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Abstract

Introduction: Heart rate variability (HRV) can be 
assessed from RR-intervals. These are derived from an 
electrocardiographic PQRST-signature and can deviate in 
a chaotic or irregular manner. In the past, techniques from 
statistical physics have allowed researchers to study such 
systems.

Objective: This study planned to assess the heart rate 
dynamics in young obese subjects by nonlinear metrics to 
heart rate variability. 

Method: 86 subjects were split equally according to status. 
Heart rate was recorded with the subjects resting in a dorsal 
(prone) position for 30 minutes. The complexity of the 
RR-intervals was assessed by five Entropies, Detrended 
Fluctuation Analysis, Higuchi and Katz’s fractal dimensions 
Following inconclusive tests of normality we calculated the 
One-Way Analysis of Variance, Kruskal-Wallis, and the Effect 
Sizes by Cohen’s d significances. 

Results: It was established that Shannon, Renyi and Tsallis 
Entropies and the Higuchi and Katz’s fractal dimensions 
could significantly discriminate the two groups. The three 
entropies were higher in obese youths, suggesting less 
predictable sets of RR intervals (p<0.0001; d≈1.0). Whilst the 
Higuchi (p<0.003; d≈0.76) and Katz’s (p≈0.02; d≈0.57) fractal 
dimensions were lower in obese youths. 

Conclusion: As with chaotic globals an increase in response 
was detected by three measures of entropy in young obese. 
This is counter to the decreasing response detected by 
fractal dimensions. Chaotic globals and entropies are more 
dependable than fractal dimensions when assessing the 
responses to obesity. 
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entropy, fractal dimensions
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Heart rate variability (HRV) can be assessed 
from RR-intervals1,2. These are derived from an 
electrocardiographic PQRST-signature and can deviate in 
a chaotic or irregular manner. In the past, techniques from 
statistical physics3,4 have allowed researchers to study 
such systems5. 

HRV is an inexpensive, reliable and non-invasive 
technique to monitor the sympathetic and parasympathetic 
components of the autonomic nervous system (ANS)6. 
HRV is highly regarded as a functional marker of human 
development7. It can be enforced to identify phenomena 
related to the ANS in healthy subjects and patients with 
certain diseases, such as diabetes mellitus8, 9, chronic 
obstructive pulmonary disorder (COPD)10, epilepsy11,12 
and those referred to as “dynamical diseases13.”

Previously, we have assessed datasets through 
chaotic globals in obese youths14. These techniques are 
useful since they can be applied straightforwardly to entire 
and in particular short time-series (20 minutes) to achieve 
statistically significant responses. So far, these techniques 
are formulated by enforcing either Welch15 or Multi-
Taper Method16,17 (MTM) power spectra, so the phase 
information is lost. This provides the motivation to assess 
these datasets of obese youths by alternative complex 
measures. In this study we enforce five based on entropy: 
Approximate18, Sample19,20, Shannon21, Renyi22,23 and 
Tsallis24 Entropies and then, the Detrended Fluctuation 
Analysis (DFA)25. Furthermore, we then assessed the same 
data using the Higuchi26 and Katz’s27 fractal dimensions. 

 METHODS & STATISTICAL ANALYSES
Patient Selection and assessments were exactly as 

the study by Vanderlei et al14.

Shannon entropy
Shannon Entropy21 is a measure of lack of 

knowledge. A low entropy dataset is highly predictable 
- whereas a high entropy dataset is less predictable. In 
contrast to Tsallis and Renyi entropies (discussed next), 
Shannon entropy is additive. Hence, if the probabilities 
can be factorised into independent factors, the entropy of 
the joint process is the sum of the entropies of the separate 
processes. 

Renyi entropy
The order-q Renyi entropies22 are a series of 

entropy like quantities. When the entropic order α→ 1, 
Renyi entropy coincides with Shannon entropy; which 
can be derived by the l’Hospital’s rule28,29. Here we set 
the entropic order α=0.25. As entropic order increases 
the measures become more sensitive to the values 
occurring at higher probabilities and less to those of lower 
probabilities. Renyi entropy is described fully in studies 
by Zyczkowski23. 

Tsallis entropy
Tsallis entropy24 is a generalisation of the standard 

Shannon-Boltzmann-Gibbs entropy. It was introduced as 
a basis for generalising the standard statistical mechanics. 

 INTRODUCTION
Where entropic index, q →1 it is the Shannon-Boltzmann-
Gibbs entropy. Here we set entropic index, q=0.25. Tsallis 
entropy is discussed further in the publications by dos 
Santos30 and, Plastino and Plastino31. 

Detrended fluctuation analysis (DFA)
DFA25 can be applied to datasets where statistics 

such as mean, variance and autocorrelation vary with 
time. DFA is a technique quantifying how the fluctuations 
of a signal scale with the number of samples of that signal. 
Regarding DFA according to Donaldson32 the time-series 
of length k was manipulated as follows.

	  
The integrated time-series was then divided into 

equally sized and non overlapping windows of length w. 
A linear regression line was fitted through the data in each 
window and the time-series manipulated by subtracting 
the regression line from the data. The root mean square 
fluctuation F(w) of the integrated and detrended time-
series defined as

	  

The scaling exponent is obtained as the slope of 
the straight line fit to F(w) against w on a log-log plot as:

	  
DFA is a widely enforced technique in variability 

analysis. It has been applied to the evaluation of 
posture33, exercise34, sleep stages35, prediction of sepsis36, 
classification of asthma37 and COPD32,38,39.

Approximate entropy (apen)
ApEn18, is a procedure necessary to assess the level 

of regularity and the unpredictability of changes over 
time-series. ApEn is the logarithmic ratio of component-
wise matching sequences from the signal length, N. Other 
parameters include r, tolerance and m the embedding 
dimension. Here, we set m to 2 and r is 0.2 of the standard 
deviation of the data. 

A minimum value of zero for ApEn would 
indicate a totally predictable series. ApEn is described 
mathematically as in the Kubios HRV® Analysis Manual40. 
First a set of length m vectors uj is formed

	  
The distance between these vectors is defined as the 

maximum absolute difference between the corresponding 
elements, hence,

	  

Next for each uj the relative number of vectors uk  
for which (uj, uk) is calculated. This index is denoted with   
and can be written in the form
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Due to the normalisation, the value of Cm
j(r) is 

always smaller or equal to 1. Note that the value is at least 
1/(N - m + 1) since uj  is also included in the count. Then, 
take the natural logarithm of each Cm

j(r) and average over 
j to yield.

	  

 Finally, the ApEn is obtained as

	  
Sample entropy (SampEn)

SampEn19,40 is analogous to ApEn but there are 
two important differences in its calculation. For ApEn, in 
the calculation of the number of vectors uk for which (uj, 
uk), r, also the vector uj itself is included. This ensures that  
Cm

j(r)  is always larger than zero and the logarithm can 
be applied, but at the same time it makes ApEn biased. 
In SampEn, the self-comparison of uj is eliminated by 
calculating  Cm

j(r)  as

	  
Now the value of Cm

j(r) will be between 0 and 1. 
Then, the values of  Cm

j(r) are averaged to yield:
	  

SampEn isdeduced as

	  
Again, the embedding dimension is m and the 

tolerance parameter r (where, m=2 and r=0.2 of the 
standard deviation of the data). Both ApEn and SampEn 
are estimates for the negative natural logarithm of the 
conditional probability that a data of length N, having 
repeated itself within a tolerance r for m points will also 
repeat itself for m+1 points.

Higuchi fractal dimension (HFD)

Higuchi26 derived his procedure to measure the 
fractal dimension of discrete time sequences. It is regarded 
as the most robust of all the fractal dimension techniques 
and can be enforced on relatively short sections of data. 
It is imposed directly to the RR-intervals with no power 
spectrum step as is the case with the chaotic globals8, 9. 
The phase information is maintained.

Khoa et al41 presented the algorithm and we adapt 
it below for RR intervals. It is based on a measure of 
length, L(k), of the curve that represents the considered 
time-series while using a segment of k samples as a unit, if 
L(k) scales in the following manner:

The curve is alleged to display a fractal dimension 
Df.  A simple curve has dimension equal to 1 and a plane 
has dimension equal to 2. The value of Df is always 
between 1 (a simple curve) and 2 (a curve which almost 
fills out the whole plane). Df quantifies the complexity of 
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the curve and so of the time-series this curve represents 
on a graph. 

From a given time series, RR(1), RR(2), ... , RR(N), 
the algorithm constructs k new time series:

 

Where m is initial time value, k indicates the 
discrete time interval between points, hence the delay, 
kmax is maximum interval time, int(a) is integer part of 
a real number a. 

For each of the time-series RRkm constructed, the 
average length  Lm (k) is then computed as: 

 
N is total number of RR intervals. Subsequently, 

the length of the curve for time interval k is expressed as 
the sum value over k sets of Lm (k) as illustrated by the 
following equation.

 

Lastly, the slope of the curve 1n(L(k)) /1n(1 /k)  
is estimated using least squares linear best fit and the 
resulting slope is the HFD. To select a suitable value for 
kmax, HFD values are plotted against a range of kmax. The 
point at which the fractal dimension plateaus is considered 
a saturation point. That appropriate kmax value should be 
selected.

Katz’s fractal dimension
Regarding the Katz’s algorithm27 this fractal 

dimension is once more calculated directly from the 
time-series. This algorithm has the advantage over that of 
Higuchi’s in that a kmax parameter is superfluous. Yet, it has 
the difficulty that it requires a longer time-series to achieve 
significant results. Therefore we apply a cubic spline 
interpolation42 at levels 1 Hz to 15 Hz. As a consequence 
the number of samples in the datasets increases by 1000 
per 1 Hz increase. It is important to recall that an accurate 
value for any type of fractal dimension should be between 
1 and 2, as stated in the preceding section (see results 
later).

 

L is the total length of the time-series and d is the 
Euclidean distance between the first point in the series and 
the point that provides the furthest distance with respect to 
this first point. If we set a to be the mean distance between 
successive points and, n as the number of steps in the 
curve, then n = L/a.

 RESULTS
Parametric statistics recognize that the relevant 

datasets are normally distributed, hence the use of the mean 
as a measure of central tendancy. If we cannot normalize 
the data it is unsuitable to compare means. To authenticate 
normality we executed the Anderson-Darling43 and Ryan-
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Entropy 
& DFA

Mean Normal ±SD 
Normal

Mean 
Youth 
Obese

±SD Youth 
Obese

ANOVA1
p-value

Kruskal-
Wallis
p-value

Effect Size 
Cohen’s d

ApEn 0.8789 0.0628 0.8976 0.0815 0.2356 0.0938 0.26
SampEn 0.8646 0.0733 0.8534 0.0936 0.5355 0.6471 -0.13
DFA 0.2935 0.1818 0.3524 0.1899 0.1457 0.0781 0.32
Shannon 0.6668 0.1067 0.7709 0.1046 <0.0001 <0.0001 0.99
Renyi 0.9895 0.0039 0.9932 0.0033 <0.0001 <0.0001 1.02
Tsallis 0.6997 0.0977 0.7953 0.0941 <0.0001 <0.0001 1.00

Joiner44 tests. Unfortunately, the results were inconclusive 
so we are unable to assert that the observations follow either 
a normal or non-normal distribution. Thus, we applied 
both parametric and non-parametric tests of significance. 
These are the One-Way Analysis of Variance (ANOVA1)45 
and the Kruskal-Wallis46 tests of significance. 

Table 1: The table below illustrates the mean values and standard deviation for five values of Entropy 
(Approximate, Sample, Shannon, Renyi and Tsallis) and Detrended Fluctuation Analysis (DFA) for the normal 
and youth obesity subjects (both n=43) RR-intervals. ANOVA1 and Kruskal-Wallis tests of significance 
calculated and the Cohen’s d effect sizes were computed.

To quantify the magnitude of difference between 
protocols for significant differences, the effect size was 
calculated via Cohen’s d47. Large effect size was considered 
for values greater than or equal to 0.9, medium for values 
between 0.9 and 0.5 and small for values between 0.5 and 
0.25

Figure 1: The boxplots of the six measures of complexity (Approximate, Sample, Shannon, Renyi and Tsallis 
Entropies and DFA) for control and obese youth subjects (both n=43). The point closest to the zero is the 
minimum and the point farthest away is the maximum. The point next closest to the zero is the 5th percentile 
and the point next farthest away is the 95th percentile. The boundary of the box closest to zero indicates the 
25th percentile, a line within the box marks the median (not the mean), and the boundary of the box farthest 
from zero indicates the 75th percentile. The difference between these points is the inter-quartile range (IQR). 
Whiskers (or error bars) above and below the box indicate the 90th and 10th percentiles respectively.

Figure 2: Box-and-whiskers plot for Higuchi fractal dimension of RR–intervals the Control subjects (left) 
and the obese youth subjects (right) calculated multiple times from 10 to 150 in equidistant units for different 
levels of Kmax.
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Table 2: HFD statistics through kmax between 10 and 150 at intervals of 10 in the normal and youth obesity 
subjects. The statistics include mean and standard deviation HFD for normal and youth obesity (both n=43). 
Their level of significance was tested by ANOVA1, Kruskal-Wallis technique and Cohen’s d effect sizes.
HFD 
Parameter 
(kmax)

Mean HFD 
Normal

±SD HFD 
Normal

Mean HFD 
Youth Obese

±SD HFD
Youth Obese

ANOVA1
p-value

Kruskal-
Wallis
p-value

Effect Size 
Cohen’s d

10 1.8628 0.0690 1.8078 0.0807 0.0010 0.0023 0.73
20 1.8946 0.0422 1.8585 0.0526 0.0007 0.0029 0.76
30 1.9062 0.0360 1.8788 0.0433 0.0020 0.0038 0.69
40 1.9139 0.0344 1.8916 0.0388 0.0061 0.0092 0.61
50 1.9187 0.0338 1.9013 0.0362 0.0235 0.0333 0.50
60 1.9220 0.0342 1.9094 0.0345 0.0912 0.0981 0.37
70 1.9256 0.0346 1.9151 0.0328 0.1525 0.1385 0.31
80 1.9288 0.0343 1.9201 0.0311 0.2191 0.1821 0.27
90 1.9318 0.0340 1.9238 0.0297 0.2487 0.1737 0.25
100 1.9343 0.0336 1.9273 0.0294 0.3052 0.2316 0.22
110 1.9369 0.0330 1.9301 0.0289 0.3120 0.2561 0.22
120 1.9395 0.0329 1.9327 0.0286 0.3092 0.2350 0.22
130 1.9415 0.0326 1.9354 0.0282 0.3557 0.2597 0.20
140 1.9434 0.0322 1.9380 0.0274 0.4009 0.2316 0.18
150 1.9450 0.0318 1.9401 0.0265 0.4390 0.1821 0.17

The results reveal extensive variation for both the 
non-obese controls and those from the obese youths (see 
Table 1 and Figure 1). The results for the Approximate 
Entropy, Sample Entropy and DFA are insignificant and so 
are not discussed further. The results for Shannon, Renyi 
and Tsallis entropy are all highly significant on the basis of 
all three statistical tests (p<0.0001 & Cohen’s d ≈ 1.0 large 
effect size). In all three cases there is a significant increase 
in chaotic response.

Next, we assessed the HFD there were several 

significant results at numerous levels of kmax. These va-
lues of kmax were between 10 and 50 and all achieved a 
p<0.05 (<5%) and a Cohen’s d effect size of d > 0.5, a me-
dium effect size. However, the algorithm performed opti-
mally with a kmax of 20 (ANOVA1 and Cohen’s d). This 
was related to a decrease in mean values for HFD from 
normal non-obese to obese youths. This was assumed to 
be the saturation point. During the HFD analysis exactly 
1000 RR intervals from the two groups was enforced.

Table 3: The mean and standard deviations for the Katz’s fractal dimension. There were equal groups 
of subjects for normal and youth obesity (both n=43) and the number of RR intervals in the dataset was 
1000. We then enforced a cubic spline interpolation at levels 1Hz to 15 Hz. Then the number of samples 
in the datasets enlarged from 1000 to 15000. Levels of significance tested by ANOVA1 and Kruskal-Wallis 
techniques and, the Cohen’s d effect sizes.

Cubic Spline 
Interpolation (Hz)

Mean Katz 
Normal

±SD Katz 
Normal

Mean Katz 
Youth Obese

±SD Katz
Youth Obese

ANOVA1
p-value

Kruskal-Wallis
p-value

Effect Size 
Cohen’s d

1 2.1095 0.2364 1.9792 0.2089 0.0082 0.0195 0.58

2 1.6503 0.1327 1.5768 0.1232 0.0093 0.0229 0.57

3 1.4825 0.1012 1.4264 0.0952 0.0097 0.0218 0.57

4 1.3900 0.0852 1.3428 0.0805 0.0100 0.0234 0.57

5 1.3296 0.0752 1.2881 0.0710 0.0101 0.0229 0.57

6 1.2864 0.0682 1.2489 0.0642 0.0103 0.0218 0.57

7 1.2535 0.0628 1.2190 0.0590 0.0104 0.0218 0.57

8 1.2274 0.0586 1.1954 0.0547 0.0105 0.0229 0.56

9 1.2062 0.0550 1.1762 0.0512 0.0106 0.0234 0.56

10 1.1884 0.0520 1.1602 0.0481 0.0107 0.0234 0.56

11 1.1734 0.0494 1.1467 0.0454 0.0108 0.0239 0.56

12 1.1604 0.0471 1.1350 0.0430 0.0109 0.0239 0.56

13 1.1490 0.0450 1.1249 0.0409 0.0109 0.0245 0.56

14 1.1391 0.0432 1.1160 0.0389 0.0110 0.0245 0.56

15 1.1302 0.0414 1.1081 0.0371 0.0111 0.0250 0.56
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Unlike HFD the Katz’s algorithm necessitates a 
longer time-series. Accordingly, we enforced a cubic spline 
interpolation42 at levels 1 Hz to 15 Hz. As a consequence 
the number of samples in the datasets enlarged from 1000 to 
15000 increasing by 1000 per single 1 Hz increase. 

It should be emphasized that with a cubic spline 
interpolation of 1Hz (the original time-series) the results 
were erroneous because they gave a value of Katz’s fractal 
dimensions greater that 2. This is inappropriate as all fractal 
dimesions are required to be between 1 (simple curve) and 2. 
(curve almost filling entire plane) This is error is assumed to be 
attributable to the too shorter time series.

There was an optimal level of significance with a 
decrease in mean values from normal non-obese to youth 
obese for the Katz’s algorithm (p≈0.02; ≈2% both ANOVA1 
& Kruskal-Wallis tests) and a medium effect size (Cohen’s 
d≈0.57) for a cubic spline interpolation of 2 Hz. With longer 
time-series and cubic spline interpolations greater than 2Hz 
the significances of the results gradually decline for all three 
statistical tests.

 DISCUSSION 
The development of algorithms to function as statistical 

markers of pathological disease states is an ongoing process. 
This is particularly the case with the measurements based on 
RR-intervals by non-linear dynamics and their relationship 
with the “dynamical diseases.” Time and frequency domain 
or geometric methods can incorrectly interpret the level of 
pathology.

Previously when employing short-time series for the 
assessment of chaotic response in youth obese subjects we 
have computed the chaotic global techniques to discriminate 
between control subjects and those obese youths14. Generally, 
these chaotic global techniques are sufficient. However, 
during the power spectral step through Welch or MTM, the 
phase information is lost. This was the motivation to apply the 
same data to other techniques based on nonlinear dynamics. 
There were five entropies, DFA and two categories of fractal 
dimension. Here the phase information is preserved and they 
are less computer processor expensive. 

The responses of Approximate and Sample Entropies 
and DFA are insignificant. However, by applying Shannon, 
Renyi and Tsallis Entropies a significant increase in values 
for obese youths was observed, suggesting that the series of 
RR intervals in these individuals is less predictable. There 
was a slight statistical advantage for the Renyi Entropy over 
Shannon and Tsallis when assessed by effect size Cohen’s d 
with the entropic order α=0.25. But, they were largely similar 
on ANOVA1 and Kruskal-Wallis statistical tests.

In a preceding study by Vanderlei et al48 with obese 
children a similar connection was found. But, the previous 
study with obese children48 found that Approximate Entropy 
was also significant (p<0.01, <1%). Further, in this study 
we calculated DFA and this was also established statistically 
insignificant. 

In relation the HFD (p<0.003, p≈0.3%; d≈0.76 
medium effect size) was revealed to be superior to the Katz’s 
fractal dimension (p≈0.02, p≈2%; d≈0.57 medium effect size) 
when the ANOVA1, Kruskal-Wallis and Cohen’s d tests were 
computed. These were both significant decreases in chaotic 
response by Higuchi and Katz’s fractal dimension of HRV 

in obese youth subjects. The decreases in chaotic response 
attributable to the fractal dimensions are uncharacteristic. 

Some chaotic global (including CFP1, CFP3 and 
CFP6)14 and the Shannon, Renyi and Tsallis Entropies (see 
Table 1 and Figure 1 above) have been revealed to increase in 
magnitude for the obese youths using the identical dataset14. 
Besides, when applied to obese children the most robust 
chaotic global (CFP1; with p≈0.05;49) and four out of five 
measures of entropy, not the Sample Entropy (p>0.05)48 
significantly increased in obese children. Interestingly, in a 
study of malnourished children50 the chaotic global parameters 
(CFP1 & CFP3) significantly decreased, the opposite response 
to obesity in children or obese youths; excluding consideration 
of the two fractal dimensions. It could therefore be assumed 
that whilst the fractal dimension techniques described here 
discriminate between the two cohorts of data they cannot be 
used effectively or reliably as a statistical marker for youth 
obesity. It is advisable that in this case the chaotic globals or 
three entropic techniques are unmatched.

The relationship between youth obesity and 
complexity measures such as chaotic globals and the three 
entropies (Shannon, Renyi and Tsallis) is beneficial in the risk 
assessment of diseases associated with obesity. Through non-
invasive technology it identifies the level of severity from a 
low-cost yet reliable method of monitoring the ANS. This is 
helpful in treatments, such as the determination of the extent 
of dietary or pharmacological interventions required in the 
purported “dynamical diseases.” 

Yet, proceeding cautiously, since the subject’s 
autonomic modulation may be critical. It should be highlighted 
that malnutrition by large has the opposite effect on the chaotic 
responses of RR-intervals to chaotic globals and entropies, 
excluding the two fractal dimensions; Higuchi and Katz’s. 
Also, it should be distinguished that there are other conditions, 
such as diabetes mellitus and COPD which could cause similar 
correlations. 

 
 CONCLUSION 

On the basis of three measurements of non-linearity, 
namely Shannon, Renyi and Tsallis Entropy young obese 
subjects have exhibited an increase suggesting a series of 
RR intervals that are less predictable. It was revealed that 
both Higuchi and Katz’s fractal dimension can discriminate 
between the two groups. The Higuchi fractal dimension was 
optimal with a kmax of 20 and with 1000 samples. For the Katz’s 
Fractal Dimension the maximal discrimination between the 
groups necessitated a cubic spline interpolation of 2Hz and 
therefore 2000 samples. Yet these fractal dimension techniques 
lead to a decrease in chaotic response when comparing normal 
non-obese to obese youths. This is atypical. So it is advisable 
to enforce chaotic globals or the three named entropies as a 
statistical marker for obesity as they are more consistent. 
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Abstract

Introduction: Heart rate variability (HRV) can be assessed from RR-intervals. These are 
derived from an electrocardiographic PQRST-signature and can deviate in a chaotic or irregular 
manner. In the past, techniques from statistical physics have allowed researchers to study 
such systems.

Objective: This study planned to assess the heart rate dynamics in young obese subjects by 
nonlinear metrics to heart rate variability. 

Method: 86 subjects were split equally according to status. Heart rate was recorded with the 
subjects resting in a dorsal (prone) position for 30 minutes. The complexity of the RR-intervals 
was assessed by five Entropies, Detrended Fluctuation Analysis, Higuchi and Katz’s fractal 
dimensions Following inconclusive tests of normality we calculated the One-Way Analysis of 
Variance, Kruskal-Wallis, and the Effect Sizes by Cohen’s d significances. 

Results: It was established that Shannon, Renyi and Tsallis Entropies and the Higuchi and 
Katz’s fractal dimensions could significantly discriminate the two groups. The three entropies 
were higher in obese youths, suggesting less predictable sets of RR intervals (p<0.0001; 
d≈1.0). Whilst the Higuchi (p<0.003; d≈0.76) and Katz’s (p≈0.02; d≈0.57) fractal dimensions 
were lower in obese youths. 

Conclusion: As with chaotic globals an increase in response was detected by three measures 
of entropy in young obese. This is counter to the decreasing response detected by fractal 
dimensions. Chaotic globals and entropies are more dependable than fractal dimensions when 
assessing the responses to obesity. 

Keywords: youth obesity, detrended fluctuation analysis, entropy, fractal dimensions


