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ABSTRACT 

 We report the case of a 3-year-old girl, who is the third child of non-

consanguineous parents with short stature, hypertrophic cardiomyopathy and mild 

dysmorphic features; all suggestive of Noonan syndrome. In addition, the patient 

presents with feeding difficulties, deep palmar and plantar creases, sparse hair, and 

delayed psychomotor and language development, all characteristics frequently observed 

in Cardio-facio-cutaneous syndrome. Molecular analysis of the Ras/MAPK pathway 

genes using high resolution melting curve analysis and gene sequencing revealed a de 

novo KRAS amino acid substitution of leucine to tryptophan at codon 53 (p.L53W). This 

substitution was recently described in an Iranian patient with Noonan syndrome. The 

findings described in the present report expand the phenotypic heterogeneity observed 

in RASopathy patients harbouring a KRAS substitution, and advocate for the inclusion of 

genes with low mutational frequency in genetic screening protocols for Noonan 

syndrome and other RASophaties.   
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INTRODUCTION 

 The term “RASopathies” refers to a group of human syndromes caused by 

germline mutations in genes that encode components of the Ras/MAPK signalling 

pathway.1 These syndromes share phenotypic features such as characteristic facies, 

growth retardation, congenital heart defects, developmental delay, learning disabilities, 

cutaneous abnormalities, cryptorchidism and a predisposition to malignancies.2 

RASopathies include Noonan syndrome (NS, MIM 163950), Noonan syndrome with 

multiple lentigines (MIM 115100), Costello syndrome (CS, MIM 218040) and Cardio-

facio-cutaneous syndrome (CFCS, MIM 115150). As the different syndromes exhibit 

overlapping clinical features, sometimes it may be difficult to make a specific diagnosis 

based exclusively on clinical characteristics. The most frequent RASopathy, Noonan 

syndrome, has an incidence of 1 / 1,000 - 2,500 live births,3 but this may be an 

underestimate due to patients with oligosymptomatic forms of the syndrome. Therefore, 

some of these patients may not be recognized during their entire life.2 Germline mutation 

in four genes account for almost 67% of the patients with the clinical diagnosis of NS: 

PTPN11, SOS1, RAF1 and KRAS.4 The small GPTases RAS (HRAS, KRAS, and 

NRAS) are central components of the Ras/MAPK signal transduction pathway. These 

monomeric GTPases act as binary switches, cycling between an active, GTP-bound, 

and an inactive, GDP-bound state. In its active state, RAS interacts with and regulates 

diverse downstream effectors including RAF kinases (B-RAF, RAF1); 

phosphatidylinositol 3-kinase (PI3K), and RALGDS.5  
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Germline KRAS mutations account for approximately 3% of NS cases and 7% of all 

RASopathies including CFCS and a few individuals with a phenotype suggesting CS,6 

which reflects its complex genotype–phenotype correlation. In this study, we document 

the presence of a recently reported KRAS substitution7 in a 3-year-old girl with a 

phenotype suggestive of Noonan syndrome.  

 

CLINICAL REPORT 

 

 The patient is the third child of young non-consanguineous parents with no family 

history of birth defects. Her two older brothers are healthy. During her pregnancy the 

mother had urinary tract infections that required hospitalization. A fetal ultrasound 

performed at 35 weeks gestation showed pulmonary valve stenosis. She was born via 

C- section at 36 weeks gestational age with a birth weight of 3.5 kg (> 90th percentile), 

birth length 47 cm (> 50th percentile) and head circumference of 35.5 cm (> 90th 

percentile). She had transient hypoglycemia. A postnatal echocardiography exhibited 

right ventricle hypertrophy with premature closure of the ductus arteriosus. During her 

first months of life she exhibited apnea, failure to thrive and psychomotor delay.  A 

cardiac catheterization at 2 months of age confirmed pulmonary valve stenosis, which 

was treated with a balloon valvuloplasty resulting in a residual subvalvar pulmonary 

gradient secondary to hypertrophic cardiomyopathy. Since the neonatal period she has 

had feeding difficulties, gastroesophageal reflux with failure to thrive and malnutrition. 

She underwent a gastrostomy with Nissan fundoplication during her first year of life. 
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However, she continued to have poor weight gain and growth velocity, placing her below 

the 5th percentile for chronological age.  

Physical examination at 5 months of age showed a hypotonic, hypoactive and 

undernourished infant that was not tracking  and had strabismus and epicanthal folds. 

She had mild dysmorphic features (Fig. 1, Table 1), slightly over folded helicies, deep 

palmar and plantar creases, soft skin, and sparse hair. She has a hemangioma (2 cm x 

2 cm) in the cranial right vertex that was confirmed with cerebral magnetic resonance. In 

this exam there were no signs of meningo-angiomatosis.  

She has been followed regularly by a multidisciplinary team with early intervention for 

her psychomotor and language delay.  

Her karyotype is 46,XX and no pathogenic variants were found in the PTPN11, SOS1 

and RAF1 genes. However, one missense substitution was documented in the KRAS 

gene. 

 

MATERIALS AND METHODS 

Ethical statement 

 This study, as well as the Informed Consent for DNA extraction, was approved by 

the Ethics Committee of Central Metropolitan Health Service in Santiago, Chile. 

Informed written consents were obtained from patient's parents for the study and 

photographs. 

Point mutation screening 
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 Point mutations in PTPN11 (NM_002834.4), SOS1 (NM_005633.3), KRAS 

(NM_004985.4) and RAF1 (NM_001354689.1) genes were screened by High Resolution 

Melting (HRM) analysis. Briefly, exons frequently associated with RASopathies were 

amplified with specific primers (Supplementary Table S1). The PCR conditions were 1 x 

HOT FirePol® Eva Green® HRM Mix (Solis BioDyne, Estonia) or 1x SensiFAST HRM 

Mix (Bioline, UK), 0.25 - 1 μM each oligonucleotide and 15 ng genomic DNA in a total 

volume of 10 ul. The annealing temperatures for the amplification of the different exons 

are described in Supplementary Table 1. Amplification and melting curve analyses were 

performed in an Eco Real-Time PCR System (Illumina, San Diego, California, USA) and 

those exons with abnormal profiles relative to control samples (at least three) were 

sequenced bi-directionally in an ABI3730XL sequence analyser (Applied Biosystems, 

Foster City, CA, USA).  

KRAS protein modelling 

 The primary structure of KRAS was used as a query sequence to scan against 

the specially curated nr20 (no sequences with >20% mutual sequence identity) protein 

sequence database with HHblits. The search produced an alignment between KRAS 

and homologous proteins, and highlighted conserved residues in the protein family. 

Homologous proteins with known structure were identified by using the Phyre2 

homology-recognition server V 2.0.8 The sequence alignment produced by Phyre2 for 

the highest-scoring hit (PDB ID 1X1R) was analysed visually to highlight the 

conservation of structurally and functionally important amino acid residues. The model of 

KRAS was validated with Coot 9 and through visual inspection by using the 3D graphics 

software Pymol (Schrödinger.com). Single substitutions were created using Coot and 



7 
  Rodríguez et al. 

 

validated as mentioned above. These programs revealed that the structure models 

needed no further modifications.  

 

RESULTS 

 Screening of nucleotide changes by high resolution melting curve analysis 

showed an abnormal profile of KRAS exon 3 amplicon from the patient's genomic DNA 

(Supplementary Fig. S1). Sanger DNA sequencing revealed a heterozygous thymine to 

guanine change at position 158 (c.158 T>G). The substitution affects codon 53 (TTG > 

TGG) which leads to a leucine to tryptophan amino acid substitution (p.L53W) (Fig. 2a). 

This substitution was not detected in the patient's parents (maternity and paternity were 

not confirmed) which suggests a de novo event (Fig. 2b). Furthermore, the c.158T>G 

substitution was not detected in 100 healthy controls after allele-specific PCR analysis 

(Supplementary Fig. S2). To date, the substitution p.L53W has not been reported in 

well-established reference databases including ExAC, 1000 Genomes, Ensembl and 

NCBI. 

This substitution is predicted to be either probably damaging (score of 0.996 - sensitivity: 

0.36; specificity: 0.97) or damaging (score 0.00) according to PolyPhen-210 and SIFT, 

respectively. Importantly, the leucine residue at position 53 of KRAS is conserved 

among evolutionary distant species (Fig. 2c) and across RAS family members. A 

structure model of p.L53W was produced to study the plausible consequence of this 

substitution on KRAS protein structure. Although seven rotamers of tryptophan are 

possible, Fig. 2d (up) shows the two most likely rotational isomers of p.W53 as judged 
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by geometry (e.g., chi angle) constrains and the absence of steric clashes with neighbor 

amino acid residues. In both cases the introduction of this bulky hydrophobic amino acid 

in the small cleft formed by the β1, β2 and β3-strands and the α1 and α5-helix is 

predicted to induce local conformational changes to avoid steric clashes among 

residues located in the vicinity.   

DISCUSSION 

 We report a KRAS missense substitution (p.L53W) in a patient with clinical 

features suggestive of Noonan Syndrome, such as characteristic facies (epicanthal 

folds, low-set ears and ptosis), hypertrophic cardiomyopathy and growth retardation. 

The patient also presented with feeding difficulties, deep palmar and plantar creases, 

sparse hair, sparse eyebrows and psychomotor and language delay, all characteristics 

that are common in CFC syndrome patients and unfrequented in NS patients (Table 1). 

The co-occurrence of features of both syndromes in patients with KRAS mutations has 

been described previously11-13 (Table 1) and demonstrated that specific diagnosis based 

exclusively on clinical characteristics is difficult in patients with KRAS pathogenic 

variants. 

Recently, Tafazoli and collaborators7 reported a L53W amino acid residue substitution in 

a patient with a similar phenotype to our patient. Our studies confirm this association 

and show that: i) the p.L53W substitution was not detected in her relatives (de novo) nor 

in 100 healthy controls; ii) the amino acid substitution affects a residue in a position that 

is conserved across the RAS family, including the recently NS associated gene RIT114; 

and iii) that different predictive tools (Poly-Phen and SIFT) classified this substitution as 
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a probably damaging or damaging amino acid residue variant. Taken together, these 

observations, the patient phenotype, and her clinical evolution led to the classification of 

this variant as Probably Pathogenic, according to The American College of Medical 

Genetics and Genomics (ACMG) classification guidelines.15 

Even though an in silico structure model of the KRAS p.L53W mutant has been 

reported,7 the specific amino acid residues or secondary structural elements (α-helix or 

β-strand) whose relative position could be affected by the substitution were not 

described, nor a mechanistic hypothesis proposed to explain the effects of the 

substitution on protein function and/or protein stability. We addressed this gap in 

knowledge and propose a 3D structure model of the pL53W mutant. Our structure model 

suggests that different residues that are located in close proximity to p.L53W can 

undergo important conformational changes to accommodate the bulkier tryptophan 

amino acid residue in the small cleft defined by the β1-β2-β3 strands and the α1 and α5 

helices (magenta residues in Fig. 2d). None of the residues of the small cleft have 

previously been associated with pathogenic substitutions (somatic or germline) or 

analysed in vitro or in vivo to determine the functional consequences of the 

substitutions. Since members of the RAS protein family (eg, KRAS, NRAS, HRAS) 

present a conserved peptide sequence,5 we surveyed for reported mutations affecting 

residues in equivalent positions across the RAS family members HRAS and NRAS. In 

2011 Runtuwene and coworkers16 described a patient with Noonan syndrome with a 

p.I24N substitution in NRAS. The authors showed that the NRAS p.I24N mutant affected 

the GTP bound (active) form, which resulted in much higher MAPK phosphorylation 

activity compared to the wild type protein. The p.I24N mutant would result in a steric 
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repulsion between the α1-helix and the β2-strand. This in turn destabilizes the guanine 

nucleotide binding pocket resulting in an increased GDP to GTP exchange rate due to a 

9:1 ratio of GTP:GDP in the cell. Based on this evidence, the NRAS p.I24N substitution 

was classified as a mild activation mutation. Similar to residue leucine 53, the isoleucine 

at position 24 is conserved between NRAS and KRAS. In the wild type KRAS crystal 

structure the distance between p.I24 and p.L53 is 6.9 Å, whereas the p.L53W 

substitution with the most likely tryptophan rotamer is expected to reduce the distance to 

2.1 Å (Fig. 2d - down). This would produce a strong repulsing force between the side 

chains of the residues that define the α1-helix and the β3-strand, resulting in important 

conformational changes in the vicinity of the GTP-binding pocket. We postulate here that 

the p.L53W substitution is a mild activated KRAS mutant similar to that reported for the 

NRAS p.I24N mutant. To the best of our knowledge, to date only four NS patients with 

the NRAS p.I24N mutation have been described. Those patients share some distinctive 

features with our patient because three of them exhibited hypertrophic cardiomyopathy 

and one had a hemangioma. In the patient we examined, a detailed cardiac study 

showed prenatal right ventricle hypertrophy with premature closure of the ductus 

arteriosus and subsequent postnatal confirmation of  pulmonary valve stenosis and 

hypertrophic cardiomyopathy. In agreement with our findings, Tafazoli and collaborators 

reported pulmonary valve stenosis in the other patient with the KRAS p.L53W 

substitution.7  

In conclusion, this report provides further evidence of one recently reported KRAS 

pathogenic variant with Noonan syndrome, and thus expands the variety of pathogenic 

KRAS variation associated with RASopathies. We also propose a structure-guided 
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mechanistic explanation of the contribution of this substitution in Noonan syndrome. 

Finally, confirmation of the clinical diagnosis in this patient demonstrates the importance 

of the inclusion of genes with low mutational frequency in genetic screening protocols for 

Noonan syndrome and other RASopathies. These findings emphasise the need to 

explore further the potential of modern techniques, such us targeted gene panel 

sequencing, for the diagnosis of syndromes associated with mutations in genes of the 

Ras/MAPKpathway. 

 

NOTE 

Written informed consent was obtained from the patient’s mother for publication of this 

case report and accompanying images. 

 

CONFLICT OF INTEREST 

None. 

 

ACKNOWLEDGMENTS 

We are grateful to the patient and her family for helping us to perform this study. This 

work was supported by Fondecyt Grant 1140450 to F.R. 

 

 



12 
  Rodríguez et al. 

 

 

 

REFERENCES 

1 Tidyman WE & Rauen KA. The RASopathies: developmental syndromes of 

Ras/MAPK pathway dysregulation. Curr Opin Genet Dev. 2009; 19: 230-236. 

2 Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013; 14: 355-369.  

3 Romano AA, Allanson JE, Dahlgren J, et al. Noonan syndrome: Clinical features, 

diagnosis, and management guidelines. Pediatrics  2010; 126: 746–759. 

4 Aoki Y, Niihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J Hum 

Genet. 2016; 61: 33-39.  

5 Vetter IR, & Wittinghofer A. Signal transduction–the guanine nucleotide-binding switch 

in three dimensions. Science 2001; 294: 1299–1304. 

6 Brasil A, Malaquias A, Kim C, et al. KRAS Gene Mutations in Noonan Syndrome 

Familial Cases Cluster in the Vicinity of the Switch II Region of the G-domain: Report of 

Another Family With Metopic Craniosynostosis. Am J Med Genet A. 2012; 158A: 1178-

1184. 

7 Tafazoli A, Eshraghi P, Pantaleoni F, et al. Novel mutations and their genotype-

phenotype correlations in patients with Noonan syndrome, using next-generation 

sequencing. Adv Med Sci. 2017; 63: 87-93. 



13 
  Rodríguez et al. 

 

8 Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for 

protein modeling, prediction and analysis. Nature Prot 2015; 10: 845-858. 

9 Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and Development of Coot.   

Acta Cryst Section D - Biological Crystallography. 2010; 66: 486-501 

10 Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting 

damaging missense mutations. Nat Methods 2010; 7: 248-249. 

11 Carta C, Pantaleoni F, Bocchinfuso G, et al. Germline missense mutations affecting 

KRAS Isoform B are associated with a severe Noonan syndrome phenotype. Am J Hum 

Genet. 2006; 79: 129-135.  

12 Zenker M, Lehmann K, Schulz AL, et al. Expansion of the genotypic and phenotypic 

spectrum in patients with KRAS germline mutations. J Med Genet. 2007; 44: 131-135. 

13 Razzaque MA, Komoike Y, Nishizawa T, et al. Characterization of a novel KRAS 

mutation identified in Noonan syndrome. Am J Med Genet A. 2012; 158A: 524-532. 

14 Cavé H, Caye A, Ghedira N, et al. Mutations in RIT1 cause Noonan syndrome with 

possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic 

leukemia. Eur J Hum Genet. 2016; 24: 1124-113 

15 Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of 

sequence variants: a joint consensus recommendation of the American College of 

Medical Genetics and Genomics and the Association for Molecular Pathology. Genet 

Med. 2015; 17: 405-424. 



14 
  Rodríguez et al. 

 

16 Runtuwene V, van Eekelen M, Overvoorde J, et al. Noonan syndrome gain-of-

function mutations in NRAS cause zebrafish gastrulation defects. Dis Model Mech. 

2011; 4: 393-399. 

 

FIGURE LEGENDS 

Fig. 1: Facial photographs of patient at five months (a) and three years (b) of age 

showing hypertelorism, epicanthal folds, mild ptosis, sparse hair and low set ears.  

Fig. 2: KRAS missense mutations. a) Sequence analyses of the KRAS exon 3 shows a 

heterozygous base substitution of thymine c.158 by guanine in the patient. A wild type 

reference sequence is shown. The black line under the nucleotides sequence highlights 

the codon 53 (NM_004985.4). b) Pedigree chart of the patient, where genotype for 

nucleotide c.158 (T/T or T/G) is shown for each family member, as well as the 

corresponding chromatogram. c) Amino acid sequence alignment of the human KRAS 

strand 3 (β3, amino acid residues 51 to 60) with the orthologues from different species, 

where the amino acid residue leucine 53 is indicated with arrows. Secondary structure 

organization diagram of KRAS showing the position of β3, the substitution p.L53W, and 

two NS associated residues substitutions that are close to p.L53. Both switch regions 

(SW I and SW II) and the hypervariable region (HVR) are also shown. d) [up] Three-

dimensional structure of the KRAS protein with two possible rotamers of p.W53 (purple 

and green side chains). Residues affected by the p.L53W substitution are show in 

magenta. [down] Atom distances between p.I24 and p.L53 (left) or p.W53 (right) side 

chains. 
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Result of the HRM analysis for KRAS exon 3 in patient, reference samples (wild type - WT) and controls 

with known nucleotide changes (rs115908336 T/G). 

 

 

 

 

 

79           80           81           82           83           84           85           86
Temperature (°C)

N
or

m
al

ize
d

Fl
uo

re
sc

en
se

m
in

us
R

ef
er

en
ce

6

4

2

0

-2

-4

-6

Patient

Reference (WT)

rs115908336 T/G

KRAS_exon 3



18 
  Rodríguez et al. 

 

Supplementary Fig. S2 

 

Allele-specific PCR 

Confirmation of a c.156 T>G substitution and analysis of healthy controls was performed by 

allele-specific PCR method. Briefly,  genomic DNA (37,5 ng) was incubated with the forward 

primers KRAS-3_156T (5' GGAGAAACCTGTCTCTT 3') or KRAS-3_156G (5' 

GGAGAAACCTGTCTCTG 3') and the reverse primer KRAS-3R 

(CCTACCTCATAAACATTATTTAA 3'); 1X Green GoTaq® Flexi Buffer; 2 mM MgCl2; 0.2 mM 

dNTPs and 1 unit of GoTaq® G2 Flexi DNA Polymerase; in a final volume of 15 μl. Amplification 

was performed in a T960 thermocycler (Hangzhou Jingle Scientific Instrument, China) with the 

following thermal cycles: 2 minutes at 95°C; 30 cycles of 30 seconds at 95°C, 30 seconds at 

55°C and 30 seconds at 72°C; followed by a final extension of 5 minutes at 72°C. The PCR 

products were separated on a 2% agarose gel and stained with SYBR® Safe DNA Gel Stained 

(Invitrogen, OR, USA). 

 

 

 

 

 

 

 

 

Result of allele-specific PCR for c.156 T>G substitution of KRAS exon 3 in reference sample (wild type - 

WT); Patient and non template control (NTC). Black arrowhead indicates 300 bp standard (MW) and white 

arrowhead depicts the ~ 270 bp amplicon. 

     MW                   WT                   Patient                NTC 

                       T            G               T            G             T           G             Allele 

Genotype                          T / T                         T / G                               
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Supplementary Table S1: Primers used for exon amplification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genes Exons Primers sequence (5' > 3') Annealing T° (°C) Amplicon size (nt.) 

PTPN11 

2# 
F: GTA GTG CTG ACA GTG TC TTG T 
R: CAG CAA GCT ATC CAA GCA TGG T 

60 258 

3# 
F: CGA CGT GGA AGA TGA GAT CTG A 
CAG TCA CAA GCC TTT GGA GTC AG 

TD_ 70 - 62 384 

4# 
F: ACA ACA TGA ACC CAT AGT AGA GC 
R: CAG AAA AAT CAC CCA AAG GTA 

58 350 

7# 
F: GAA CAT TTC CTA GGA TGA ATT CC 
R: GGT ACA GAG GTG CTA GGA ATC A 

60 271 

8# 
F: GAC ATC AGG CAG TGT TCA CGT TAC 
R: CCT TAA AGT TAC TTT CAG GAC ATG 

60 350 

12# 
F: GCT CCA AAG AGT AGA CAT TGT TTC 
R: GAC TGT TTT CGT GAG CAC TTT C 

60 250 

13# 
F: TCA TCC TGG CTC TGC AGT TTC TCT 
R: CGT ATC CAA GAG GCC TAG CAAG 

66 262 

SOS1 

6# 
F: AAA TGA CTT ATT GGC TCA AAA T 
R: TTA GTA TCT ATG ACT TTA GCT GGA A 

TD_ 60 - 52 324 

7# 
F: TTG TGC TCG CAT AGT CGT G 
R: GGA GAC AGT GGT AAA CAG GG 

65 357 

8# 
F: CGA CCT GGT TTT CAT GAT 
R: ACT AAT GTG CAG GGT ACT CA 

60 300 

10.1*# 
F: AAT CTA CTT TTA CAC TTT CCC 
R: TAA TTT GTA CCT TTC GCA TA 

54 388 

10.2*# 
F: TTG GAC AGT GTT GTA ATG AAT TT 
R: CTC ATC TGC TCC TCT TTC TC 

54 394 

10.3*# 
F: TAG TGT TAT ATT TTC TGC CAA G 
R: AGT TTC TTT TCT ATT TTA GGC AC 

54 390 

11# 
F: TTC TAC TTG GCA AAA CAT T 
ATT TCT GAA AAG GAT CTT AGC 

TD_ 60 - 52 285 

12# 
F: AAA CGT TTG TGG TTT TCT ATT TG 
R: TTT ATT GTC ACC CCT CTC 

54 300 

16# 
F: AAA TTC TTT AAG CTA TAA CTT TA 
R: ACC AAT TCA TTA CAA AAC TTA G 

TD_ 60 - 52 386 

RAF1 

7# 
F: GCC CTT AAG CAT CTT ACT TAG TC 
R: TGA AAC CCA AAA CTC TGA AAT AA 

60 330 

12# 
F: GGG AAA GCA CAG TAG ACC TC 
R: ACAGAATCGCTTAATGGACTAGA 

56 348 

14$ 
F: GTG TTA TAA AGA ACT TTG GGA TA 
R: CTA GGG GTC ATG TGG ATT 

54 317 

17# 
F: AGG GTA CAT CCT GTG TCT TTG AG 
R: AGG GAG CAG AAA AGT GGT G 

60 275 

KRAS 

2$ 
F: ATT AAC CTT ATG TGT GAC ATG TT 
R: CCT TTA TCT GTA TCA AAG AAT G 

54 242 

3$ 
F: ATA ACA CCT TTT TTG AAG TAA A 
R: CCT ACC TCA TAA ACA TTA TTT AA 

TD_ 56 - 48 369 

6$ 
F: GAA GAG AAA CAT AAA GAA TCC 
R: GTG TAA TGT ACA AAA ATT ACC AC 54 293 

F: forward; R: reverse; nt.: nucleotides; TD: touchdown technique, * exon 10 is analyzed in three fragments, 
# HOT FirePol® Eva Green® HRM Mix, 

$
 SensiFAST HRM Mix. 


