)

The Ochiai metric was adapted from molecular biology (it
is used to calculate genetic similarity) to a fault localisation
measure in [13]. The study indicated that Ochiai outperformed
the measures used by three different tools, including Tarantula,
in the Siemens suite of programs. Later OP2 was proposed
and proved by Naish et al. as an optimal SBFL heuristic for
the If-Then-Else-2 (ITE2) model program [14].

A. Search-based Fault Localisation
Wang et al. proposed a search-based model to build compos-

ite linear measures based on metaheuristics [15]. The method-
ology was structured in two phases: training and deployment.

In the training phase, a Genetic Algorithm (GA) was applied 
to combine the 22 association measures from Lucia et al. [16], 
including Tarantula and Ochiai. Thus, the generated composite 
heuristic is a linear combination of previous measures.

The fitness function f was the average proportion of pro-
gram elements that need to be investigated to locate the first 
fault in a training set of programs.

In the deployment phase, the best composite measure found 
by the training phase is used to locate the faults within the 
deployment set of programs. A rank for each program is 
assembled by ordering its elements by the suspiciousness score 
calculated by the composite linear measure.

In addition to the initial proposal for search-based fault 
localisation, which was introduced in [15], there are other 
evolutionary initiatives for building and analysing suspicious-
ness metrics. Yoo introduced a Genetic Programming (GP) 
approach for evolving risk assessment formulae, which were 
empirically evaluated by using 92 faults distributed in faulty 
versions of four programs [7]. The formulae were built gener-
ically, i.e. the training phase does not evolve formulae for 
particular programs but for a whole set of projects, similarly 
to the approach in [15].

Xie et al. performed theoretical evaluations of Yoo’s GP-
evolved formulae for programs with a single fault, and stated 
that GP can be an adequate tool for designing the risk 
evaluation of program elements [8]. Yoo et al. pointed out the 
state of the art of GP for search-based formulae and inferred 
that no single formula can dominate all, including the GP-
evolved ones, i.e the optimal formula does not exist [9].

B. Mutation-Based Fault Localisation

The key idea of MBFL is to assign suspiciousnesses to
injected mutants, based on the assumption that test cases that
kill mutants carry diagnostic power: the more often a statement
s affects failing tests, and the less often it affects passing tests,
the more suspicious the statement is considered [10].

In the approach of Papadakis et al. [2] a suspiciousness
score is calculated with formulae like Tarantula, Ochiai or OP2

treating killed mutants as covered elements and live mutants as
uncovered elements. Hence, for MBFL the following notation
is adopted to adapt standard SBFL formulae: mkf is the
number of negative test cases that killed the mutant (analogous
to cef ), mkp is the number of positive test cases that killed
the mutant (analogous to cep), mnf is the number of negative
test cases that did not kill the mutant (analogous to cnf ) and
mnp is the number of positive test cases that did not kill the
mutant (analogous to cnp). The Formula (2) corresponds to
the MBFL version of Tarantula.

S(e)mbfl−tarantula =

mkf

mkf+mnf

mkf

mkf+mnf
+

mkp

mkp+mnp

(2)

III. GENETIC PROGRAMMING FOR MBFL FORMULAE

Genetic Programming (GP) was proposed by John Koza as
a way to search for the fittest individual computer program
in the space of all possible computer programs composed of



functions and terminals appropriate to the problem domain 
[17]. In a GP algorithm, a population of computer programs 
is bred over many generations using the Darwinian principle 
of natural selection – survival and reproduction of the fittest 
– in addition to genetic recombination and other natural 
operations such as: crossover, mutation, gene duplication and 
gene deletion. The initial population is comprised of randomly 
generated computer programs formed by the appropriate func-
tions and terminals. The functions may be standard arithmetic 
operations, programming operations, mathematical functions, 
logical functions or domain-specific functions [17].

In the FL problem each individual represents a candidate 
suspiciousness formula to solve the problem. The population is 
a set of solutions which evolve according to the GP algorithm 
aiming to achieve better equations to calculate how suspicious 
each program element is. Thus the search space is the whole 
set of all valid formulae composed by the functions and the 
terminals selected to initiate the GP algorithm. Note that non-
linear equations are commonly obtained from this process.

In [7] GP was applied to compose SBFL heuristics using 
four coverage variables {cef , cep, cnf and cnp} and the integer 
constant 1 (one) as terminals and the set of functions: the 
four basic mathematical operations and square root. The fitness 
function was similar to the f fitness function from Wang et 
al. [15] i.e.: the minimisation of the mean proportion of code 
that needs to be evaluated to locate all faults.

This paper presents a development over the aforementioned 
research efforts to generate program-customised MBFL formu-
lae. We used GP configured with terminals – the four basic 
mutation variables {mkf , mkp, mnf and mnp} – and the 
constant 1 (inspired by [7]), and a set of functions which is 
composed by the four basic mathematical operations (sum; 
subtraction; multiplication; protected division, i.e. returns one 
when dividing by zero) and protected square root, i.e. square 
root of the modulus of a number.

Since a statement usually has more than one mutant, the 
maximum mutant suspiciousness is considered the element’s 
suspiciousness. As MBFL techniques perform poorly on de-
fects that involve unmutable statements [10], statements with 
no mutants are assigned the worst score. After the suspicious-
ness calculation, a ranking of elements is constructed ordering 
the elements in descending order of suspiciousness.

The proposal is structured in two stages: training and 
deployment. In the first the engine trains a new heuristic to a 
set of buggy versions of one program with the aforementioned 
functions and terminals. In the latter the new arranged heuristic 
is applied to a different set of versions from the same program, 
i.e. the sets of versions used in training and deployment are 
disjoint. As stated by Wang et al. a good composition should 
be able to locate many bugs in the training set with a high 
accuracy [15]. In a real world scenario the training phase is 
done over a set of previous versions with known faults while 
the deployment phase consist of applying the trained heuristic 
to debug newer versions of the program.

Following the aforementioned studies, the innovative as-
pects of our approach are the joint investigation of:

• specialisation of suspiciousness for certain contexts;
• the application of mutation spectra to GP-evolved formu-

lae, i.e. signals other than program coverage;
• a comparison of the effectiveness of coverage spectra

and mutation spectra in the context of evolutionary ap-
proaches. i.e. the analysis of suspiciousness heuristics in
terms of absolute (e.g. average score) and relative (e.g.
accuracy and wasted effort) performance;

• an analysis of the mutation spectra quality and its impact
on fault localisation.

IV. EXPERIMENTS

To evaluate the proposed method, we have performed three-
fold cross validation. Initially the sets of versions of the same 
program were randomly divided into three subsets each. In 
every execution two subsets were used as the training set 
while the remaining one was used to evaluate the trained 
heuristic as in the deployment phase. Notice that the versions 
used in deployment were never used at the same time during 
the training phase. To run one round of experiments for 
each program, the subsets were alternated. The process is 
distinct from the one used by Xuan and Monperrus [18] in 
that for each subject program, 30% of faults are randomly 
selected to form the training data and the rest (70%) of 
faults are used for evaluation. Thus, in our approach each 
subset serves as the deployment set once and one round 
of experiments is comprised of three executions. Since the 
experiments use meta-heuristics, we have specified as 30 the 
number of experiment rounds (total of 90 executions) aiming 
to reduce the stochastic effects. A fine granularity (line of 
code) was used so that the method can be evaluated with 
respect to its ability to locate precisely the faulty lines of code.

A. Benchmark

The programs used in the experiments were obtained from
benchmarks: Siemens Suite [2], [15], [16], [19], [9]; Codeflaws
[20], a collection of programs from the Codeforces online
database, a platform for programming contests; and Defects4J
[21]. The benchmarks help to build repeatable experiments and
enable experiments to later promote industry-based evaluation.

The former was downloaded from the Software-artifact
Infrastructure Repository (SIR) [22], a project to distribute
software-related artefacts for experimentation with program
analysis, software testing, and education. The selected pro-
grams were print tokens2, schedule and tcas. The selected
Siemens programs were used with a reduced test set provided
by SIR. From Codeflaws, the programs from problem 475-A
were selected. Regarding the single-bug experiments, some
versions were not used because the fault was in a non-
instrumented line (e.g. variable declaration bug), the test set
did not reveal the fault or the fault was not located in a single
line of code. The spectra for the programs were generated with
the tools lcov, gcov (a GNU standard test coverage tool) and a
custom program. In order to generate mutants, the Proteum/IM
2.0 was used [23].



Defects4J [21] is a database and framework of projects with
real bugs that aims to offer data for reproducible studies in
software testing research, aiming to evaluate how the mutant
availability impacts on the quality of mutation-based fault
localisation. We collect coverage and mutation data of Math,
a multi-bug real project of Defects4J, by using the repository
created by Pearson et al. [10].

Another third party tool used was the Python framework
DEAP [24], which allows the abstraction of the basic operators
necessary for the implementation of evolutionary algorithms
and concurrent parallel programming. For the implementation
of both the GA and the GP, DEAP was used with basic
settings. Hence, only the necessary parameters were defined,
using the standard configurations unchanged when possible.

B. Evolutionary Parameters

The parameters applied in both GP algorithms were set
as: generations: 1000; population: 100 individuals; crossover
probability: 0.85; mutation probability: 0.07; reproduction
probability: 0.08; maximum crossover depth: 20; maximum
initial depth: 10; minimum initial depth: 2; selection method:
roulette rank; crossover operator: one point crossover (swap
of randomly selected sub-trees between parents); mutation
operator: uniform mutation (replace an sub-tree in the indi-
vidual with an new one randomly generated); next generation
selection: Descendents with elitism (persistence of the best
individual of the parents population).

C. Method Evaluation

The set of baseline heuristics was selected from state-of-
the-art research on SBFL and MBFL [10], [19] and noted as 
the most popular ones in the survey [11]. The selected SBFL 
heuristics were Tarantula [12], [2], Ochiai [13], [19], OP2 [14],
[19], Barinel [25] and DStar [26] together with its respective 
MBFL counterparts. Also, Yoo’s GP-based approach was 
adapted as an analogue SBFL-oriented version of the proposed 
method so that it would haver an evolutionary comparison 
target. Altogether, 11 baseline heuristics were chosen.

V. ANALYSIS

To evaluate the performance of the suspiciousness equations 
in terms of the number of investigated code elements needed 
to locate faults, we apply three evaluation measures:

• Average Score: refers a metric commonly used in fault
localisation studies, e.g. [19], that quantifies the average
effort to locate all faults in a set of programs according to
the suspiciousness rank provided by the technique. The
score metric is calculated as a fraction of the suspicious-
ness rank to the amount of executed statements.

• Accuracy (acc@n): refers to the number of faults that
have been localised within the top n places of the ranking
(higher values are better); we use 1, 3 and 5 for n.

• Wasted Effort (wef@n): refers to the amount of work
wasted looking at non-faulty program elements (lower
values are better); we also use 1, 3 and 5 for n.

Similarly to average score, the accuracy and the wasted ef-
fort measures have been used in fault localisation experiments
including the recent ones such as in [27], [28].

A. Effectiveness of Evolved MBFL Heuristics

To answer RQ1 and RQ2 – how effective are the GP-
evolved solutions based on mutation variables from relative
and absolute perspectives?, respectively – we analyse:

1) the evaluation measures for all programs as a whole;
2) the average rank related to all evaluation measures;
3) the comparison of FL techniques in individual programs.
From these three points, the results obtained from the

average score deal with RQ1 and the results from accuracy
and wasted effort answer RQ2.

TABLE I
EVALUATION MEASURES FOR ALL PROGRAMS AS A WHOLE: average score,

acc AND wef VALUES.

Technique Avg Score acc@n wef@n
1 3 5 1 3 5

TAR-cov 47.14% 1 8 10 50 137 220
TAR-mut 43.98% 2 8 14 49 136 211
OCH-cov 46.48% 2 9 14 49 135 212
OCH-mut 53.60% 3 6 10 48 138 221
OP2-cov 40.27% 3 11 15 48 129 202
OP2-mut 59.86% 0 2 7 51 149 238
BAR-cov 48.37% 1 8 10 50 137 220
BAR-mut 43.70% 2 8 14 49 136 211
DST-cov 48.02% 2 8 10 49 136 219
DST-mut 46.78% 1 7 12 50 139 219
GP-cov 30.00% 0.33 4.63 10.17 50.67 145.63 232.40
GP-mut 36.38% 6.47 15.40 20.54 44.53 118.90 181.14

The results are shown in Tables I, II and III. The pro-
posed evolutionary MBFL heuristics construction technique is
referred to as “GP-mut” while the evolutionary construction
of SBFL heuristics is called “GP-cov”. Also, the human-based
SBFL heuristics Tarantula, Ochiai, OP2, Barinel and DStar are
referred by using the suffixes -cod and -mut that refer to the
use of coverage and mutation variables, respectively, such as
“TAR-cov” and “TAR-mut”. According to RQ1 and RQ2, the
focus is on the effectiveness of GP-evolved solutions based
on mutation variables, i.e. how effective is GP-mut in regard
with the baselines, specially related to GP-evolved ones based
on coverage variables (GP-cov).

Evaluating all programs as a whole. An overall compari-
son is shown in Table I. It presents the average score as well
as the acc and wef values for all programs as a whole, the best
values are in bold face. For instance in fourth column of Table
I (acc@3 values), GP-mut scored the faulty element at the top-
three on average 15.40 times whereas OP2-cov achieved this
11 times. Whereas GP-cov and GP-mut are trained for each
program and their results are averaged out afterwards, they
are expected to outperform the other methods. As a matter of
fact, GP-mut outperformed the others in all of the acc and
wef values, while it was the second-best for average score,
but in turn GP-cov was superior on the relative perspective
as it reached the best result for average score. Specifically for



TABLE II
AVERAGE RANK FOR average score, acc@n AND wef@n.

Avg. Score acc@1 acc@3 acc@5 wef@1 wef@3 wef@5
GP-cov: 2.75 GP-mut: 4.5 GP-mut: 1.5 GP-mut: 3 GP-mut: 4.5 GP-mut: 1.5 GP-mut: 1.75
OP2-cov: 4 OP2-cov: 8.25 OP2-cov: 6.5 OP2-cov: 6 OP2-cov: 8.25 OP2-cov: 6.5 OP2-cov: 5.25

GP-mut: 4.5 GP-cov: 9.5 OCH-cov: 7.5 OCH-cov: 6.25 GP-cov: 9.5 OCH-cov: 7.5 OCH-cov: 6
OCH-cov: 4.75 OCH-mut: 9.5 TAR-cov: 8.5 GP-cov: 7.5 OCH-mut: 9.5 DST-cov: 8 DST-mut: 7.75
DST-cov: 5.75 OCH-cov: 9.75 BAR-cov: 8.5 TAR-cov: 8.75 OCH-cov: 9.75 TAR-cov: 8.5 TAR-mut: 8
TAR-cov: 6.5 DST-cov: 9.75 DST-cov: 8.5 BAR-cov: 8.75 DST-cov: 9.75 BAR-cov: 8.5 BAR-mut: 8
BAR-cov: 7.5 TAR-mut: 10 GP-cov: 9.25 DST-cov: 8.75 TAR-mut: 10 GP-cov: 9.5 DST-cov: 8.25
TAR-mut: 9 BAR-mut: 10 TAR-mut: 9.75 DST-mut: 8.75 BAR-mut: 10 TAR-mut: 9.75 OCH-mut: 8.5
BAR-mut: 9 TAR-cov: 10.5 BAR-mut: 9.75 TAR-mut: 9.25 TAR-cov: 10.5 BAR-mut: 9.75 TAR-cov: 8.75

DST-mut: 9.25 BAR-cov: 10.5 DST-mut: 10 BAR-mut: 9.25 BAR-cov: 10.5 OCH-mut: 10 BAR-cov: 8.75
OCH-mut: 9.75 DST-mut: 10.5 OCH-mut: 10.5 OCH-mut: 10 DST-mut: 10.5 DST-mut: 10.25 GP-cov: 8.75
OP2-mut: 10.5 OP2-mut: 12 OP2-mut: 12 OP2-mut: 10.75 OP2-mut: 12 OP2-mut: 12 OP2-mut: 10.25

acc values, the GP-mut scores are much higher than the others
(thus the most accurate for FL on the absolute perspective).

Evaluating the average rank. To capture the positional
performance of the techniques, we calculate the average
ranking position related to the evaluation measures. For each
evaluation measure (average score, acc@1, acc@3, and so on),
the average rank of a method is the mean position in the rank
over all programs. If this metric for a method is the same
as another, all of them are given the same ranking position:
the lowest for them (e.g. if three methods are tied at ranking
position two of wef@5, so all of them are at ranking position
four for wef@5). The average ranks are presented in Table II,
the GP-mut and GP-cov values are highlighted in bold face.
Each column is sorted so that best average rank values appear
first. The average ranks of GP-mut are superior across almost
all columns as shown in Table II, i.e. the best with respect to
all measures of accuracy and wasted effort, the exception is on
average score despite the third position. Successively GP-cov
had the best performance on a relative perspective (average
score) that is consistent with the aforementioned evaluation of
all programs as a whole.

Evaluating individual programs. In a detailed view of
the experiments, Table III shows the results for the evalua-
tion measures (average score, acc@n and wef@n) for each
individual program. The best technique associated with each
measure for every program is in boldface. It’s noticeable that
the performance of GP-mut is superior in each measure related
to Program tcas, which has more faulty versions (i.e. better
training capability). In the other programs GP-mut loses in
average score, but it is the best in most acc and wef values.
This indicates that GP-mut puts more faulty program elements
at top positions in the suspiciousness rankings than the others.
We conjecture the low performance of GP-mut on Programs
475-A, print tokens2 and schedule is due to the fact that they
have few defective versions. This behaviour occurs similarly
with GP-cov, but according to the content of Table III GP-mut
is seemingly more sensitive to training than the latter.

In summary, the GP-mut results are consistent with each
other when evaluating all programs as a whole, individual
programs, as well as average ranks: well-adapted (2nd and
3rd) on a relative perspective and the best on all the measures

from an absolute perspective. On the relative perspective GP-
cov presented good results showing agreement with previous
work (e.g. [7], [9]). Thus GP-evolved heuristics grounded on
mutation spectra revealed competitiveness with respect to their
coverage-based counterpart baseline heuristics.

B. Quality of Mutation Spectra

MBFL techniques deal with whether a change to a statement
alters the test outcome. The more often a statement affects
failing tests, and the less often it affects passing tests, the
more suspicious the statement is considered [10].

The number of mutants depends commonly on aspects such
as the type of statement, the mutation operators, the mutant
prioritisation process, among others. As the mutation spectra
includes the mutants generated by the program’s statements,
we investigate how does mutation spectra quality impact FL
ability? (RQ3); i.e. how the number of available mutants is a
relevant factor for the performance of GP-evolved MBFL.

Pearson et al. have found recently MBFL heuristics perform
poorly on real faults [10], but they do not consider the
availability of mutation data in their study. In our experiments,
we use the program Math from Defects4J, which is one of the
programs that have prompted the Pearson et al.’s conclusions.

To answer RQ3 we deal with two issues:
• Fault Of Omission (FOO). As the key idea of MBFL is

to assign suspiciousnesses to injected mutants, based on
the assumption that test cases that kill mutants carry diag-
nostic power for FL [10], omission faults do not provide
diagnosis data for MBFL techniques. Furthermore, the
Defects4J repository (see Subsection IV-A) treats a single
omission fault (e.g. a missing statement or method) as a
multi-bug scenario: it considers each location potentially
related to the omission as a new fault (e.g. the statement
nearest to the possible fix locations). In other words, there
may be more than one possible place to insert fixing
commands, so the cardinality between FOO and fixing
location is one-to-many.

• Minimum average number of mutants (MinAM). We
select faulty versions from the subject based on minimum
average number of mutants of defective statements that
represents a threshold k on which to base the measure of
mutation spectra quality in our analysis.



TABLE III
COMPARISON OF FAULT LOCALISATION TECHNIQUES IN INDIVIDUAL

PROGRAMS.

Prog Technique Avg Score acc@n wef@n
1 3 5 1 3 5

47
5-

A

TAR-cov 61.21 0 0 1 8 24 39
TAR-mut 86.07 0 0 1 8 24 38
OCH-cov 69.00 0 0 1 8 24 39
OCH-mut 82.12 0 0 1 8 24 38
OP2-cov 69.00 0 0 1 8 24 39
OP2-mut 82.12 0 0 1 8 24 38
BAR-cov 69.10 0 0 1 8 24 39
BAR-mut 84.09 0 0 1 8 24 38
DST-cov 69.00 0 0 1 8 24 39
DST-mut 82.12 0 0 1 8 24 38

GP-cov 55.51 0 0 0 8 24 40
GP-mut 75.73 0 1.37 2.37 8 21.3 32.57

pr
in

t
to

k e
ns

2

TAR-cov 36.21 1 3 3 9 23 37
TAR-mut 45.35 0 0 0 10 30 50
OCH-cov 31.68 2 4 4 8 21 33
OCH-mut 69.40 0 0 0 10 30 50
OP2-cov 18.19 2 4 4 8 21 33
OP2-mut 73.35 0 0 0 10 30 50
BAR-cov 36.21 1 3 3 9 23 37
BAR-mut 45.35 0 0 0 10 30 50
DST-cov 35.65 2 3 3 8 22 36
DST-mut 59.25 0 0 2 10 30 47

GP-cov 38.15 0 0.87 0.90 10 28.27 46.50
GP-mut 33.94 1.67 3.83 5.03 8.33 21.27 31.43

sc
he

du
le

TAR-cov 46.81 0 1 2 7 19 29
TAR-mut 73.31 0 0 0 7 21 35
OCH-cov 44.83 0 1 3 7 19 27
OCH-mut 73.31 0 0 0 7 21 35
OP2-cov 24.34 0 1 4 7 19 25
OP2-mut 73.31 0 0 0 7 21 35
BAR-cov 46.81 0 1 2 7 19 29
BAR-mut 73.31 0 0 0 7 21 35
DST-cov 46.43 0 1 2 7 19 29
DST-mut 73.31 0 0 0 7 21 35

GP-cov 20.70 0.33 0.77 2.43 6.67 19.37 28.90
GP-mut 63.96 1.53 1.73 1.90 5.47 16.10 26.37

tc
as

TAR-cov 47.10 0 4 4 26 71 115
TAR-mut 22.60 2 8 13 24 61 88
OCH-cov 45.68 0 4 6 26 71 113
OCH-mut 33.43 3 6 9 23 63 98
OP2-cov 44.20 1 6 6 25 65 105
OP2-mut 44.20 0 2 6 26 74 115
BAR-cov 47.10 0 4 4 26 71 115
BAR-mut 22.66 2 8 13 24 61 88
DST-cov 46.75 0 4 4 26 71 115
DST-mut 23.96 1 7 9 25 64 99

GP-cov 21.51 0 3 5 26 74 117
GP-mut 17.78 3.27 8.47 11.17 22.73 60.23 90.77

In Table IV Line 1 shows the minimum average number
of mutants k and the following lines present the number of
versions of Program Math based on the threshold k from
MinAM: Lines 2 and 3 refer to versions with and without
faults of omission, respectively. For instance, from the 77
original versions (Line 2), 41 of them have no FOOs (Line 3).
There are an number of versions (19 and 16 with and without
FOOs, respectively) whose faulty commands have less than
two mutants on average. Potentially this indicates poor MBFL
data source for learning about defective program elements.

Our goal is not to find the ideal value of K, but to use
this answer of the research question. We use K = 3 after
some pilot experiments, mainly due to the commitment on
the number of versions used on training and to perform cross

TABLE IV
VERSIONS OF PROGRAM Math, BASED ON THE MINIMUM AVERAGE

NUMBER OF MUTANTS K OF DEFECTIVE STATEMENTS.

K 1 2 3 4 5 6 7 8 9 10
with FOOs 77 48 37 30 26 20 19 14 13 10

without FOOs 41 25 22 20 18 15 14 10 9 6

validation. In this way, we use the minimum average number
of mutants in two distinct scenarios, so that the empirical
analysis compares three sets of versions of Program Math:
α is composed by all original versions in the repository (77
versions); β is composed by the versions whose minimum
average number of mutants is limited to 3 (37 versions); and γ
excludes omission faults from β (22 versions). So we consider
Sets β and γ as enriched mutation spectra with respect to α
as they have higher MinAM.

Table V shows the results of the three sets. As these sets
have different numbers of versions, we use the average of the
accuracy and wasted effort measures in order to compare them
(Avg. acc and Avg. wef for short, respectively).

The results of Set α reveal the superiority of GP-cov
on all evaluation measures. However regarding the enriched
mutation spectra (Sets β and γ), GP-mut shows best scores
on all accuracy measures; the superiority is also observed on
all wasted effort measures. On average score measure, GP-
mut presents higher sensibility to k threshold (MinAM) with
respect to GP-cov: 14.41, 8.76 and 13.17% on Sets α, β and γ,
respectively, while GP-cov reveals relative stability (4.82, 4.50
and 4.85%). In the omissions faults context, GP-cov exposes
similar scores between Sets α and β (e.g. 4.82 and 4.50% on
average score measure and 0.26 and 0.25 on acc@1 measure),
different from the GP-mut on all evaluation measures. Thus
the performance of MBFL heuristics are more sensitive to the
presence of faults of omission than coverage based heuristics.

The average number of mutants of defective statements
improves the performance of the evolved MBFL heuristics.
We use this measure as a quality factor of mutation spectra.
It is worth noting that the experiments of RQ1 and RQ2 used
robust benchmark for mutation spectra related to the RQ3 one,
so their results are more positive for GP-mut. Moreover the
presence of omission faults impacts on the effectiveness. These
findings are good additions to the research area, but certainty
they require further work before they can be generalised.

C. Statistical Analysis

We carried out statistical analysis following Arcuri et al.’s
guidelines [29] using two complementary tests: the Wilcoxon
Rank Sum Test to assess statistically significant differences
with α = 0.05, and Vargha and Delaney’s Â12 statistic for
effect size comparison with GP-mut as A1 and GP-cov as A2.
Table VI shows results of both statistical tests for average
score and accuracy with respect to GP-mut and GP-cov, where
overall expressive statistical differences have been observed
across all programs.



TABLE V
EVALUATION MEASURES: PROGRAM Math (DEFECTS4J).

Set Technique Avg. Score Avg. acc@1 Avg. acc@3 Avg. acc@5 Avg. wef@1 Avg. web@3 Avg. wef@5

α
GP-cov 4.82% 0.26 0.53 0.65 0.77 2.08 3.25
GP-mut 14.41% 0.23 0.43 0.55 0.81 2.27 3.59

β
GP-cov 4.50% 0.25 0.48 0.61 0.82 2.27 3.69
GP-mut 8.76% 0.37 0.67 0.81 0.72 1.91 2.91

γ
GP-cov 4.86% 0.10 0.27 0.40 0.91 2.61 4.03
GP-mut 13.17% 0.27 0.48 0.57 0.75 2.03 3.08

In Table VI all p-values highlighted with boldface indicate
statistical significance at the 5% level and all V-D values
highlighted indicate a advantage in magnitude. If the V-D value
is marked my a *, then there is an advantage to the GP-cov
method, otherwise GP-mut has superior magnitude. On the
average score, statistical significance (p-value ≤ 0.05) is noted
on almost all samples except Set 3 of print tokens2. In turn
Vargha and Delaney’s test shows the advantage of GP-cov
despite the GP-mut’s superiority on program tcas.

Concerning accuracy (acc values in Table VI), “–” indicates
that as both samples are identical (all zeros). Except for
the Math’s Set α (as expected), the Wilcoxon’s and Vargha
and Delaney’s tests show the better performance of GP-mut
(statisticall significance and effect size) regarding almost all
the samples. The tests with Math’s Set α indicate statistical
advantage to GP-cov, but not as much as the other sets.

D. Threats to Validity

We mitigated threats to internal validity, i.e. reducing results 
by chance using: baseline methods and evaluation measures 
used in prior studies; multiple executions to reduce the algo-
rithm’s stochastic-nature; and existing open source frameworks 
that have been used in a variety of applications. With respect 
to the external validity, i.e. whether the results can be gener-
alised, assessment on a large scale for faults and programs, 
inclusion of more fault localisation baseline methods and 
other programming languages are needed. However, we have 
selected real programs as well as artificial and real faults from 
different benchmarks that are used in many contexts related 
to software engineering experiments, which have reduced the 
bias to certain types of projects and have promoted the results 
to be aligned with the efforts over the research field. Threats to 
construct validity concerns whether we measured everything 
properly. We use absolute and relative evaluation metrics, and 
take their measures as in previous studies, so that they can 
communicate realistically the fault localisation ability.

VI. CONCLUSION

This paper reports on a Genetic Programming (GP) solution 
for the fault localisation problem together with a set of 
experiments to evaluate the found formulae with respect to 
literature studied baselines and benchmarks.

The innovative aspects are the joint investigation of: (i) spe-
cialisation of suspiciousness formulae for certain contexts; (ii) 
the application of mutation spectra to GP-evolved formulae,

i.e. signals other than program coverage; (iii) a comparison of
the effectiveness of coverage spectra and mutation spectra in
the context of evolutionary approaches; and (iv) the impact of
mutation spectra quality on SBFL effectiveness.

Well-known heuristics were used as baselines along with
one metaheuristic method. The proposed mutation-based evo-
lutionary approach showed overall better results, albeit a
possible greater sensibility to training data (e.g. number of
faulty programs, omission faults, quality of mutation data).

We measured the performance of GP-evolved heuristics
based on mutation spectra from relative and absolute per-
spectives (RQ1 and RQ2): the percentage and the number of
investigated elements to locate faults, respectively (the latter
is closer to the measure perceived by software engineers). We
used the minimum average number of mutants (MinAM) to
measure mutation spectra quality and its impact on FL (RQ3).

The empirical analysis along with statistical analysis show
that the proposal is competitive in both perspectives (relative
and absolute) and our results are consistent with each other
on evaluating all programs as a whole, individual programs,
as well as average ranks. Specifically on absolute terms the
method scored the faulty element top much more frequently
than the baselines did. Also, the use of MinAM improves the
performance of the evolved MBFL heuristics.

We conclude that GP-evolved heuristics grounded on mu-
tation spectra represent a valid addition to evolutionary FL
heuristics, and the quality of mutation-related variables in-
creases the effectiveness of FL. As further work, we plan a
study with hybridisation of coverage and mutation data, and
larger scale investigation on mutation spectra quality.
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