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Abstract 

Background and aims: Statistical markers are valuable when assessing physiological 
status over periods of time and in certain disease states. We assess if type 1 diabetes 
mellitus promote modification in the autonomic nervous system using the main two types 
of algorithms to estimate a Fractal Dimension: Higuchi and Katz. Material and methods: 
46 adults were divided into two equal groups. The autonomic evaluation consisted of 
recording heart rate variability (HRV) for 30 minutes in supine position in absence of any 
other stimuli. Fractal dimensions ought then able to determine which series of interbeat 
intervals are derived from diabetics’ or not. We then equated results to observe which 
assessment gave the greatest significance by One-way analysis of variance (ANOVA1), 
Kruskal-Wallis technique and Cohen’s d effect sizes. Results: Katz’s fractal dimension is 
the most robust algorithm when assisted by a cubic spline interpolation (6 Hz) to increase 
the number of samples in the dataset. This was categorical after two tests for normality; 
then, ANOVA1, Kruskal-Wallis and Cohen’s d effect sizes (p≈0.01 and Cohen’s 
d=0.814143 –medium effect size). Conclusion: Diabetes significantly reduced the chaotic 
response as measured by Katz’s fractal dimension. Katz’s fractal dimension is a viable 
statistical marker for subjects with type 1 diabetes mellitus. 
key words: diabetes, dynamical diseases, katz, higuchi, fractal dimension, cubic spline 
interpolation 

Background and aims 
Statistical markers are advantageous when 

reviewing healthy physiological status or 
different pathological states which can develop 
over extended periods of time. They can be 
enforced to assess whether certain aspects of 
lifestyle are beneficial or problematic. Many of 

the most widely used markers in clinical 
medicine are based on assessing the signals 
generated by the heart rhythm. These cardiac 
interbeat intervals (RR intervals) have been 
revealed to fluctuate in a complex and 
sometimes chaotic manner [1]. Heart rate 
variability (HRV) is useful for assessment of 
many conditions or different types of diseases 
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[2-4] which include type 1 diabetes mellitus 
(T1DM) [5-7], immune responses such as 
inflammation [8-10], psychiatric states such as 
schizophrenia [11] and bi-polar disorder [12] and 
cardiovascular diseases [13,14]. Usually, a 
higher HRV indicates a favourable general 
health and wellbeing [15] with less risk of 
morbidity or mortality and low HRV can provide 
an indicator of the risk of “dynamical diseases” 
[16]. 

HRV is a simple, reliable, non-invasive and 
cost effective method of monitoring the 
autonomic nervous system (ANS). Other 
procedures for assessing ANS comprise 
photoplethysmography [17], phonocardiography 
[18] and vibrocardiography [19]. Some methods 
are unresponsive as with sympathetic skin 
response [20] or too complicated and expensive 
as with quantiative pupillography [21]. All the 
other alternatives have potential hazards, so 
HRV became widely used. 

Fractal systems exhibit a characteristic 
termed self-similarity. A self-similar object upon 
close examination reveals it is composed of 
smaller versions of itself. Fractal analysis has a 
statistical advantage over other techniques 
enforced on short time-series, such as chaotic 
globals [5,22], in that the phase information is 
preserved. Phase information is lost in methods 
involving power spectral analysis [6]. 

There are many algorithms which can be 
applied to estimate a Fractal Dimension. There 
are those by Higuchi [23], Katz [24], Petrosian 
[25] and Castiglioni [26]. We assess if T1DM 
promote modification in the autonomic nervous 

system by assessing their HRV using the main 
two types of algorithms to estimate a Fractal 
Dimension; those by Higuchi [23,27] and Katz 
[24]. These are regarded as the two most 
statistically robust methods.  

Material and Methods  
Patient Selection and Assessments were 

consistent with previous studies by Souza et al. 
[5] and Garner et al. [6].  

Higuchi Fractal Dimension (HFD) 
In 1988 Higuchi derived his procedure to 

measure the fractal dimension of discrete time 
sequences. It is regarded as the most robust of all 
the fractal dimension techniques and can be 
enforced on relatively short sections of data. It is 
imposed directly to the RR intervals with no 
power spectrum step as would be the case with 
the chaotic globals [5,6]. Khoa et al [27] 
presented the algorithm and we adapt it below 
for RR intervals. 

It is based on a measure of length, L(k), of 
the curve that represents the considered time-
series while using a segment of k samples as a 
unit, if L(k) scales in the following manner:  

  DfkkL ~  

The curve is alleged to display a fractal 
dimension Df.  A simple curve has dimension 
equal to 1 and a plane has dimension equal to 2. 
The value of Df is always between 1 (a simple 
curve) and 2 (a curve which almost fills out the 
whole plane). Df quantifies the complexity of the 
curve and so of the time-series this curve 
represents on a graph.  

From a given time series, RR(1), RR(2), ... , RR(N), the algorithm constructs k new time series: 

( )( ), ( ), ( 2 ),..., = 1,2,... ,ikm
N mRR RR m RR m k RR m k RR m k for m knt k

    
       

     
where m is initial time value, k indicates the discrete time interval between points, hence the delay, 
kmax is maximum interval time, int(a) is integer part of a real number a.   

For each of the time-series RRkm constructed, the average length  mL k is then computed as:  
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N is total number of RR intervals. 

Subsequently, the length of the curve for time 
interval k is expressed as the sum value over k 
sets of  mL k  as illustrated by the following 

equation. 

1

1( ) = ( )
k

m
m

L k L k
k 

  

Lastly, the slope of the curve 
ln( ( )) / ln(1/ )L k k is estimated using least squares 
linear best fit and the resulting slope is the HFD. 
To select a suitable value for kmax,HFD values 
are plotted against a range of kmax. The point at 
which the fractal dimension plateaus is 
considered a saturation point. That appropriate 
kmax value should be selected.  

Katz’s Fractal Dimension 
Regarding the Katz’s algorithm [24] this 

fractal dimension is once more calculated 
directly from the time-series. This algorithm has 
the advantage over that of Higuchi’s in that a 
kmax parameter is superfluous. Yet, it has the 
difficulty that it requires a longer time-series to 
achieve significant results. It is important to 
recall that an accurate value for any type of 
fractal dimension should be between 1 and 2, as 
stated in the preceding section (see results later). 

10( / )
10( / )

Log L aKatz
Log d a



 
L is the total length of the time-series and d 

is the Euclidean distance between the first point 
in the series and the point that provides the 
furthest distance with respect to this first point. 
If we set a to be the mean distance between 
successive points and, n as the number of steps 
in the curve, then n = L/a. 

10( )_
10( / ) 10( )

Log nKatz FD
Log d L Log n


  

Statistical Analysis 
Parametric statistics accept that the datasets 

are normally distributed, hence the use of the 
mean as a measure of central tendancy. If we 
cannot normalize the data we should not 
compare means. To verify normality we imposed 
the Anderson-Darling [28] and Ryan-Joiner [29] 
tests. The results were inconclusive so we are 
unable to assert that the observations follow 
either a normal or non-normal distribution. So, 
we applied both parametric and non-parametric 
tests of significance. These are the one-way 
analysis of variance (ANOVA1) [30] and the 
Kruskal-Wallis [31] tests of significance, 
respectively. To quantify the magnitude of 
difference between protocols for significant 
differences, the effect size was calculated via 
Cohen’s d [32]. Large effect size was considered 
for values greater than or equal to 0.9, medium 
for values between 0.9 and 0.5 and small for 
values amid 0.5 and 0.25. 

Results  
The descriptive statistics of HFD between 

control and the diabetics (n=23 both), are 
presented in Table 1. Figure 1 illustrates the 
similar data as a box-and-whiskers plot. When 
we assessed the HFD there were no significant 
results at any levels of kmax. We set the level of 
significance at p<0.05 (or <5%) and this was not 
accomplished at any level of kmax. No saturation 
point was accordingly achieved. Throughout the 
HFD analysis exactly 1000 RR intervals from 
the two groups were applied. 
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Figure 1. Box-and-whiskers plot for HFD of exactly 1000 RR intervals of the control subjects (left; n=23) and the 
diabetic subjects (right; n=23), calculated multiple times from 10 to 150 in equidistant units for different levels of kmax. 

Where the line in the central of the box is the median (not the mean), the whiskers of the outer points are the 10 th and 90th 
percentiles, with the outer edge of the boxes representing the 25th and 75th percentiles. The difference between the outer 
box edges is the inter-quartile range. The outermost points are the maximum and minimum. The next to outmost points 

are the 5th and 95th percentiles. 

Table 1. HFD statistics through kmax between 10 and 150 at intervals of 10 in the control and diabetic subjects. The 
statistics include mean and standard deviation HFD for controls and diabetics and their level of significance tested by one-
way analysis of variance (ANOVA1), Kruskal-Wallis technique and Cohen’s d effect sizes. With Cohen’s d effect sizes, a 

positive sign implicates a change in mean value in the contradictory direction to the others -- an decrease rather than an 
increase. 

HFD 
Parameter 
(kmax) 

Mean HFD 
Control 

±SD HFD 
Control 

Mean HFD 
Diabetics 

±SD HFD 
Diabetics 

ANOVA1 
(p-value) 

K-Wallis 
(p-value) 

Effect Size 
Cohen’s d 

10 1.859504 0.108604 1.845075 0.097970 0.638463 0.834677 +0.14265 
20 1.874092 0.084811 1.884397 0.074033 0.662824 0.621090 -0.13236 
30 1.886559 0.069791 1.900057 0.063663 0.496769 0.435446 -0.20662 
40 1.895530 0.059855 1.912839 0.057862 0.324154 0.206507 -0.30065 
50 1.903205 0.052310 1.921009 0.054647 0.265130 0.132353 -0.34032 
60 1.909394 0.047795 1.925970 0.051197 0.262510 0.144029 -0.34222 
70 1.913826 0.045006 1.930586 0.048268 0.229739 0.097182 -0.36722 
80 1.917715 0.043227 1.933628 0.045738 0.231735 0.126796 -0.36563 
90 1.921586 0.041367 1.937505 0.043443 0.209806 0.144029 -0.38374 
100 1.925517 0.039373 1.940905 0.042183 0.207635 0.084603 -0.38560 
110 1.928995 0.037496 1.943195 0.042109 0.233561 0.080715 -0.36418 
120 1.932180 0.036202 1.945032 0.041724 0.270590 0.101692 -0.33641 
130 1.935733 0.034948 1.946806 0.041182 0.330886 0.121423 -0.29645 
140 1.938628 0.033736 1.949089 0.039940 0.342487 0.116230 -0.28934 
150 1.940530 0.032375 1.951203 0.038177 0.312117 0.101692 -0.30831 
 

Descriptive statistics for the Katz’s Fractal 
Dimension are presented in Table 2. 

The number of RR intervals in the dataset 
was 1000. When the number of RR intervals was 
1000 and the metric calculated a fractal dimesion 

of greater than 2 was achieved which is 
undoubtedly erroneous. Unlike HFD the Katz’s 
algorithm requires longer time-series. So, we 
then enforced a cubic spline interpolation [33] at 
levels 1 Hz to 15 Hz. Then the number of 
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samples in the datasets enlarged from 1000 to 
15000 increasing by 1000 per 1 Hz increase. 
Again, the statistical tests applied were 

ANOVA1, Kruskal-Wallis test and Cohen’s d 
effect sizes. 

Table 2. The mean and standard deviations for the Katz’s fractal dimension. There were equal groups of subjects for 
controls and diabetics (both n=23) and the number of RR intervals in the dataset was 1000. We then enforced a cubic 
spline interpolation at levels 1Hz to 15 Hz. Then the number of samples in the datasets enlarged from 1000 to 15000. 

Cubic Spline 
Interpolation 
(Hz) 

Mean Katz 
Control 

±SD Katz 
Control 

Mean Katz 
Diabetics 

±SD Katz 
Diabetics 

ANOVA1 
(p-value) 

K-Wallis 
(p-value) 

Effect Size 
Cohen’s d 

1 2.254557 0.280286 2.006855 0.380927 0.015753 0.010485 0.757352 
2 1.730896 0.152157 1.585150 0.215442 0.011138 0.010485 0.799032 
3 1.543622 0.114927 1.431433 0.164505 0.010289 0.011167 0.808403 
4 1.441388 0.096276 1.346815 0.138042 0.009932 0.011887 0.812553 
5 1.374934 0.084749 1.291723 0.121089 0.009803 0.011887 0.814086 
6 1.327409 0.076738 1.252369 0.108971 0.009798 0.011887 0.814143 
7 1.291298 0.070729 1.222551 0.099687 0.009871 0.011887 0.813282 
8 1.262685 0.065988 1.199021 0.092240 0.010004 0.011167 0.811709 
9 1.239321 0.062106 1.179890 0.086065 0.010176 0.011167 0.809703 
10 1.219792 0.058833 1.163981 0.080816 0.010383 0.010485 0.807336 
11 1.203171 0.056011 1.150512 0.076269 0.010618 0.010485 0.804694 
12 1.188815 0.053536 1.138943 0.072270 0.010880 0.010485 0.801814 
13 1.176265 0.051333 1.128888 0.068712 0.011166 0.009841 0.798744 
14 1.165185 0.049349 1.120061 0.065513 0.011471 0.009841 0.795537 
15 1.155318 0.047544 1.112246 0.062614 0.011796 0.009841 0.792217 
 

The best metric and the only one to give 
significant results on all three statistical tests of 
significance was Katz’s algorithm. There was a 
high level of significance for the Katz’s 
algorithm (p≈0.01, ≈1%; both ANOVA1 and 
Kruskal-Wallis tests) and a medium effect size 
(0.814143) for a cubic spline interpolation of 6 
Hz.  

Discussions 
Formerly when manipulating short-time 

series for the assessment of chaotic response in 
diabetic subjects we have computed the chaotic 
global techniques [22,34] to discriminate 
between control subjects and those with type I 
diabetes mellitus [5,6]. Generally, these chaotic 
global techniques are sufficient but due to the 
power spectral step the phase information is lost. 
This then was the motivation to apply the same 
data to fractal dimension techniques. Here the 
phase information is preserved. Fractal 

dimensions are less computer processor 
expensive and so quicker to calculate.  

Firstly, the HFD technique. In this case HFD 
was revealed to be inferior when the ANOVA1, 
Kruskal-Wallis and Cohen’s d tests were applied 
and thus gave insignificant values for all levels 
of kmax.  

Yet, there was a significant decrease in 
chaotic response measured by Katz’s fractal 
dimension of HRV in diabetic subjects. 
Consequently, diabetes could lead to risk of 
dynamical diseases and those mentioned in the 
introduction. The extent of this is revealed by 
Katz’s fractal dimension on short time-series. 
This is a useful statistical marker for the 
assessments of patients with diabetes, for 
example under pharmacological treatments or 
numerous other factors which potentially cause 
changes in the HRV. 

The Katz’s algorithm can be enforced as a 
statistical marker for the detection of diabetic 
subjects from the controls. This can also be 
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useful as a risk assessment from dynamical 
diseases and other physiological conditions such 
as strenuous exercise [35], an immune response 
[8-10], obesity [36,37] malnutrition [38], 
experiencing traffic noise [39], or just getting 
older [34,40], all of which can affect the HRV. It 
is therefore a guide to the probability of 
mortality or morbidity. 

Conclusions 
Higuchi and Katz’s fractal dimensions were 

assessed. It was revealed that only Katz’s fractal 
dimension discriminates between the two 

groups. This was achieved with recorded data of 
1000 RR intervals. Yet, 6000 samples computed 
via a cubic spline interpolation of 6Hz was 
required to enable maximal discrimination 
between diabetics and normals.  
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