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Abstract

Linear SVMs are efficient in both training and testing,
however the data in real applications is rarely linearly sep-
arable. Non-linear kernel SVMs are too computationally
intensive for applications with large-scale data sets. Re-
cently locally linear classifiers have gained popularity due
to their efficiency whilst remaining competitive with kernel
methods. The vanilla nearest neighbor algorithm is one of
the simplest locally linear classifiers, but it lacks robustness
due to the noise often present in real-world data.

In this paper, we introduce a novel local classifier, Para-
metric Nearest Neighbor (P-NN) and its extension Ensem-
ble of P-NN (EP-NN). We parameterize the nearest neigh-
bor algorithm based on the minimum weighted squared Eu-
clidean distances between the data points and the proto-
types, where a prototype is represented by a locally linear
combination of some data points. Meanwhile, our method
attempts to jointly learn both the prototypes and the clas-
sifier parameters discriminatively via max-margin. This
makes our classifiers suitable to approximate the classifica-
tion decision boundaries locally based on nonlinear func-
tions. During testing, the computational complexity of both
classifiers is linear in the product of the dimension of data
and the number of prototypes. Our classification results
on MNIST, USPS, LETTER, and Chars74K are compara-
ble and in some cases are better than many other methods
such as the state-of-the-art locally linear classifiers.

1. Introduction
Classification continues to be one of the key challenges

in computer vision research. Ideally, we would like to learn
a classifier f so that ∀i, (xi, yi), f : xi → yi, where xi ∈
Rd is a data point and yi ∈ N is its class label.

Among different classifiers, support vector machines
(SVMs) are commonly used because of their good gen-
eralization. But the data points from distinct neighboring
classes are often not well separated when linear kernels are
used directly. With the help of the kernel trick, kernel-based

SVMs map the original features into a higher dimensional
space implicitly, and then classify the data using linear ker-
nels. However, kernel-based SVMs are too computation-
ally intensive for applications with large-scale data sets. To
approximate kernels, some explicit feature mapping meth-
ods [14, 20] have been proposed for kernel approximation.
However, not all the kernel functions can be approximated
explicitly using these methods.

Recently, locally linear classifiers [12, 13, 21, 25, 26, 27,
28, 29] have been attracting more and more attention due
to their good performance and efficiency. The basic idea
behind these approaches is that the optimal classification
decision boundaries can be piece-wise approximated locally
using linear functions. Notice that all these classifiers above
are variants of stacked generalization [24], where the output
from the previous layer is the input for the current layer, and
all the layers are trained independently, but only the final
layer is trained for the classification purpose.

The nearest neighbor algorithm is one of the simplest lo-
cal classifiers, but its performance is quite sensitive to the
noisy data due to its nonparametric property. In this paper,
we introduce a novel max-margin based Parametric Near-
est Neighbor classifiers (P-NN), and its extension Ensemble
of P-NN (EP-NN). Our method extends the nonparametric
kernel estimation [2], and jointly learns the prototypes, each
of which is represented by a locally linear combination of
some data points, and the classifier parameters. The clas-
sification decision in our classifiers is made based on the
minimum weighted squared Euclidean distances between
the data points and the prototypes. The computational com-
plexity of our classifiers during testing is linear in the di-
mension of data and the total number of prototypes, which
makes them applicable for large-scale data.

In summary, the main contribution of this paper is that
we propose a max-margin based classifier with good trade-
off between accuracy, computational efficiency, and scal-
ability by parameterizing the nearest neighbor classifier.
It turns out that our classifiers can approximate decision
boundaries locally as well.
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1.1. Related Work

By extending the dimension of data explicitly, the de-
cision boundaries of the kernel-based SVMs in the original
feature space can be approximated using linear SVMs. Maji
et al. [14] proposed a fast piece-wise linearization approach
to approximate the intersection kernel with significant sav-
ings in terms of computational time and memory. Vedaldi
and Zisserman [20] proposed a more general explicit feature
mapping method to approximate the homogeneous additive
kernels (e.g. the intersection kernel and the χ2 kernel) based
on the Fourier sampling theorem.

However, the optimal decision boundary for a classifi-
cation problem does not necessarily behave as defined by
a kernel. In fact, it could be an arbitrary nonlinear func-
tion in the feature space. In such cases, it is still possible
to approximate an optimal decision boundary locally using
linear functions according to Taylor’s theorem.

Recently, several locally linear classifiers have been pro-
posed and successfully applied to object recognition. Zhang
et al. [28] proposed an SVM-KNN classifier, where for each
test data point, its K nearest neighbors in the training data
are found and used to train multi-class linear SVMs. Sim-
ilar ideas appeared in [25]. In SVM-KNN, searching for
K nearest neighbors for each point can be considered as a
coding process, and a few coding methods (e.g. LCC [27],
improved LCC [26], LLC [21], OCC [29], deep coding net-
work [13]) have been proposed for approximating the non-
linear optimal decision boundaries, which are assumed to
be (α, β, p)-Lipschitz smooth functions in order to guar-
antee theoretical upper bounds of the approximation error.
Ladicky and Torr [12] proposed a method for learning lo-
cally linear SVMs using encoded data. Notice that among
all these approaches, the coding schemes are not designed
directly for classification.

Nearest neighbor classifiers [1, 3, 18, 23] have been
widely used in computer vision. In [3] Boiman et al. pro-
posed a Naive Bayes Nearest Neighbor classifier (NBNN)
based on the nonparametric nearest neighbors for image
classification, and achieved good results on some bench-
mark datasets. Behmo et al. [1] parameterized NBNN by
max-margin methods for both image classification and ob-
ject detection. Tuytelaars et al. [18] built a kernel for SVMs
by generating image representations using NBNN. Wein-
berger and Saul [23] proposed a large margin nearest neigh-
bor classifier (LMNN) which improves the K-nearest neigh-
bor (KNN) classifier by learning the Mahalanobis distance
metric from labeled examples. All of these methods suffer
from high computational complexity because during testing
they need to search for the nearest neighbors for every test
point in the entire training data set.

Different from these previous work, our classifiers ap-
proximates the optimal decision boundary locally based on
nearest neighbors. We summarize the data distribution us-

(a) Nearest neighbor classifier (b) Parametric nearest neighbor classifier

Figure 1. Illustration of the differences between (a) the nonparametric
nearest neighbor classifier (i.e. 1-NN) and (b) our parametric nearest
neighbor classifier (P-NN), where 2 classes are represented by4 and©,
the 3 red triangles are the prototypes in class4, the blue circle is the pro-
totype in class©, the numbers close to the prototypes are their weights, the
dashed curve denotes the decision boundary of 1-NN, the solid hyperbolas
in (b) denote the decision boundary of P-NN, and the dotted curve denotes
the optimal decision boundary which needs approximation. Clearly, 1-NN
makes no attempt to approximate the optimal decision boundary. How-
ever, our P-NN learns not only the prototypes in each class but also the
classifier parameters (i.e. the nonnegative weights of the prototypes and
the bias terms for different classes), which approximates the optimal de-
cision boundary locally using hyperbolas based on the weighted squared
Euclidean distances. This figure is best viewed in color.

ing prototypes as well as learning the classifier parameters
jointly. The functionality of the prototypes in our method is
similar to the support vectors in kernel-based SVMs. How-
ever, the number of support vectors in kernel-based SVMs
could scale linearly with the size of the training data [16],
which is highly dependent on the structure of the training
data, while the number of the prototypes in our classifiers
is pre-defined and fixed during training and testing. In our
experiments, we also compare our classifiers with online
kernel-based multi-class SVMs with budget learning [22]
proposed recently by Wang et al., which manages the num-
ber of support vectors as well.

The rest of the paper is organized as follows. In Section 2
we explain the details of P-NN in terms of formulation, opti-
mization and computational complexity during testing, and
then introduce EP-NN in Section 3. In Section 4 we discuss
how to implement our classifiers in practice, and show our
experimental results and comparison with many other meth-
ods in Section 5. Finally we conclude the paper in Section 6.

2. Parametric Nearest Neighbor Classifiers

As illustrated in Fig. 1, in general the decision boundary
of a nearest neighbor classifier is locally linear, but it makes
no attempt to approximate the optimal decision boundary
for classification. On the contrary, our Parametric Nearest
Neighbor classifier (P-NN) aims to approximate the optimal
decision boundary locally by learning both the prototypes
for each class and the classifier parameters jointly and dis-
criminatively. In the following sections, we will explain the
details of P-NN in terms of formulation, optimization, and
computational complexity during testing.



2.1. Formulation

Initially, nearest neighbor classifiers can be considered
as nonparametric methods based on Gaussian kernel density
estimation. Given a data point x ∈ X ⊂ Rd and |Uc|, where
Uc ⊂ Rd, prototypes for the same class c ∈ C, where C de-
notes the class set, suppose that the window sizes, which are
unknown, in the Gaussian kernels for the prototypes in each
class are the same, denoted as hc ≥ 0, then the probability
of the data point x belonging to a class c can be formulated
as follows:

p(c|x) ∝ p(x|c) = 1

zc

∑
uj∈Uc

exp

{
−‖x− uj‖2

2(hc)2

}
(1)

where ‖ · ‖ denotes the `2-norm and zc = |Uc|(2π)
d
2 (hc)

d

is a normalization factor of the density function. Following
[1], p(x|c) can be approximated by the largest term in the
summation. Then by taking the log-likelihood, Eqn. 1 can
be rewritten as:

− log p(c|x) ≈ wc

{
min
uj∈Uc

‖x− uj‖2
}
+ bc (2)

where wc =
1

2(hc)2 ≥ 0, bc = log zc + log p(x)− log p(c),
p(x) and p(c) are the fixed probabilities of data point x and
class c, respectively.

Nonparametric nearest neighbor classifiers assume that
given a test data point x ∈ Rd, all the w’s and b’s for all the
classes are the same. This leads to the class label prediction
rule in nearest neighbor classifiers as follows:

c∗ = argmin
c∈C

‖x− uj‖2, s.t. uj ∈ Uc. (3)

However, as argued in [1], because both the window size
hc and the class prior probability p(c) could vary a lot for
different classes, the assumption in the nonparametric near-
est neighbor classifiers hardly holds for most cases. On the
contrary, our P-NN estimates w’s and b’s for all the classes
as well as learning the prototypes for each class by maxi-
mizing the margins.

Given a training data set (xi, yi)i=1,··· ,|X | with |X | data
points, where ∀i,xi ∈ X ⊂ Rd is a data point and yi ∈ C ⊂
N is its class label, for any class ∀c ∈ C, P-NN attempts to
jointly learn the prototypes Uc and the class model (wc,bc),
so that the minimum weighted Euclidean distance between
each data point xi and the prototypes in Uyi

is smaller than
the minimum weighted Euclidean distance between xi and
any prototype in Uc̄ =

⋃
c∈C\{yi} Uc. Therefore, based on

the hinge loss, P-NN can be formulated as the following
optimization problem:

min
u,w,b,ξ

λ

2
‖w‖2 +

∑
i

ξi (4)

s.t. ∀i, ci ∈ C \ {yi},
minci

{
wci minuk∈Uci ‖xi − uk‖2 + bci

}
≥ wyi

minuj∈Uyi ‖xi − uj‖2 + byi
+ 1− ξi,

∀i, ξi ≥ 0,
∀c ∈ C, wc ≥ 0.

where λ ≥ 0 is a pre-defined regularization parameter, ξ
denotes the set of slack variables, uj ∈ Uyi (resp. uk ∈
Uci ) denotes a prototype in Uyi (resp. Uci ), and wyi and byi

(resp. wci and bci ) are the class model parameters for class
yi (resp. ci). We denote (w,b) as the classifier parameters,
which are vectors consisting of all w’s and b’s respectively.
Finally, a test data point x is labeled as:

c∗ = argmin
c∈C

{
wc min

uj∈Uc
‖x− uj‖2 + bc

}
(5)

2.2. Optimization

We adopt an alternating optimization method between
learning prototypes and learning classifier parameters to
solve the non-convex problem in Eqn. 4.

2.2.1 Learning Prototypes

We update u and ξ in Eqn. 4 while fixing w and b us-
ing stochastic gradient descent, similar to the online-loss-
minimization algorithm in [8]. We say that ĉi is the closest
class label to yi for xi if

ĉi = argmin
ci∈C\{yi}

{
wci min

uk∈Uci
‖xi − uk‖2 + bci

}
. (6)

Letting g(xi,u;w,b) = ξi be the hinge loss given a data
point xi, and ĉi be the closest class label to yi for xi, then
the sub-gradient of g w.r.t. an arbitrary prototype u, denoted
as ∂g

∂u , is: if ξi > 0, then ∂g
∂u∗j

= 2wyi

(
u∗j − xi

)
and ∂g

∂u∗k
=

2wĉi (xi − u∗k), where u∗j = argminuj∈Uyi
‖xi−uj‖2 and

u∗k = argminuk∈Uĉi
‖xi−uk‖2; otherwise, ∂g

∂u = 0. Then
we can use the following equation to update u given a data
point xi:

∀u ∈

{
U =

⋃
c∈C
Uc

}
, u(t+1) = u(t) − ηt

∂g

∂u(t)
(7)

where ηt and ∂g
∂u(t) denote the learning rate parameter and

the sub-gradient for u at iteration t ∈ N, respectively.
Alg. 1 and Alg. 2 show our learning algorithms, where

we use some training points as the initial prototypes, be-
cause at the beginning we want to guarantee that the data
points and the prototypes are definitely in the same class, or
not. Other clustering algorithms such as K-Means could be
used as well to initialize the prototypes.



Algorithm 1: Initialization of the prototypes for each class:
U = InitializePrototypes(X ,Y, {|Uc|})

Input : training data (X ,Y), number of prototypes per class
{|Uc|}c∈C

Output: prototypes U =
⋃

c∈C Uc
foreach c ∈ C do
Uc ← ∅;
repeat

Randomly select data (x, y) ∈ (X ,Y) so that x /∈ Uc
and y = c;
Uc ← Uc

⋃
{x};

until |Uc| data points has been added;
end
return U =

⋃
c∈C Uc;

Algorithm 2: Stochastic gradient descent for learning prototypes:
U = LearnPrototypes(X ,Y, {ηi},U ,w,b)

Input : training data (X ,Y), learning rate {ηi}, prototypes U ,
classifier parameters (w,b)

Output: prototypes U =
⋃

c∈C Uc
foreach (xi, yi) ∈ (X ,Y) do

if minci∈C\{yi}

{
wci minuk∈Uci ‖xi − uk‖2 + bci

}
<

wyi minuj∈Uyi ‖xi − uj‖2 + byi + 1 then
u∗j = argminuj∈Uyi

‖xi − uj‖2;

u∗k = argminuk∈Uĉi
‖xi − uk‖2;

u∗j ← u∗j + ηiwyi (xi − u∗j );
u∗k ← u∗k − ηiwĉi (xi − u∗k);

end
end
return U =

⋃
c∈C Uc;

2.2.2 Learning Classifier Parameters

We update w, b and ξ in Eqn. 4 while fixing u. Then
given data (xi, yi), letting vi be a |C|-dimensional vector
consisting of 0’s, where |C| is the number of classes, and
ĉi be the closest class label to yi for xi, we set vi(ĉi) =
minuk∈Uĉi ‖xi − uk‖2 and vi(yi) = −minuj∈Uyi ‖xi −
uj‖2, where vi(·) denotes the value at a particular bin of
vector vi. Therefore, Eqn. 4 can be rewritten as follows:

min
w,b,ξ

λ

2
‖w‖2 +

∑
i

ξi (8)

s.t. ∀i, wTvi + bĉi − byi
≥ 1− ξi,

∀i, ξi ≥ 0,
∀c ∈ C, wc ≥ 0.

where (·)T denotes the matrix transpose operator. Notice
that both ĉi and vi are dependent on the classifier parame-
ters (w,b). So if the classifier parameters are updated, ĉi
and vi should be updated as well. Thus, we present an it-
erative optimization algorithm to solve Eqn. 8 as shown in
Alg. 3, where Ω denotes a set of triplets.

Finally, based on Alg. 1-3, we can jointly learn the proto-

Algorithm 3: Iterative optimization for solving Eqn. 8:
(w,b) = LearnClassifiers(X ,Y,U ,w,b)

Input : training data (X ,Y), prototypes U , classifier parameters
(w,b)

Output: classifier parameters (w,b)

Ω← ∅;
repeat

foreach (xi, yi) ∈ (X ,Y) do
Calculate ĉi using Eqn. 6 and vi ∈ R|C|;
Ω← Ω

⋃
{(vi, yi, ĉi)};

end
Update w,b based on Ω using Eqn. 8;

until Classifier parameters converged;
return w,b;

Algorithm 4: Alternating optimization for solving Eqn. 4

Input : training data (X ,Y), learning rate {ηi}, number of
prototypes per class {|Uc|}c∈C

Output: prototypes U , classifier parameters (w,b)

foreach c ∈ C do
wc ← FLT MAX, bc ← 0;

end
U = InitializePrototypes(X ,Y, {|Uc|});
repeat
U = LearnPrototypes(X ,Y, {ηi},U ,w,b);
(w,b) = LearnClassifiers(X ,Y,U ,w,b);

until Converged;
return U ,w,b;

types and the classifier parameters by maximizing the mar-
gin in an alternating manner, as presented in Alg. 4, where
FLT MAX denotes the max value that we can set to w’s so
that Eqn. 4 can be optimized from its biggest value.

2.3. Computational Complexity During Testing

Assuming that the computational complexities of the
unit operations +, −, ∗, ≤, and ≥ are the same, denoted as
O(1), then in general the computational complexities of the
min operator is O(n)1, where n is the dimension of data.
By counting how many unit operations involved for clas-
sifying a test data point, we will know the computational
complexity of P-NN.

Suppose we have a test data point x ∈ Rd, |Uc| proto-
types per class, with |C| classes. Since the distance between
x and a prototype u is ‖x− u‖2 = ‖x‖2 − 2xTu + ‖u‖2,
where ‖x‖2, ‖u‖2 and 2u can be pre-calculated, the com-
putational complexity of calculating distances is (2d + 2) ·
O(1). Then the computational complexity of P-NN during
testing can be described as:

1In practice, the complexity of the min operator depends on the data
structure. At most, it is O(n).



{∑
c∈C

|Uc|(2d+ 2) +
∑
c∈C

|Uc|+ 2|C|+ |C|
}

·O(1) (9)

≤
{∑

c∈C
|Uc|(2d+ 6)

}
·O(1) = O(dN)

where N =
∑

c∈C |Uc| is the total number of prototypes.

Thus, the computational complexity of P-NN during testing

is linear in the product of the dimension of data and the total

number of prototypes, which is the same as some locally

linear methods such as LLC [21] and LL-SVM [12].

3. Ensemble of P-NN Classifiers
P-NN assumes that the window sizes in the Gaussian ker-

nel density estimation are the same for all the prototypes in

the same class, while varying for different classes. How-

ever, this assumption is quite strong, because even for the

prototypes in the same class, the window sizes may vary

individually.

In order to relax this assumption, we take advantage of

the random initialization of the prototypes in P-NN due to

the non-convexity of Eqn. 4, similar to random forest [6]. In

this way, we further introduce an Ensemble of P-NN classi-

fier (EP-NN) to boost the classification accuracy. We call

the set of learned prototypes in each P-NN a base learner.

Rather than learning one base learner with many prototypes

for each class, which risks overfitting the training data, EP-

NN jointly learns multiple base learners with reasonable

amount of prototypes per class.

Given a training data set (xi, yi)i=1,··· ,|X |, EP-NN is

formulated as below to jointly learn |L| base learners and

the classifier parameters, where l ∈ L denotes the lth base

learner in L:

min
u,w,b,ξ

λ

2

∑
c∈C

‖wc‖2 +
∑
i

ξi (10)

s.t. ∀i, ci ∈ C \ {yi},
minci

{∑
l∈L wl

ci minuk∈Ul
ci
‖xi − uk‖2 + bci

}
≥ ∑

l∈L wl
yi
minuj∈Ul

yi
‖xi − uj‖2 + byi + 1− ξi,

∀i, ξi ≥ 0,
∀c ∈ C, ∀l ∈ L, wl

c ≥ 0.

We can easily modify Alg. 1-4 to solve Eqn. 10 by con-

sidering all the base learners together for each update. In

the same way, we can easily extend EP-NN by taking multi-

source information into account. Notice EP-NN shares the

same computational complexity during testing as P-NN.

4. Implementation
In order to compare other locally linear methods easily,

especially the coding based locally linear methods, as well

as making a fast implementation of our classifiers, in prac-

tice we followed the stacked generalization framework and

implemented our classifiers approximately in a 2-stage way:

first encoding data and then training a multi-class linear

SVM. Empirically the classification accuracy of this imple-

mentation is very close to that based on Alg. 4, with much

faster training speed and less care of parameter tuning.

(I) Encoding data. We learn each base learner indepen-

dently so that this process can be parallelized. After the first

update of the prototypes in Alg. 4, we stop updating proto-

types, because empirically we find that these prototypes are

good enough for classification.

To encode data, we map each data point into a dis-

tance based sparse vector. Given a data point x ∈ X and

|L| base learners, letting ∀l ∈ L,vl
i ∈ R

|C| be a vec-

tor, where |C| is the number of classes, we set the cth

bin in vl
i as vl

i(c) = minuj∈Ul
c
‖xi − uj‖2, where c =

argminc∈C
{
minuj∈Ul

c
‖xi − uj‖2

}
, and 0’s to other bins.

Further, we denote vi as our encoded feature vector by con-

catenating all vl
i’s and normalizing it using �1-norm. Notice

that our distance based feature vectors are |C| × |L| dimen-

sional, but in each vector only |L| bins are non-zeros.

(II) Training a standard multi-class linear SVM. By

taking the encoded data as the input, we can train the fol-

lowing standard multi-class linear SVM [9] for classifica-

tion:

min
w,b,ξ

λ

2

∑
c

‖wc‖2 +
∑
i,ci

ξi,ci (11)

s.t. ∀i, ∀ci ∈ C \ {yi},[
wT

civi + bci

]
−
[
wT

yi
vi + byi

]
≥ 1− ξi,ci ,

ξi,ci ≥ 0.

Here we relax Eqn. 8 by (1) removing the nonnegative con-

straints on w, and (2) allowing that the weights of the pro-

totypes in the same class can be changed for different clas-

sification cases, rather than fixed values.

5. Experiments
In our experiments, we test P-NN and EP-NN2 on four

datasets: MNIST, USPS, LETTER, and Chars74K [10].

MNIST contains 40000 training and 10000 test gray-

scale images with resolution 28×28 pixels, which are vec-

torized directly into 784 dimensional vectors. The label of

each image is one of the 10 digits from 0 to 9. USPS con-

tains 7291 training and 2007 test gray-scale images with

resolution 16×16 pixels, directly stored as 256 dimensional

vectors, and the label of each image still corresponds to one

of the 10 digits from 0 to 9. LETTER contains 16000 train-

ing and 4000 testing images, each of which is represented

2Our implement can be downloaded from https://sites.
google.com/a/brookes.ac.uk/zimingzhang/code

https://sites.google.com/a/brookes.ac.uk/zimingzhang/code
https://sites.google.com/a/brookes.ac.uk/zimingzhang/code


(a) MNIST (b) USPS

Figure 2. Some examples of the jointly learned prototypes by our classifiers on (a) MNIST and (b) USPS, 20 prototypes per class.

(a) (b) (c)

Figure 3. Performance of EP-NN: classification error vs. the number of base learners on (a) MNIST and (b) USPS with different dimensions of data using
20 (top) and 60 (bottom) prototypes per class; (c) LETTER (top) and USPS (bottom) with different numbers of the prototypes per class in each base learner
from 10 to 80, step by 10, using original features. When the number of base learners is equal to 1, EP-NN turns into P-NN. Clearly, EP-NN boosts the
performance of P-NN significantly. This figure is best viewed in color.

as a 16 dimensional vector, and the label of each image
corresponds to one of the 26 letters from A to Z. The fea-
tures we used are the raw features. Chars74K comprises
62 classes (0-9, A-Z, a-z), 7705 characters obtained from
natural images, 3410 hand drawn characters using a tablet
PC, and 62992 synthesized characters from computer fonts,
with over 74K images in total. We first resized each image
into a gray image with 8 × 8 pixels, then randomly split
it into two independent sets, 7400 images as test data and
the rest as training data, and finally vectorize each image
directly into a 64 dimensional vector as our feature.

To learn the prototypes in each base learner, we ran-
domly select at most 105 data points from the training set,
where each data point is allowed to be selected repeatedly,
and fix the learning rate to 0.1. LIBLINEAR [11] is em-
ployed as our multi-class SVM solver.

We first visualize some of the learned prototypes for
MNIST and USPS in Fig. 2, respectively. Each prototype
is represented as a linear combination of different training
data points and plays a role of a weak classifier. We can
roughly see the digit represented by each prototype, which
demonstrates the good discriminability of the learned pro-
totypes.

Then we test the robustness of our classifiers w.r.t. di-
mensions of features, numbers of prototypes per class in
each base learner, and numbers of base learners. To build
low-dimensional features, we directly apply singular value
decomposition (SVD) to the original data in MNIST and
USPS and take the top-K values in the coefficient vector of
each data point. Notice that when the number of base learn-
ers is equal to 1, EP-NN actually turns into P-NN. Fig. 3
summarizes the comparison results among the three factors:



Table 1. Classification error rate comparison (%) between our methods and others on MNIST, USPS, LETTER, and Chars74K. All kernel methods use the
RBF kernel. Most results are cited from [29]. With much lower-dimensional and sparser inputs for training linear SVMs, the results of both P-NN and
EP-NN are comparable to the best among these different methods.

Methods MNIST USPS LETTER Chars74K§

Ours (40 prototypes
per class)

Parametric Nearest Neighbors (P-NN) 3.13 7.87 6.95 29.46

Ensemble of P-NN (EP-NN) (20 base learners) 1.65 4.88 2.90 19.53

Nearest Neighbors
Nearest Neighbor (1-NN) 3.09 5.08 4.35 18.69

K Nearest Neighbors (KNN) 2.92 4.88 4.35 18.69

LMNN [23] 1.70 0.91 3.60 20.18

Linear SVMs
Linear SVM (10 passes) [4] 12.00 9.57 41.77 72.68

LIBLINEAR [11] 8.18 8.32 30.60 54.61

Kernel SVMs
LIBSVM [7] 1.36 4.58 2.12 16.86

MCSVM [9] 1.44 4.24 2.42 -

SVMstruct [17] 1.40 4.38 2.40 -

LA-RANK (1 pass) [5] 1.41 4.25 2.80 -

Locally linear

classifiers

Linear SVM + LCC (4096 anchor points) [27] 1.90 - - -

Linear SVM + improved LCC (4096 anchor points) [26] 1.64 - - -

Linear SVM + LLC (4096 anchor points) [21] 2.28 4.38 4.12 20.88

Linear SVM + DCN (L1 = 64, L2 = 512) [13] 1.51 - - -

LL-SVM (100 anchor points, 10 passes) [12] 1.85 5.78 5.32 -

LIB-LLSVM + OCC [29] 1.61 3.94 6.85 18.72

ALH [25]
†

2.15 4.19 2.95 16.26

Others
BPM+MRG [22] - 6.10 10.50 -

Linear SVM + EFM (Intersection kernel) [19, 20]‡ 9.11 8.12 8.22 29.08
† The results shown here are the best, respectively, by running ALH software downloaded from http://www.people.vcu.edu/˜vkecman/.
‡ The input dimensions for training linear SVMs shown in the brackets are the ones which return the best results, respectively, by running VLFEAT [19].
§ The results on this dataset are generated by the public codes of those methods.

(I) P-NN: From Fig. 3(a) and (b), P-NN seems a little

sensitive to very low-dimensional data (e.g. 10 or 20). How-

ever, when the feature dimension is higher, P-NN behaves

stably within 2% difference, and performs best using the

original features. From Fig. 3(c), we can see clearly that

more prototypes per class does not guarantee a better per-

formance using P-NN, as we expected, but its performance

is still reasonably stable within 3% difference.

(II) EP-NN: From the figures in Fig. 3, we can see that

EP-NN really boosts the classification accuracy of P-NN

significantly. With only 2 base learners, EP-NN performs

worse than P-NN, because sometimes each prototype may

disagree with each other, leading to weak discrimination be-

tween classes. However as we increase the number of base

learners, the majority will tend to agree giving better dis-

crimination, as demonstrated by our empirical results. Also,

the same phenomenon has been observed in [15]. Similar to

P-NN, based on the same number of base learners, reason-

ably higher dimensional data leads to better results but more

prototypes have no guarantee on better results.

Next, we list our comparison with many other methods

in Table 1, where both P-NN and EP-NN work comparably

and in some cases better than the others. It is worth men-

tioning that the inputs for training multi-class linear SVMs

in our methods are usually much lower-dimensional and

sparser than the others due to the nearest neighbor search.

For instance, on MNIST EP-NN achieves 1.65% classifi-

cation error rate using 150 dimensional input vectors for

SVMs, each of which contains only 15 non-zero elements,

one non-zero element per base learner, while OCC achieves

1.61% using 784 × 90 = 70560 dimensional inputs, and

DCN achieves 1.51% using 64×512 = 32768 dimensional

inputs.

Finally, we show our computational time during testing

in Table 2, with comparison to LL-SVM, LIBSVM and the

nearest neighbor classifier (i.e. 1-NN) based on kd-tree. All

the algorithms were run on a single thread of a 2.67 GHz

CPU. Table 2 verifies our discussion in Section 2.3 that the

computational complexity of our methods is linear in the

product of the dimension of the data and the total number

of the prototypes.

6. Conclusion

In this paper, we propose a novel parametric local classi-

fier called Parametric Nearest Neighbor (P-NN), and its ex-

tension Ensemble of P-NN (EP-NN). Our classifiers extend

http://www.people.vcu.edu/~vkecman/


Table 2. Computational time comparison of different classifiers, in seconds, on MNIST, USPS, LETTER, and Chars74K.

Methods (/s) MNIST (784-dim) USPS (256-dim) LETTER (16-dim) Chars74K (64-dim)

EP-NN (totally 100 prototypes) 3.36×10−4 1.74×10−4 1.24×10−4 1.24×10−4

1-NN (kd-tree) 6.90×10−2 3.20×10−3 4.81×10−5 1.24×10−4

LL-SVMs (100 anchor points) 4.70×10−4 - - -

LIBSVM (RBF kernel) 4.60×10−2 - - -

the analysis of the Gaussian kernel density estimation, and

attempt to learn the prototypes for nearest neighbor search

and the classifier parameters jointly and discriminatively.

The decision boundary of our classifiers consists of a set

of nonlinear functions, since we use the minimum weighted

squared Euclidean distance between the data and the pro-

totypes as the classification criterion. The computational

complexity of our classifiers during testing is linear in the

product of the dimension of the data and the pre-defined

total number of the prototypes, which makes our classi-

fiers suitable for large-scale data. We implement P-NN and

EP-NN by following the stacked generalization framework,

where each data point is mapped into a very sparse vector

based on the minimum distance across the classes in each

base learner, and as the inputs a multi-class linear SVM

is trained for classification. The experimental results on

MNIST, USPS, LETTER, and Chars74K datasets demon-

strate that our classifiers are robust to the dimension of data,

the number of the prototypes per class in each base learner,

and the number of base learners as well, and achieve compa-

rable or even better classification accuracy than many other

methods. Overall, our classifiers can achieve good trade-off

between accuracy, computational efficiency, and scalability.
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