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Abstract: Clostridium autoethanogenum is an industrial microbe used for the commercial-scale production of ethanol from
carbon monoxide. While significant progress has been made in the attempted diversification of this bioprocess, further
improvements are desirable, particularly in the formation of the high-value platform chemicals such as 2,3-butanediol (2,3-BD).
A new, experimentally parameterised genome-scale model of C. autoethanogenum predicts dramatically increased 2,3-BD
production under non-carbon-limited conditions when thermodynamic constraints on hydrogen production are considered.

1 Introduction
The adverse environmental and societal consequences of continued
fossil-fuel dependence represent arguably the defining challenge
for scientific research in the 21st century [1, 2]. One component of
the solution to this problem is carbon recycling, which can be
achieved through the application of bioprocesses enabling
conversion of industrial waste-gas components into commodity
chemicals [3]. For example, the Chicago-based company
LanzaTech (www.lanzatech.com) uses Clostridium
autoethanogenum to convert carbon monoxide (CO) into ethanol
on a commercial scale [4–6]. Diversification of the product
portfolio of this sustainable technology will help to secure its
continued success.

The fundamental metabolic pathway enabling C.
autoethanogenum to grow on CO is the Wood–Ljungdahl pathway
(WLP) [7, 8]. This ancient biochemical pathway is split into two
‘branches’: the methyl branch and the carbonyl branch [9]. The
methyl branch proceeds by constructing a methyl group from
carbon dioxide (CO2) via a series of biochemical conversions
including an adenosine triphosphate (ATP)-consuming reaction
[catalysed by formyl-tetrahydrofolate (THF) ligase, FtfL] and three
redox reactions collectively requiring nicotinamide adenine
dinucleotide (NADH), NAD phosphate (NADPH) and reduced
ferredoxin (Fdred). The carbonyl branch is simply the reduction of
CO2 to an enzyme-bound carbonyl group as catalysed by the
acetyl-CoA synthase/CO dehydrogenase complex (ACS/CODH).
This same enzyme complex is responsible for the final step of the
pathway, in which the methyl group and enzyme-bound carbonyl
group are combined with CoA to form one molecule of acetyl-
CoA.

Clearly, in the case of CO-fed growth, sources of CO2, reducing
power and the means to generate ATP are needed for the WLP to
function. As with all known acetogens [10], acetate and ATP are
produced from acetyl-CoA via phosphotransacetylase and acetate
kinase, thus fulfilling the energetic requirement of FtfL but not
enabling a positive ATP yield [5]. The CO2 and reducing power
requirements are met by two additional monofunctional CODH

enzymes encoded in the C. autoethanogenum genome which
generate Fdred and CO2 from CO (and water). Fdred is then
oxidised to generate NADH and subsequently NADPH, which in
turn satisfy the redox requirements of the WLP. Finally, electrons
are transferred from Fdred to NAD by a membrane-bound Rnf
complex [11], which produces a transmembrane proton gradient
and enable the generation of ATP by F1Fo ATP synthase [12, 13].
The regeneration of NAD for this essential process is achieved
through further redox reactions leading to excreted by-products,
e.g. ethanol [5].

One such product of particular importance is the platform
chemical 2,3-butanediol (2,3-BD) – a trace component of the
native C. autoethanogenum product profile, the downstream
products of which have an estimated global market value of $43
billion in sales [14]. Other compounds in the native product profile
of C. autoethanogenum include acetate, ethanol and, in smaller
amounts, lactate [14, 15]. Hydrogen gas is another common
product in carboxydotrophic microorganisms [16]. While the
potential for 2,3-BD synthesis from industrial waste gas is well-
established [14], a clear bioprocess/metabolic engineering strategy
for its increased production has not been published despite the
construction and analysis of a genome-scale model (GSM) of C.
autoethanogenum [17] – an approach which has achieved success
in guiding metabolic engineering through the investigation of
optimal steady states [18]. Previous attempts to model C.
autoethanogenum use parameters from GSMs of other organisms
[17, 19, 20], a potential weakness identified by Dash et al. [21].
The availability of a new, manually annotated genome sequence of
C. autoethanogenum [22], therefore, provides an opportunity to
construct an improved, experimentally parameterised GSM and
pursue novel strategies for enhanced 2,3-BD production.

Experimental studies aimed at manipulating the product profile
of C. autoethanogenum have so far focused on carbon-limited
growth regimes [17, 19], i.e. the scenario, in which rate of growth
of a bacterial population is limited by the supply of its carbon
source. Such studies tend to neglect non-carbon limitation – the
case where some other nutrient becomes limiting and the carbon
source is in excess. We argue that non-carbon-limited growth
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regimes are worth investigating because an excess supply of energy
(i.e. electrons from CO) may result in the diversion of flux toward
increasingly reduced compounds (e.g. 2,3-BD), especially in strict
anaerobes such as C. autoethanogenum whose product profile is
constrained by the redox balance of internal metabolites [23].

This work presents the construction of a new GSM of C.
autoethanogenum (‘MetaCLAU’) including parameterisation and
validation with data from continuous-culture chemostat
experiments. The subsequent model is used to test the hypotheses
that 2,3-BD is an optimal sink for excess reducing power supplied
under non-carbon-limited conditions before and after a
thermodynamic limit on hydrogen production is imposed.

2 Methods
2.1 Data

This section describes the data used for model construction,
parameterisation and validation. Data used in the interpretation of
model analyses are also specified.

2.1.1 Genome sequences: The task of constructing a GSM
requires an annotated genome sequence. Table 1 summarises
relevant genomic data available for use in this work. The ScrumPy-
readable pathway genome database (PGDB) generated from the
genome sequence described in [24] is available from
www.metacyc.org. Flatfiles for the PGDB derived from the
genome annotation described in [22] were generated with Pathway
Tools [25] and can be found in [26]. 

2.1.2 Fermentation data: Optical density (OD), gas
chromatography and cell-mass data collected at steady state during
fermentation experiments were used to derive model parameters in
this work. Bioreactor data were collected and processed using in-
house software (see 2.7). Details of fermentation experiments are
provided in the supplementary materials (S4).

The data for the estimation of growth and non-growth-
associated maintenance costs are shown in the supplementary
materials (S6).

2.1.3 Biomass: Proportions of macromolecular biomass
components were measured experimentally with continuous-
culture samples taken at steady state. Details of experimental
procedures for the measurement of total DNA, RNA, protein, lipid
and polysaccharide are given in the supplementary materials.
Liquid chromatography-mass spectrometry (LC-MS) was used to
estimate trace metabolite concentrations as described in [29].

2.2 Model construction

In the context of this paper, ‘construction’ refers to the selection of
a set of reaction stoichiometries which form the metabolic network,
whereas ‘curation’ refers to the identification and correction of
errors and omissions in the definition of these reactions, e.g. errors
in mass-balance and thermodynamic favourability.

ScrumPy models are formed of a top-level ‘module’ and several
sub-modules containing either automatically generated or manually
defined reaction stoichiometries (see Fig. 1). This helps to organise
the model components during construction and curation. 

2.2.1 Draft network: Construction of the GSM began with the
Tier 3 BioCyc [25, 30] database for C. autoethanogenum JA1-1
(strain DSM 10061) generated from the genome sequence
published by Brown et al. [24]. This database (referred to here as
the ‘CAETHG database’) formed the foundation of a draft
reconstruction of the organism's metabolic network. Automatically
generated Tier 3 BioCyc databases are not fully curated, thus an
additional manual genome annotation [22] was required to
complete construction in line with methods described by Fell et al.
[31] and Hartman et al. [32]. This additional annotation was used
to create a second genome database (referred to as the ‘CLAU
database’) with the PathoLogic algorithm as implemented in
Pathway Tools [25, 30]. Information contained in this second
database formed the basis for the continued curation of the model,
the aim being to establish gene-protein-reaction relationships
(GPRs) based solely on the manual annotation. For a detailed, step-
by-step model construction methodology see supplementary
materials (S1).

2.2.2 Curation: Initial curation steps involved removing
chemically undefined metabolites from the automatically generated
network. Subsequently, reactions without gene associations were
investigated and removed if evidence for the necessary encoded
enzymes could not be found [22]. Atomically unbalanced reactions
were also corrected or removed. The thermodynamic consistency
of the model, i.e. its adherence to energy conservation, was
regularly checked using a specific linear programming (LP)
problem detailed in Section 2.2.4. Inconsistent enzyme subsets
containing erroneous reaction reversibility constraints [33] were
identified using ScrumPy [34] and removed from the model (see
Section 2.5).

2.2.3 Electron transport chain:  A model of the electron
transport chain (ETC) of C. autoethanogenum was manually
constructed based on biochemical literatures [9, 11, 14, 35, 36].
The separate construction of an ETC sub-network enables the
computation of its elementary modes (i.e. the set of minimal
steady-state flux distributions across the network [37, 38]), since
smaller networks avoid combinatorial difficulties encountered with
larger networks. Inspection of the subsequent elementary modes
ensures that legitimate routes for the generation of energy are
available in model simulations (see Fig. 2).

Table 1 Genome sequences for Clostridia spp. referred to
throughout this work
Organism Year Reference Annotation Structure
C. autoethanogenum 2013 [27] automated 100 contigs

2014 [24] automated whole genome
2015 [22] manual whole genome

C. ljungdahlii 2010 [28] automated whole genome
 

Fig. 1  ScrumPy model structure for MetaCLAU. Coloured boxes represent
the different ‘modules’ referenced by the top-level file, ‘MetaCLAU.spy’:
Green – automatically generated modules, blue – manually defined
modules. The arrow illustrates a compilation of modules to form
MetaCLAU
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One feature of the ETC in C. autoethanogenum is that the
number of translocated protons required for the generation of one
ATP by ATP synthase is not known. In previous studies, a value of
3.66 H+/ATP is assumed based on the structure of the Clostridium
paradoxum ATP synthase (the rotor of which consists of 11 c-
subunits) [39], taking this stoichiometry as an indication of the
Clostridium phenotype, in general [35]. We adopt this assumption
here but also show that our modelling results are not qualitatively
sensitive to this parameter [see supplementary materials (S3)].

The details of the ETC are as follows: C. autoethanogenum
maintains a transmembrane proton gradient enabling energy
conservation via coupling of an Rnf complex (1) with an ATP
synthase (2) [11]. When an ATPase c-ring consisting of 11 c-
subunits is assumed (as in [35]), the following reactions represent
the ETC:

Rnf:3H+ + NAD+ + Fdred → 2Hext
+ + NADH + Fdox (1)

ATP synth:3.67Hext
+ + ADP + Pi → 2.67H+ + ATP + H2O (2)

CODH:CO + Fdox + H2O → 2H+ + CO2 + Fdred (3)

MetFV: methylene − THF + 2NADH + Fdox
→ methyl − THF + 2NAD+ + Fdred

(4)

The stoichiometry of the reaction catalysed by methylene-THF
reductase (MetFV) is unknown [40]. The definition given above
(4) represents the electron-bifurcating mechanism proposed by
Köpke et al. [28] and further developed in [35]. An electron-
bifurcating hydrogenase, HytA-E is responsible for the utilisation
of hydrogen as an energy source [36] and is also thought to be
responsible for hydrogen production [41] (5). Finally, since the
WLP in C. autoethanogenum involves an NADPH-dependent
methylene-THF dehydrogenase, the ETC must include a
mechanism for the generation of NADPH (this is also necessary to
support biomass). This is achieved by the Nfn complex (6)

HytA − E:2H2 + NADP+ + Fdox → 3H+ + NADPH + Fdred (5)

(see (6)) 
An example steady-state flux distribution of the ETC which

yields ATP and NADPH is shown in Fig. 2.

2.2.4 Energy conservation: The following analysis ensured
thermodynamic consistency across the metabolic network: flux
balance analysis (FBA) was computed with fixed positive ATP
demand and without uptake of any carbon, nutrient or energy
source in line with methods described in [32]:

minimise: v

subject to
Nv = 0
vATPase = 1
vti ≤ 0; i ∈ {1, …, Xtrans}

(7)

where transport reactions are denoted vti and t is a vector of length
Xtrans containing all indices of transport reactions in v. Any
subsequent solution included a thermodynamic error, meaning
definitions for one or more of the participant reactions required
amendment or removal.

2.2.5 Transporters: The module ‘Transporters.spy’ defines all
reactions involving transfer between the organism and the
environment. Transporters were added based on known carbon/
energy sources and products of C. autoethanogenum [15].
Transporters were also added for individual biomass precursors
[31] and components of the growth media used to culture C.
autoethanogenum in this paper, see supplementary materials (S4).

2.3 Model characteristics

A GSM of C. autoethanogenum consisting of 755 reactions and
772 metabolites has been constructed through the refinement of a
draft network derived from a Pathway Tools database consisting of
1429 reactions and 1097 metabolites. About 73 model reactions in
the curated model were unique to the initial CAETHG database.
About 47 gene associations for these reactions were mapped to
CLAU locus tags using EDGAR [42]. About 15 of the remaining
model reactions unique to the CAETHG database were defined as
spontaneous, and thus required no association to genes. Gene
associations for 3 of the remaining 11 reactions were defined
manually, and 8 were retained as they proved essential for the
production of biomass on a range of growth substrates (CO, [CO + 
H2] and fructose). These reactions, forming a pathway for teichoic
acid production, have been retained as hypothetical reactions and
are detailed in the supplementary material (S1). Teichoic acid is an
assumed component of the model's biomass equation consistent
with established physiology of Gram-positive bacteria [43].

2.4 Parameterisation

Where possible, species-specific parameters should be derived
experimentally, improving the accuracy of model calculations and
discouraging the unhelpful culture of ‘parameter borrowing’. In the
case of bacterial cells, two key parameters are required: biomass
composition and ATP maintenance costs.

2.4.1 Biomass composition: A GSM should be capable of
producing essential cellular materials (in realistic proportions)
using feasible biosynthetic routes to enable increasingly accurate
calculations of optimal network behaviours [44, 45]. Despite a
large number of biotechnologically interesting Clostridia, detailed
physiological information suitable for deriving cellular biomass
composition is available for a small range of species only [46–48].

The macromolecular biomass composition was measured
experimentally including protein, DNA, RNA, lipid and
polysaccharide [see supplementary materials (S4) for experimental
methods]. The relative abundances of various lipids in C.
autoethanogenum are taken from [15]. DNA nucleotide ratios were
estimated from the full genome sequence [22], whereas nucleotide
and amino acid ratios were estimated from transcribed rRNA and
translated ribonucleoprotein sequences, respectively [see
supplementary materials (S4)]. The use of ribosomal RNA and
protein sequences to characterise the prevalence of ribonucleotides
and amino acids are based on the observation that the largest
allocation of protein synthesis capacity is in the production of
ribosomes [49]. The ‘Other’ class of biomass component contains

Fig. 2  Elementary mode of the ETC. Green arrows represent active
reactions, grey arrows represent inactive reactions. Reversible reactions
are represented as bi-directional arrows. Relative flux values and enzyme
names are written next to arrow lines. Flux carried by irreversible reactions
proceed in the direction indicated by the arrowhead, whereas reversible
reactions carry flux in the ‘downward’ direction (in terms of the figure’s
orientation)

 

Nfn:2NADP+ + NADH + H+ + Fdred → 2NADPH + NAD+ + Fdox (6)
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THF, CoA, flavin adenine dinucleotide, flavin mononucleotide,
NAD and NADP, see supplementary materials (S4).

The overall biomass composition including essential trace
metabolite pools is given in Table 2. Tables showing the estimated
relative proportion of each biomass precursor within the
macromolecular divisions are given in the supplementary materials
(S4). 

2.4.2 ATP maintenance costs: The following experimental
procedure was conducted to measure growth and non-growth ATP
maintenance costs (growth-associated ATP maintenance cost
(GAM) and non-growth-associated ATP maintenance cost
(NGAM), respectively) in CO-fed continuous culture of C.
autoethanogenum: The set dilution rate D was increased
incrementally from 0.01 to 0.028 h−1. Steady state was reached
after each change, as determined by stable culture OD. For each
steady-state period, the average CO uptake rate was calculated and
plotted against the corresponding specific growth rate μ which was
taken as equivalent to the set dilution rate according to (8). The
slope of a linear fit to this data is the growth-associated CO uptake
rate; the y-intercept is the non-growth-associated CO uptake rate
[see supplementary materials (S6)]

d(OD)
dt = (OD)(μ − D) = 0 (8)

GAM and NGAM were calculated by multiplying growth and non-
growth-associated CO uptake rates by the model-calculated
maximal ATP yield (YATP) from CO. The growth and non-growth-
associated CO uptake rates are 415 ± 92 and 5.7 ± 1.4,
respectively, and the optimal YATP value is 0.375 [see (12)]. These
values give a GAM of 155.7 ± 34.6 and an NGAM value of 2.2 ± 
0.5 (The units for GAM and NGAM are mmol gDCW−1 and mmol 
gDCW–1 h–1, respectively.).

Since a proportion of GAM is accounted for by biomass
precursor production in the metabolic network, this proportion
must be subtracted from the total GAM before incorporation as a
flux constraint. After subtracting the proportion of growth-
associated ATP maintenance incorporated in the model's metabolic
network (44.5 mmol gDCW–1) from the experimentally derived
GAM parameter, the actual GAM value used as a constraint in

FBA simulations was 111.2 mmol gDCW–1 h–1. Total ATP
maintenance (rATP) resulting from GAM/NGAM parameters
sourced from published GSMs and an assumed growth rate of
0.028 h−1 are shown in Table 3. 

2.5 Steady-state metabolism

The fundamental concept underlying the analyses presented in this
work is metabolic steady state. This occurs when the
concentrations of metabolites involved in a metabolic system do
not change over time [56, 57]. The steady-state constraint is
enforced with a set of linear differential equations representing the
production and consumption of m metabolites by n chemical
reactions. These equations can be represented as the dot product of
a matrix of reaction stoichiometries N and a vector of reaction
fluxes (i.e. net reaction rates) v [58]. The steady-state condition is
fulfilled when

dm
dt = Nv = 0, (9)

i.e. when the distribution of metabolic fluxes v lies in the nullspace
of N. Basis vectors for the nullspace of N can subsequently be
analysed to reveal useful properties of the subject metabolic
network such as ‘dead reactions’ which always carry zero flux at
steady state [59]. Another useful concept from the nullspace of N
is ‘enzyme subsets’ [60]. An enzyme subset is a subset of enzymes
within a metabolic network whose members carry flux in a fixed
ratio at steady state [59]. Inconsistent enzyme subsets contain one-
or-more enzymes whose flux direction violates irreversibility
constraints, effectively inactivating every enzyme in the subset.

2.6 Flux balance analysis

FBA is a fundamental technique for the analysis of GSMs which
formulates steady-state metabolism as an LP problem given some
assumed, biologically relevant objective function [61–63].

Since (9) only specifies constraints on the relative values of
fluxes, further constraints are required to achieve a solution space
which is sufficiently bounded for LP [64]. For example, transport
‘reactions’ responsible for the influx (and efflux) of metabolites
into the system are often subject to an upper-bound constraint.
Following this, an objective function is specified which maximises
or minimises a selection of the flux variables. An objective is
usually chosen which mimics an assumed biological objective [65]
such as maximising ATP generation. The subsequent solution to
the LP problem is thus an optimal flux distribution.

Results obtained through the application of FBA provide insight
into the capabilities of a metabolic network, thus helping to
investigate the steady-state behaviour of an organism. In this paper,
FBA is used to calculate the growth rate of C. autoethanogenum as
a means of model validation. Following this, FBA is used to
investigate the model's response to changes in industrially relevant
culture conditions including non-carbon limitation and constraints
on hydrogen production.

2.6.1 Network flux minimisation: The preferred objective
function in this paper is the minimisation of absolute flux through
all enzyme-catalysed reactions (10). For a mass-balanced
metabolic network, total network flux minimisation reduces the
occurrence of thermodynamically infeasible energy-generating
cycles, while providing a reasonable approximation of enzymatic
economy [31, 32, 34, 66, 67].

minimise: vcat (objective function)

subject to

Nv = 0 (steady state)
vATPase = YxATP × μ + mATP

vki = μ × bi; i ∈ {1, …, Xbio}
vpj ≤ 0; j ∈ {1, …, Xprods}

(10)

Table 2 Overall biomass composition of C.
autoethanogenum DSM 10061
Component Percentage ±
protein 26.3 2.3
DNA 14.6 7.5
RNA 17.9 4.2
lipid 21.0 1.7
polysaccharide 10.2 7.8
teichoic acid 0.6 0.1
other 9.4 —

 

Table 3 Maintenance costs (rATP) calculated at μ = 0.028 h−1

with GAM and NGAM values from a range of GSMs/
organisms
Organism GAM NGAM rATP Reference
C. autoethanogneum 111.2 2.2 5.3 —
C. autoethanogneum 41.3 — 1.2 [17]
C. ljungdahlii 46.7 0.45 1.8 [50]
Clostridium beijerinckii 40.0 8.5 9.6 [51]
Acetobacter woodii 150.0 0.8 5.0 [52]
Bacillus subtilis 105.0 9.0 11.9 [53]
Escherichia coli 97.0 18.9 21.6 [54]
Saccharomyces cerevisiae 71–91 <1 <3.3 [55]
Units for growth-associated and non-growth-associated maintenance are mmol
gDCW–1 and mmol gDCW–1 h–1, respectively.
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where N is the stoichiometric matrix and v is a vector of all
reaction flux values included in the metabolic network; vcat is the
set of network reactions catalysed by enzymes, i.e. the subset of v
which excludes transport by diffusion (in this paper: CO, CO2 and
H2) and spontaneous reactions. This objective requires information
on whether or not a reaction can occur spontaneously in the context
of metabolism, as provided in Pathway Tools. YxATP and mATP are
equivalent to the growth and non-growth-associated ATP
maintenance costs (GAM and NGAM), respectively, and μ is the
specific growth rate. vATPase is the flux through the network's
ATPase reaction (ATP + H2O→ADP + Pi + H+). Reaction fluxes
representing the production of Xbio biomass precursors are denoted
vki, where k is a vector containing the corresponding indices of
these reactions in v. The vector b contains relative abundance
values for each biomass precursor which, when multiplied by μ,
determine the value of each vki. Reaction fluxes representing the
transport of non-biomass-associated metabolites not required as
growth substrates (i.e. potential products) are denoted vpj, where p
is a vector of length Xprods containing the corresponding indices in
v.

2.6.2 Growth yield/ATP maximisation: An alternative objective
function is the maximisation of biomass precursor production, an
approximation of growth rate optimisation [44]

maximise:μ

subject to

Nv = 0
vATPase = mATP

vki = gi; i ∈ {1, …, Xgrowth}
vpj ≤ 0; j ∈ {1, …, Xprods}

(11)

Here, μ is represented as a lumped chemical equation including all
biomass precursors as reactants with their relative abundance given
as stoichiometric coefficients. YxATP (GAM) is incorporated in the
lumped equation as the stoichiometric coefficient on ATP. Reaction
fluxes representing each of Xgrowth substrate-uptake reactions are
denoted vki, where k is a vector containing the corresponding
indices in v. The vector g contains fixed-flux values for each of
Xgrowth substrate-uptake reactions. In this paper, the fixed substrate-
uptake rate is taken as the average experimentally observed uptake
rate over the time period at which the culture is at steady state.

An alternative form of this LP problem maximises ATP
dissipation, i.e. flux carried by ATPase (vATPase) in the ATP
hydrolysing direction. Solutions to this problem achieve optimal
ATP yields. Furthermore, a complete hierarchy of products ordered
in terms of YATP can be generated by iteratively computing the
YATP-optimal solution while blocking (i.e. constraining to 0) flux
across the transporter of the product formed in the previous
iteration until ATP production is infeasible.

2.7 Software

Reconstruction steps and model analyses were carried out using the
ScrumPy package (http://mudshark.brookes.ac.uk/ScrumPy) [34].
Analysis of the previously published iCLAU786 [17] model was
carried out in COBRApy [68]. Bioreactor data were analysed using

an automated python/MATLAB-based software pipeline designed
for the BioCommand software (BioCommand®, New Brunswick
Scientific), in which data were transferred to a web server,
allowing real-time updates before calibration and post-processing
using a suite of MATLAB® scripts. Further details of this toolset
including source code and descriptions are available on request.

3 Results
3.1 Comparison of MetaCLAU with published models

Genome-scale metabolic models have been published for both
Clostridium ljungdahlii [50] and C. autoethanogenum [17, 20]. The
C. autoethanogenum model, iCLAU786, was first made available
in [17] and then updated in [20]. Additionally, the repository of
metabolic models automatically generated by CarveMe [69]
contains a draft network for C. autoethanogenum. This section
shows the results of a general comparison between MetaCLAU and
these published models.

Differences in the general model statistics are shown in Table 4.
Importantly, the more recent iCLAU786 version [20] fails the
essential condition set-out in Section 2.2.4 that no ATP can be
generated without the uptake and excretion of metabolites. For this
reason, this version of iCLAU786 is excluded from further
analysis. Similarly, the CarveMe draft model is excluded from
further analysis as it is unable to generate ATP from CO and water. 

An important difference is the number of dead reactions;
iCLAU786 has 966 (97%) dead reactions, whereas MetaCLAU has
327 (43%). MetaCLAU also accounts for the transport of more
metabolites. Finally, unlike the other models, MetaCLAU contains
no inconsistent enzyme subsets [33]. Details of this comparison are
provided in the externally hosted files [26].

3.2 Validation

Validation of key behaviours against experimental data was carried
out to demonstrate the model's good reliability. Substrate
utilisation, the growth rate on CO and product spectrum are the
validating behaviours tested in this paper.

3.2.1 Substrate utilisation: The ability of C. autoethanogenum to
use different carbon/energy sources for the production of biomass
(and maintenance) was calculated with FBA. Each compound was
used as the sole carbon source in the in silico minimal medium by
allowing influx across the corresponding transporter while
applying the min v  objective. The simulation results were
compared with experimental data (Table 5), showing good
agreement with known carbon/energy sources. 

3.2.2 Growth rate: An average experimentally observed CO
uptake rate of 16.52 ± 0.02mmol gDCW−1 h−1 was applied as a
fixed-flux constraint on CO transport, which, with the objective
function set to maximise biomass production, resulted in a
calculated optimal specific growth yield of 0.027 h−1. This value is
within the error margin of the measured specific growth rate of
0.028 ± 0.001 h−1. A comparison of model-simulated versus
reported experimental growth rates including fructose and syngas
is shown in Table 6. 

Table 4 Comparison of genome-scale metabolic models
Model Reactions Dead reactions Trans. Mets Genes GPRs IESs* Energy conserved?
MetaCLAU 755 327 80 772 699 600 0 YES
iCLAU786 [17] 1001 810 28 1046 802 841 21 YES
iCLAU786 [20] 1109 966a 66 1162 784 862 22 NO
CarveMe 1202 30 129 922 809 844 15 YES
iHN637 785 186 95 698 637 615 20 YES
aThis high proportion of dead reactions is due to the inclusion of external metabolites in the stoichiometric matrix of iCLAU786. See externally hosted files [26].
*Inconsistent enzyme subsets (IESs)
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3.2.3 Product spectrum: The ratio of product fluxes in optimal
solutions with CO as the sole source of carbon and energy was
sensitive to the choice of the objective function. Maximisation of
growth yield (11) resulted in acetate and CO2 production, with no
flux to ethanol. In contrast, when minimisation of network flux was
the objective function (10), acetate and ethanol formed the main
products. Optimal flux distributions computed with published
models of C. autoethanogenum (iCLAU786 [17, 19]) and C.
ljungdahlii (iHN637 [50]) did not include simultaneous production
of ethanol and acetate without additional constraints (see Table 7).
The min vcat  objective could not be applied to iCLAU786 or
iHN637 since reactions that are known to occur spontaneously (in
the context of metabolism) are not identified in these models. 

The optimal ATP yield (YATP) per mole substrate uptake with
CO as the sole carbon and energy source was 0.375 with acetate as
the sole product [net stoichiometry shown in (12)]. A sub-optimal
YATP value (0.342) is associated with ethanol production. A
hierarchy of products based on their associated ATP yield is shown

below, demonstrating that the model can return flux distributions
associated with the expected range of liquid products:

YATP
acetate = 0.375:CO + 1/2H2O

→ 1/4CH3COO− + 1/4H+ + 1/2CO2

(12)

YATP
ethanol = 0.341:CO + 1/2H2O

→ 1/6CH3CH2OH + 2/3CO2
(13)

YATP
lactate = 0.174:CO + 1/2H2O

→ 1/6CH3CH(OH)CO2
− + 1/6H+ + 1/2CO2

(14)

YATP
2, 3BD = 0.14:CO + 5/11H2O

→ 1/11CH3(CHOH)2CH3 + 7/11CO2
(15)

YATP
H2 = 0.136:CO + H2O → H2 + CO2 (16)

3.3 Gas shift

A range of CO uptake rates exceeding the uptake rate required to
support a fixed growth rate (vCO = 16.97, μ = 0.028) was applied
to simulate non-carbon-limited growth. FBA with CO uptake in the
range 17–42.5 mmol gDCW–1 h–1 and a fixed growth rate of
0.028 h−1 results in a shift from majority acetate production to
ethanol production (Fig. 3) and subsequent hydrogen production in
optimal solutions (Fig. 4). When the model was constrained to
allow no production (or uptake) of hydrogen, 2,3-BD and lactate
efflux appear in optimal solutions after the initial switch from
acetate to ethanol (where 2,3-BD efflux increases with CO uptake
but lactate efflux remains constant, see Fig. 5). The constraint on
hydrogen efflux was applied to mimic possible limitations on
hydrogen production caused by increasing hydrogen partial
pressure in the external environment [73]. 

4 Discussion
A GSM of C. autoethanogenum has been constructed and
parameterised with experimentally derived values representing
ATP maintenance costs and cellular biomass composition. The
experimental parameterisation was designed to make the model
more accurately represent C. autoethanogenum metabolism, as
confirmed by the validation in Section 3.2 above. Model-calculated
yields for growth on CO agree with experimentally observed
growth rate data, while the production of acetate and ethanol in
optimal flux distributions supporting biomass production and
maintenance costs is consistent with the established native product
profile of C. autoethanogenum.

Oversupply of CO to the metabolic network leads to excess
reducing equivalents, forcing flux through pathways (see Fig. 6)
allowing the removal of superfluous reducing power (electrons)
from the system [14]. This has been tested using FBA by
increasing the ratio between energy-substrate supply (in this case,
CO) and growth rate over a fixed range (Fig. 3) representing non-
carbon-limited conditions. Results show that increasing the influx

Table 5 Carbon-source validation results
Carbon source Model predicts

growth?
Growth

observed?
Reference

CO YES YES [15, 17, 35]
CO2 ( + H2) YES YES [15, 35]
fructose YES YES [15, 35]
xylose YES YES [15, 70]
arabinose YES YES [15]
rhamnose YES YES [15]
pyruvate YES YES [15]
glutamate YES YES [15]
formate YES NO [15]
fumarate YES YESa [15, 71]

glucose NOb NO [15]

lactate NO NO [15]
acetate NO — —
ethanol NO — —
2,3-BD YES — —
aAbrini et al. [15] and Breitkopf [71] disagree, see discussion.
bC. autoethanogenum does not encode a glucose transporter.
 

Table 6 Growth rate comparison: model simulation versus
experimental data
Carbon/
energy
source

Uptake
(measured)

Growth rate
(measured)

Growth rate
(simulated)

Data
source

CO 16.5 0.028 0.027 (this
study)

CO, H2 22.4, 13.9 0.041 0.063 [20]
fructose 1.4 0.05 0.027 [72]
 

Table 7 Ethanol, acetate and CO2 effluxes in optimal flux distributions for CO growth computed with C. autoethanogenum
GSMs
Model Objective vacetate vethanol vCO2 CO uptake
MetaCLAU min vcat 0.06 2.7 12 18.4

min v 0.07 2.7 12 18.4
max μ 2.3 0 5 10

iCLAU786 [17] min v 0 2.4 10.9 16.7
max μ 2.3 0 5.0 10

iHN637 [50] min v 3.1 0 8.0 15.6
max μ 3.5 0 10.4 20

Acetate and ethanol efflux values are emboldened in flux distributions where both are produced. iCLAU786 max μ values taken from [17].
Bold values emphasise the inclusion of both acetate and ethanol in flux distributions computed with MetaCLAU.
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of CO beyond the rate necessary to achieve a fixed growth rate
causes a switch from acetate to ethanol production over the uptake
range 17–18.5 mmol gDCW–1 h–1. This provides a new strategy
for increasing ethanol production. 

It has also been hypothesised that bacterial hydrogen production
will be restricted by external constraints during continuous culture.
More specifically, hydrogen production may become
thermodynamically unfavourable if its partial pressure in the
external environment exceeds some critical value. This will cause
metabolism to favour the production of other electron sinks (such
as lactate) [73–75]. To test this, the CO uptake scan was repeated

with hydrogen transport restricted to zero. Optimal flux
distributions resulting from this simulation showed 2,3-BD
production increasing monotonically with CO uptake after the
acetate/ethanol switch (Fig. 5). This result is significant since 2,3-
BD production has not been reported from the analysis of previous
models [17, 20]. Furthermore, lactate production appeared in
optimal flux distributions but was unchanged with increasing CO
uptake, suggesting an association with biomass production. Thus,
the analysis has uncovered a testable set of bioprocess conditions
for which 2,3-BD is included in optimal metabolic flux
distributions, increasing with the gas inflow.

4.1 Model availability

The model is available to download as an SBML, JSON (COBRA
readable) or ScrumPy-formatted file from the Biomodels database
[76] using accession number MODEL1810120001. All model and
database files are available in the supplementary materials
including an ipython notebook demonstrating all presented
analyses (requires installation of ipython and COBRApy).
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Fig. 3  FBA-simulated gas shift in C. autoethanogenum: acetate/ethanol
switch. Orange and blue lines, respectively, denote ethanol and acetate
efflux

 

Fig. 4  FBA-simulated gas shift in C. autoethanogenum: hydrogen
production. Orange and green lines, respectively, denote ethanol and
hydrogen efflux

 

Fig. 5  FBA-simulated gas shift in C. autoethanogenum: 2,3-BD and
lactate production (hydrogen efflux blocked). Orange, yellow and purple
lines, respectively, denote ethanol, 2,3-BD and lactate efflux

 

Fig. 6  Metabolic pathways in C. autoethanogenum for CO-fed growth.
Colour scheme match Figs. 3–5, showing pathways leading to
corresponding products. ADHE1/2 is coloured grey to signify that it does
not carry flux. Black arrows carry flux in all solutions computed during CO
scans. (Only primary metabolites are shown including redox requirements
of routes to acetate, ethanol, lactate and 2,3-BD. ‘_tx’ denotes a transport
process. WLP = Wood–Ljungdahl pathway. Stoichiometric weightings for
Nfn and HytA-E shown)
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